Пример #1
0
/*
 * 3.	Encode arguments of an RPC call
 */
static void
call_encode(struct rpc_task *task)
{
	struct rpc_clnt	*clnt = task->tk_client;
	struct rpc_rqst	*req = task->tk_rqstp;
	unsigned int	bufsiz;
	kxdrproc_t	encode;
	int		status;
	u32		*p;

	dprintk("RPC: %4d call_encode (status %d)\n", 
				task->tk_pid, task->tk_status);

	task->tk_action = call_transmit;

	/* Default buffer setup */
	bufsiz = rpcproc_bufsiz(clnt, task->tk_proc)+RPC_SLACK_SPACE;
	req->rq_svec[0].iov_base = task->tk_buffer;
	req->rq_svec[0].iov_len  = bufsiz;
	req->rq_slen		 = 0;
	req->rq_snr		 = 1;
	req->rq_rvec[0].iov_base = task->tk_buffer;
	req->rq_rvec[0].iov_len  = bufsiz;
	req->rq_rlen		 = bufsiz;
	req->rq_rnr		 = 1;

	if (task->tk_proc > clnt->cl_maxproc) {
		printk(KERN_WARNING "%s (vers %d): bad procedure number %d\n",
			clnt->cl_protname, clnt->cl_vers, task->tk_proc);
		rpc_exit(task, -EIO);
		return;
	}

	/* Zero buffer so we have automatic zero-padding of opaque & string */
	memset(task->tk_buffer, 0, bufsiz);

	/* Encode header and provided arguments */
	encode = rpcproc_encode(clnt, task->tk_proc);
	if (!(p = call_header(task))) {
		printk("RPC: call_header failed, exit EIO\n");
		rpc_exit(task, -EIO);
	} else
	if ((status = encode(req, p, task->tk_argp)) < 0) {
		printk(KERN_WARNING "%s: can't encode arguments: %d\n",
				clnt->cl_protname, -status);
		rpc_exit(task, status);
	}
}
Пример #2
0
/*
 * 2.	Allocate the buffer. For details, see sched.c:rpc_malloc.
 *	(Note: buffer memory is freed in rpc_task_release).
 */
static void
call_allocate(struct rpc_task *task)
{
	struct rpc_clnt	*clnt = task->tk_client;
	unsigned int	bufsiz;

	dprintk("RPC: %4d call_allocate (status %d)\n", 
				task->tk_pid, task->tk_status);
	task->tk_action = call_encode;
	if (task->tk_buffer)
		return;

	/* FIXME: compute buffer requirements more exactly using
	 * auth->au_wslack */
	bufsiz = rpcproc_bufsiz(clnt, task->tk_proc) + RPC_SLACK_SPACE;

	if ((task->tk_buffer = rpc_malloc(task, bufsiz)) != NULL)
		return;
	printk("RPC: buffer allocation failed for task %p\n", task); 

	if (!signalled()) {
		xprt_release(task);
		task->tk_action = call_reserve;
		rpc_delay(task, HZ);
		return;
	}

	rpc_exit(task, -ERESTARTSYS);
}
Пример #3
0
/*
 * 1.	Reserve an RPC call slot
 */
static void
call_reserve(struct rpc_task *task)
{
	struct rpc_clnt	*clnt = task->tk_client;

	dprintk("RPC: %4d call_reserve\n", task->tk_pid);
	if (!clnt->cl_port) {
		printk(KERN_NOTICE "%s: couldn't bind to server %s - %s.\n",
			clnt->cl_protname, clnt->cl_server,
			clnt->cl_softrtry? "giving up" : "retrying");
		if (!clnt->cl_softrtry) {
			rpc_delay(task, 5*HZ);
			return;
		}
		rpc_exit(task, -EIO);
		return;
	}
	if (!rpcauth_uptodatecred(task)) {
		task->tk_action = call_refresh;
		return;
	}
	task->tk_action  = call_reserveresult;
	task->tk_timeout = clnt->cl_timeout.to_resrvval;
	task->tk_status  = 0;
	clnt->cl_stats->rpccnt++;
	xprt_reserve(task);
}
Пример #4
0
/**
 * nfs_pgio_prepare - Prepare pageio hdr to go over the wire
 * @task: The current task
 * @calldata: pageio header to prepare
 */
static void nfs_pgio_prepare(struct rpc_task *task, void *calldata)
{
	struct nfs_pgio_header *hdr = calldata;
	int err;
	err = NFS_PROTO(hdr->inode)->pgio_rpc_prepare(task, hdr);
	if (err)
		rpc_exit(task, err);
}
Пример #5
0
/*
 * 6a.	Handle RPC timeout
 * 	We do not release the request slot, so we keep using the
 *	same XID for all retransmits.
 */
static void
call_timeout(struct rpc_task *task)
{
	struct rpc_clnt	*clnt = task->tk_client;
	struct rpc_rqst	*req = task->tk_rqstp;

	if (req) {
		struct rpc_timeout *to = &req->rq_timeout;

		if (xprt_adjust_timeout(to)) {
			dprintk("RPC: %4d call_timeout (minor timeo)\n",
				task->tk_pid);
			goto minor_timeout;
		}
		to->to_initval <<= 1;
		if (to->to_initval > to->to_maxval)
			to->to_initval = to->to_maxval;
	}

	dprintk("RPC: %4d call_timeout (major timeo)\n", task->tk_pid);
	if (clnt->cl_softrtry) {
		if (clnt->cl_chatty && !task->tk_exit)
			printk("%s: server %s not responding, timed out\n",
				clnt->cl_protname, clnt->cl_server);
		rpc_exit(task, -EIO);
		return;
	}
	if (clnt->cl_chatty && !(task->tk_flags & RPC_CALL_MAJORSEEN)) {
		task->tk_flags |= RPC_CALL_MAJORSEEN;
		if (req)
			printk("%s: server %s not responding, still trying\n",
				clnt->cl_protname, clnt->cl_server);
		else 
			printk("%s: task %d can't get a request slot\n",
				clnt->cl_protname, task->tk_pid);
	}
	if (clnt->cl_autobind)
		clnt->cl_port = 0;

minor_timeout:
	if (!clnt->cl_port) {
		task->tk_action = call_bind;
	} else if (!req) {
		task->tk_action = call_reserve;
	} else if (req->rq_damaged) {
		task->tk_action = call_encode;
		clnt->cl_stats->rpcretrans++;
	} else {
		task->tk_action = call_transmit;
		clnt->cl_stats->rpcretrans++;
	}
	task->tk_status = 0;
}
Пример #6
0
/*
 * 1b.	Grok the result of xprt_reserve()
 */
static void
call_reserveresult(struct rpc_task *task)
{
	int status = task->tk_status;

	dprintk("RPC: %4d call_reserveresult (status %d)\n",
				task->tk_pid, task->tk_status);
	/*
	 * After a call to xprt_reserve(), we must have either
	 * a request slot or else an error status.
	 */
	if ((task->tk_status >= 0 && !task->tk_rqstp) ||
	    (task->tk_status < 0 && task->tk_rqstp))
		printk(KERN_ERR "call_reserveresult: status=%d, request=%p??\n",
		 task->tk_status, task->tk_rqstp);

	if (task->tk_status >= 0) {
		task->tk_action = call_allocate;
		return;
	}

	task->tk_status = 0;
	switch (status) {
	case -EAGAIN:
	case -ENOBUFS:
		task->tk_timeout = task->tk_client->cl_timeout.to_resrvval;
		task->tk_action = call_reserve;
		break;
	case -ETIMEDOUT:
		dprintk("RPC: task timed out\n");
		task->tk_action = call_timeout;
		break;
	default:
		if (!task->tk_rqstp) {
			printk(KERN_INFO "RPC: task has no request, exit EIO\n");
			rpc_exit(task, -EIO);
		} else
			rpc_exit(task, status);
	}
}
Пример #7
0
/*
 * 7.	Decode the RPC reply
 */
static void
call_decode(struct rpc_task *task)
{
	struct rpc_clnt	*clnt = task->tk_client;
	struct rpc_rqst	*req = task->tk_rqstp;
	kxdrproc_t	decode = rpcproc_decode(clnt, task->tk_proc);
	u32		*p;

	dprintk("RPC: %4d call_decode (status %d)\n", 
				task->tk_pid, task->tk_status);

	if (clnt->cl_chatty && (task->tk_flags & RPC_CALL_MAJORSEEN)) {
		printk("%s: server %s OK\n",
			clnt->cl_protname, clnt->cl_server);
		task->tk_flags &= ~RPC_CALL_MAJORSEEN;
	}

	if (task->tk_status < 12) {
		printk("%s: too small RPC reply size (%d bytes)\n",
			clnt->cl_protname, task->tk_status);
		rpc_exit(task, -EIO);
		return;
	}

	/* Verify the RPC header */
	if (!(p = call_verify(task)))
		return;

	/*
	 * The following is an NFS-specific hack to cater for setuid
	 * processes whose uid is mapped to nobody on the server.
	 */
	if (task->tk_client->cl_prog == 100003 && 
            (ntohl(*p) == NFSERR_ACCES || ntohl(*p) == NFSERR_PERM)) {
		if (RPC_IS_SETUID(task) && (task->tk_suid_retry)--) {
			dprintk("RPC: %4d retry squashed uid\n", task->tk_pid);
			task->tk_flags ^= RPC_CALL_REALUID;
			task->tk_action = call_encode;
			return;
		}
	}

	task->tk_action = NULL;
	task->tk_status = decode(req, p, task->tk_resp);
	dprintk("RPC: %4d call_decode result %d\n", task->tk_pid,
					task->tk_status);
}
Пример #8
0
/*
 * Kill all tasks for the given client.
 * XXX: kill their descendants as well?
 */
void
rpc_killall_tasks(struct rpc_clnt *clnt)
{
	struct rpc_task	**q, *rovr;

	dprintk("RPC:      killing all tasks for client %p\n", clnt);
	/* N.B. Why bother to inhibit? Nothing blocks here ... */
	rpc_inhibit++;
	for (q = &all_tasks; (rovr = *q); q = &rovr->tk_next_task) {
		if (!clnt || rovr->tk_client == clnt) {
			rovr->tk_flags |= RPC_TASK_KILLED;
			rpc_exit(rovr, -EIO);
			rpc_wake_up_task(rovr);
		}
	}
	rpc_inhibit--;
}
Пример #9
0
void nfs_reqlist_exit(struct nfs_server *server)
{
	struct nfs_reqlist      *cache;

	lock_kernel();
	cache = server->rw_requests;
	if (!cache)
		goto out;

	dprintk("NFS: reqlist_exit (ptr %p rpc %p)\n", cache, cache->task);

	while (cache->task) {
		rpc_exit(cache->task, 0);
		rpc_wake_up_task(cache->task);

		interruptible_sleep_on_timeout(&cache->request_wait, 1 * HZ);
	}
 out:
	unlock_kernel();
}
Пример #10
0
/*
 * 1b.	Grok the result of xprt_reserve()
 */
static void
call_reserveresult(struct rpc_task *task)
{
	dprintk("RPC: %4d call_reserveresult (status %d)\n",
				task->tk_pid, task->tk_status);
	/*
	 * After a call to xprt_reserve(), we must have either
	 * a request slot or else an error status.
	 */
	if ((task->tk_status >= 0 && !task->tk_rqstp) ||
	    (task->tk_status < 0 && task->tk_rqstp))
		printk("call_reserveresult: status=%d, request=%p??\n",
		 task->tk_status, task->tk_rqstp);

	if (task->tk_status >= 0) {
		task->tk_action = call_allocate;
		goto out;
	} else if (task->tk_status == -EAGAIN) {
		task->tk_timeout = task->tk_client->cl_timeout.to_resrvval;
		task->tk_status = 0;
		xprt_reserve(task);
		goto out;
	} else if (task->tk_status == -ETIMEDOUT) {
		dprintk("RPC: task timed out\n");
		task->tk_action = call_timeout;
		goto out;
	} else {
		task->tk_action = NULL;
	}
	if (!task->tk_rqstp) {
		printk("RPC: task has no request, exit EIO\n");
		rpc_exit(task, -EIO);
	}
out:
	return;
}
Пример #11
0
/*
 * 1.	Reserve an RPC call slot
 */
static void
call_reserve(struct rpc_task *task)
{
	struct rpc_clnt	*clnt = task->tk_client;

	if (task->tk_msg.rpc_proc > clnt->cl_maxproc) {
		printk(KERN_WARNING "%s (vers %d): bad procedure number %d\n",
			clnt->cl_protname, clnt->cl_vers, task->tk_msg.rpc_proc);
		rpc_exit(task, -EIO);
		return;
	}

	dprintk("RPC: %4d call_reserve\n", task->tk_pid);
	if (!rpcauth_uptodatecred(task)) {
		task->tk_action = call_refresh;
		return;
	}

	task->tk_status  = 0;
	task->tk_action  = call_reserveresult;
	task->tk_timeout = clnt->cl_timeout.to_resrvval;
	clnt->cl_stats->rpccnt++;
	xprt_reserve(task);
}
/*
 * Obtain the port for a given RPC service on a given host. This one can
 * be called for an ongoing RPC request.
 */
void
rpc_getport(struct rpc_task *task, struct rpc_clnt *clnt)
{
	struct rpc_portmap *map = clnt->cl_pmap;
	struct sockaddr_in *sap = &clnt->cl_xprt->addr;
	struct rpc_message msg = {
		.rpc_proc	= &pmap_procedures[PMAP_GETPORT],
		.rpc_argp	= map,
		.rpc_resp	= &clnt->cl_port,
		.rpc_cred	= NULL
	};
	struct rpc_clnt	*pmap_clnt;
	struct rpc_task	*child;

	dprintk("RPC: %4d rpc_getport(%s, %d, %d, %d)\n",
			task->tk_pid, clnt->cl_server,
			map->pm_prog, map->pm_vers, map->pm_prot);

	/* Autobind on cloned rpc clients is discouraged */
	BUG_ON(clnt->cl_parent != clnt);

	spin_lock(&pmap_lock);
	if (map->pm_binding) {
		rpc_sleep_on(&map->pm_bindwait, task, NULL, NULL);
		spin_unlock(&pmap_lock);
		return;
	}
	map->pm_binding = 1;
	spin_unlock(&pmap_lock);

	pmap_clnt = pmap_create(clnt->cl_server, sap, map->pm_prot, 0);
	if (IS_ERR(pmap_clnt)) {
		task->tk_status = PTR_ERR(pmap_clnt);
		goto bailout;
	}
	task->tk_status = 0;

	/*
	 * Note: rpc_new_child will release client after a failure.
	 */
	if (!(child = rpc_new_child(pmap_clnt, task)))
		goto bailout;

	/* Setup the call info struct */
	rpc_call_setup(child, &msg, 0);

	/* ... and run the child task */
	rpc_run_child(task, child, pmap_getport_done);
	return;

bailout:
	spin_lock(&pmap_lock);
	map->pm_binding = 0;
	rpc_wake_up(&map->pm_bindwait);
	spin_unlock(&pmap_lock);
	rpc_exit(task, -EIO);
}

#ifdef CONFIG_ROOT_NFS
int
rpc_getport_external(struct sockaddr_in *sin, __u32 prog, __u32 vers, int prot)
{
	struct rpc_portmap map = {
		.pm_prog	= prog,
		.pm_vers	= vers,
		.pm_prot	= prot,
		.pm_port	= 0
	};
	struct rpc_clnt	*pmap_clnt;
	char		hostname[32];
	int		status;

	dprintk("RPC:      rpc_getport_external(%u.%u.%u.%u, %d, %d, %d)\n",
			NIPQUAD(sin->sin_addr.s_addr), prog, vers, prot);

	sprintf(hostname, "%u.%u.%u.%u", NIPQUAD(sin->sin_addr.s_addr));
	pmap_clnt = pmap_create(hostname, sin, prot, 0);
	if (IS_ERR(pmap_clnt))
		return PTR_ERR(pmap_clnt);

	/* Setup the call info struct */
	status = rpc_call(pmap_clnt, PMAP_GETPORT, &map, &map.pm_port, 0);

	if (status >= 0) {
		if (map.pm_port != 0)
			return map.pm_port;
		status = -EACCES;
	}
	return status;
}
#endif

static void
pmap_getport_done(struct rpc_task *task)
{
	struct rpc_clnt	*clnt = task->tk_client;
	struct rpc_xprt *xprt = task->tk_xprt;
	struct rpc_portmap *map = clnt->cl_pmap;

	dprintk("RPC: %4d pmap_getport_done(status %d, port %d)\n",
			task->tk_pid, task->tk_status, clnt->cl_port);

	xprt->ops->set_port(xprt, 0);
	if (task->tk_status < 0) {
		/* Make the calling task exit with an error */
		task->tk_action = rpc_exit_task;
	} else if (clnt->cl_port == 0) {
		/* Program not registered */
		rpc_exit(task, -EACCES);
	} else {
		xprt->ops->set_port(xprt, clnt->cl_port);
		clnt->cl_port = htons(clnt->cl_port);
	}
	spin_lock(&pmap_lock);
	map->pm_binding = 0;
	rpc_wake_up(&map->pm_bindwait);
	spin_unlock(&pmap_lock);
}

/*
 * Set or unset a port registration with the local portmapper.
 * port == 0 means unregister, port != 0 means register.
 */
int
rpc_register(u32 prog, u32 vers, int prot, unsigned short port, int *okay)
{
	struct sockaddr_in	sin;
	struct rpc_portmap	map;
	struct rpc_clnt		*pmap_clnt;
	int error = 0;

	dprintk("RPC: registering (%d, %d, %d, %d) with portmapper.\n",
			prog, vers, prot, port);

	sin.sin_family = AF_INET;
	sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
	pmap_clnt = pmap_create("localhost", &sin, IPPROTO_UDP, 1);
	if (IS_ERR(pmap_clnt)) {
		error = PTR_ERR(pmap_clnt);
		dprintk("RPC: couldn't create pmap client. Error = %d\n", error);
		return error;
	}

	map.pm_prog = prog;
	map.pm_vers = vers;
	map.pm_prot = prot;
	map.pm_port = port;

	error = rpc_call(pmap_clnt, port? PMAP_SET : PMAP_UNSET,
					&map, okay, 0);

	if (error < 0) {
		printk(KERN_WARNING
			"RPC: failed to contact portmap (errno %d).\n",
			error);
	}
	dprintk("RPC: registration status %d/%d\n", error, *okay);

	/* Client deleted automatically because cl_oneshot == 1 */
	return error;
}

static struct rpc_clnt *
pmap_create(char *hostname, struct sockaddr_in *srvaddr, int proto, int privileged)
{
	struct rpc_xprt	*xprt;
	struct rpc_clnt	*clnt;

	/* printk("pmap: create xprt\n"); */
	xprt = xprt_create_proto(proto, srvaddr, NULL);
	if (IS_ERR(xprt))
		return (struct rpc_clnt *)xprt;
	xprt->ops->set_port(xprt, RPC_PMAP_PORT);
	if (!privileged)
		xprt->resvport = 0;

	/* printk("pmap: create clnt\n"); */
	clnt = rpc_new_client(xprt, hostname,
				&pmap_program, RPC_PMAP_VERSION,
				RPC_AUTH_UNIX);
	if (!IS_ERR(clnt)) {
		clnt->cl_softrtry = 1;
		clnt->cl_oneshot  = 1;
	}
	return clnt;
}

/*
 * XDR encode/decode functions for PMAP
 */
static int
xdr_encode_mapping(struct rpc_rqst *req, u32 *p, struct rpc_portmap *map)
{
	dprintk("RPC: xdr_encode_mapping(%d, %d, %d, %d)\n",
		map->pm_prog, map->pm_vers, map->pm_prot, map->pm_port);
	*p++ = htonl(map->pm_prog);
	*p++ = htonl(map->pm_vers);
	*p++ = htonl(map->pm_prot);
	*p++ = htonl(map->pm_port);

	req->rq_slen = xdr_adjust_iovec(req->rq_svec, p);
	return 0;
}

static int
xdr_decode_port(struct rpc_rqst *req, u32 *p, unsigned short *portp)
{
	*portp = (unsigned short) ntohl(*p++);
	return 0;
}
Пример #13
0
/*
 * This is the RPC `scheduler' (or rather, the finite state machine).
 */
static int
__rpc_execute(struct rpc_task *task)
{
	unsigned long	oldflags;
	int		status = 0;

	dprintk("RPC: %4d rpc_execute flgs %x\n",
				task->tk_pid, task->tk_flags);

	if (!RPC_IS_RUNNING(task)) {
		printk(KERN_WARNING "RPC: rpc_execute called for sleeping task!!\n");
		return 0;
	}

	while (1) {
		/*
		 * Execute any pending callback.
		 */
		if (task->tk_flags & RPC_TASK_CALLBACK) {
			/* Define a callback save pointer */
			void (*save_callback)(struct rpc_task *);
	
			task->tk_flags &= ~RPC_TASK_CALLBACK;
			/* 
			 * If a callback exists, save it, reset it,
			 * call it.
			 * The save is needed to stop from resetting
			 * another callback set within the callback handler
			 * - Dave
			 */
			if (task->tk_callback) {
				save_callback=task->tk_callback;
				task->tk_callback=NULL;
				save_callback(task);
			}
		}

		/*
		 * No handler for next step means exit.
		 */
		if (!task->tk_action)
			break;

		/*
		 * Perform the next FSM step.
		 * tk_action may be NULL when the task has been killed
		 * by someone else.
		 */
		if (RPC_IS_RUNNING(task) && task->tk_action)
			task->tk_action(task);

		/*
		 * Check whether task is sleeping.
		 * Note that if the task may go to sleep in tk_action,
		 * and the RPC reply arrives before we get here, it will
		 * have state RUNNING, but will still be on schedq.
		 */
		save_flags(oldflags); cli();
		if (RPC_IS_RUNNING(task)) {
			if (task->tk_rpcwait == &schedq)
				rpc_remove_wait_queue(task);
		} else while (!RPC_IS_RUNNING(task)) {
			if (RPC_IS_ASYNC(task)) {
				restore_flags(oldflags);
				return 0;
			}

			/* sync task: sleep here */
			dprintk("RPC: %4d sync task going to sleep\n",
							task->tk_pid);
			if (current->pid == rpciod_pid)
				printk(KERN_ERR "RPC: rpciod waiting on sync task!\n");
			sleep_on(&task->tk_wait);

			/*
			 * When the task received a signal, remove from
			 * any queues etc, and make runnable again.
			 */
			if (signalled())
				__rpc_wake_up(task);

			dprintk("RPC: %4d sync task resuming\n",
							task->tk_pid);
		}
		restore_flags(oldflags);

		/*
		 * When a sync task receives a signal, it exits with
		 * -ERESTARTSYS. In order to catch any callbacks that
		 * clean up after sleeping on some queue, we don't
		 * break the loop here, but go around once more.
		 */
		if (!RPC_IS_ASYNC(task) && signalled()) {
			dprintk("RPC: %4d got signal\n", task->tk_pid);
			rpc_exit(task, -ERESTARTSYS);
		}
	}

	dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status);
	if (task->tk_exit) {
		status = task->tk_status;
		task->tk_exit(task);
	}

	return status;
}
void vcos_llthread_exit(void) {
   /* vcos_llthread_delete might have been called by this point! */
   vcos_assert(rtos_get_cpu_number() == 1);
   rpc_exit(0);
}
Пример #15
0
/*
 * Reply header verification
 */
static u32 *
call_verify(struct rpc_task *task)
{
	u32	*p = task->tk_buffer, n;

	p += 1;	/* skip XID */

	if ((n = ntohl(*p++)) != RPC_REPLY) {
		printk("call_verify: not an RPC reply: %x\n", n);
		goto garbage;
	}
	if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) {
		int	error = -EACCES;

		if ((n = ntohl(*p++)) != RPC_AUTH_ERROR) {
			printk("call_verify: RPC call rejected: %x\n", n);
		} else
		switch ((n = ntohl(*p++))) {
		case RPC_AUTH_REJECTEDCRED:
		case RPC_AUTH_REJECTEDVERF:
			if (!task->tk_cred_retry--)
				break;
			dprintk("RPC: %4d call_verify: retry stale creds\n",
							task->tk_pid);
			rpcauth_invalcred(task);
			task->tk_action = call_refresh;
			return NULL;
		case RPC_AUTH_BADCRED:
		case RPC_AUTH_BADVERF:
			/* possibly garbled cred/verf? */
			if (!task->tk_garb_retry--)
				break;
			dprintk("RPC: %4d call_verify: retry garbled creds\n",
							task->tk_pid);
			task->tk_action = call_encode;
			return NULL;
		case RPC_AUTH_TOOWEAK:
			printk("call_verify: server requires stronger "
			       "authentication.\n");
		default:
			printk("call_verify: unknown auth error: %x\n", n);
			error = -EIO;
		}
		dprintk("RPC: %4d call_verify: call rejected %d\n",
						task->tk_pid, n);
		rpc_exit(task, error);
		return NULL;
	}
	if (!(p = rpcauth_checkverf(task, p))) {
		printk("call_verify: auth check failed\n");
		goto garbage;		/* bad verifier, retry */
	}
	switch ((n = ntohl(*p++))) {
	case RPC_SUCCESS:
		return p;
	case RPC_GARBAGE_ARGS:
		break;			/* retry */
	default:
		printk("call_verify: server accept status: %x\n", n);
		/* Also retry */
	}

garbage:
	dprintk("RPC: %4d call_verify: server saw garbage\n", task->tk_pid);
	task->tk_client->cl_stats->rpcgarbage++;
	if (task->tk_garb_retry--) {
		printk("RPC: garbage, retrying %4d\n", task->tk_pid);
		task->tk_action = call_encode;
		return NULL;
	}
	printk("RPC: garbage, exit EIO\n");
	rpc_exit(task, -EIO);
	return NULL;
}
Пример #16
0
static int _nfs42_proc_fallocate(struct rpc_message *msg, struct file *filep,
		struct nfs_lock_context *lock, loff_t offset, loff_t len)
{
	struct inode *inode = file_inode(filep);
	struct nfs_server *server = NFS_SERVER(inode);
	struct nfs42_falloc_args args = {
		.falloc_fh	= NFS_FH(inode),
		.falloc_offset	= offset,
		.falloc_length	= len,
		.falloc_bitmask	= server->cache_consistency_bitmask,
	};
	struct nfs42_falloc_res res = {
		.falloc_server	= server,
	};
	int status;

	msg->rpc_argp = &args;
	msg->rpc_resp = &res;

	status = nfs4_set_rw_stateid(&args.falloc_stateid, lock->open_context,
			lock, FMODE_WRITE);
	if (status)
		return status;

	res.falloc_fattr = nfs_alloc_fattr();
	if (!res.falloc_fattr)
		return -ENOMEM;

	status = nfs4_call_sync(server->client, server, msg,
				&args.seq_args, &res.seq_res, 0);
	if (status == 0)
		status = nfs_post_op_update_inode(inode, res.falloc_fattr);

	kfree(res.falloc_fattr);
	return status;
}

static int nfs42_proc_fallocate(struct rpc_message *msg, struct file *filep,
				loff_t offset, loff_t len)
{
	struct nfs_server *server = NFS_SERVER(file_inode(filep));
	struct nfs4_exception exception = { };
	struct nfs_lock_context *lock;
	int err;

	lock = nfs_get_lock_context(nfs_file_open_context(filep));
	if (IS_ERR(lock))
		return PTR_ERR(lock);

	exception.inode = file_inode(filep);
	exception.state = lock->open_context->state;

	do {
		err = _nfs42_proc_fallocate(msg, filep, lock, offset, len);
		if (err == -ENOTSUPP) {
			err = -EOPNOTSUPP;
			break;
		}
		err = nfs4_handle_exception(server, err, &exception);
	} while (exception.retry);

	nfs_put_lock_context(lock);
	return err;
}

int nfs42_proc_allocate(struct file *filep, loff_t offset, loff_t len)
{
	struct rpc_message msg = {
		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ALLOCATE],
	};
	struct inode *inode = file_inode(filep);
	int err;

	if (!nfs_server_capable(inode, NFS_CAP_ALLOCATE))
		return -EOPNOTSUPP;

	inode_lock(inode);

	err = nfs42_proc_fallocate(&msg, filep, offset, len);
	if (err == -EOPNOTSUPP)
		NFS_SERVER(inode)->caps &= ~NFS_CAP_ALLOCATE;

	inode_unlock(inode);
	return err;
}

int nfs42_proc_deallocate(struct file *filep, loff_t offset, loff_t len)
{
	struct rpc_message msg = {
		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DEALLOCATE],
	};
	struct inode *inode = file_inode(filep);
	int err;

	if (!nfs_server_capable(inode, NFS_CAP_DEALLOCATE))
		return -EOPNOTSUPP;

	inode_lock(inode);
	err = nfs_sync_inode(inode);
	if (err)
		goto out_unlock;

	err = nfs42_proc_fallocate(&msg, filep, offset, len);
	if (err == 0)
		truncate_pagecache_range(inode, offset, (offset + len) -1);
	if (err == -EOPNOTSUPP)
		NFS_SERVER(inode)->caps &= ~NFS_CAP_DEALLOCATE;
out_unlock:
	inode_unlock(inode);
	return err;
}

static ssize_t _nfs42_proc_copy(struct file *src, loff_t pos_src,
				struct nfs_lock_context *src_lock,
				struct file *dst, loff_t pos_dst,
				struct nfs_lock_context *dst_lock,
				size_t count)
{
	struct nfs42_copy_args args = {
		.src_fh		= NFS_FH(file_inode(src)),
		.src_pos	= pos_src,
		.dst_fh		= NFS_FH(file_inode(dst)),
		.dst_pos	= pos_dst,
		.count		= count,
	};
	struct nfs42_copy_res res;
	struct rpc_message msg = {
		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COPY],
		.rpc_argp = &args,
		.rpc_resp = &res,
	};
	struct inode *dst_inode = file_inode(dst);
	struct nfs_server *server = NFS_SERVER(dst_inode);
	int status;

	status = nfs4_set_rw_stateid(&args.src_stateid, src_lock->open_context,
				     src_lock, FMODE_READ);
	if (status)
		return status;

	status = nfs_filemap_write_and_wait_range(file_inode(src)->i_mapping,
			pos_src, pos_src + (loff_t)count - 1);
	if (status)
		return status;

	status = nfs4_set_rw_stateid(&args.dst_stateid, dst_lock->open_context,
				     dst_lock, FMODE_WRITE);
	if (status)
		return status;

	status = nfs_sync_inode(dst_inode);
	if (status)
		return status;

	status = nfs4_call_sync(server->client, server, &msg,
				&args.seq_args, &res.seq_res, 0);
	if (status == -ENOTSUPP)
		server->caps &= ~NFS_CAP_COPY;
	if (status)
		return status;

	if (res.write_res.verifier.committed != NFS_FILE_SYNC) {
		status = nfs_commit_file(dst, &res.write_res.verifier.verifier);
		if (status)
			return status;
	}

	truncate_pagecache_range(dst_inode, pos_dst,
				 pos_dst + res.write_res.count);

	return res.write_res.count;
}

ssize_t nfs42_proc_copy(struct file *src, loff_t pos_src,
			struct file *dst, loff_t pos_dst,
			size_t count)
{
	struct nfs_server *server = NFS_SERVER(file_inode(dst));
	struct nfs_lock_context *src_lock;
	struct nfs_lock_context *dst_lock;
	struct nfs4_exception src_exception = { };
	struct nfs4_exception dst_exception = { };
	ssize_t err, err2;

	if (!nfs_server_capable(file_inode(dst), NFS_CAP_COPY))
		return -EOPNOTSUPP;

	src_lock = nfs_get_lock_context(nfs_file_open_context(src));
	if (IS_ERR(src_lock))
		return PTR_ERR(src_lock);

	src_exception.inode = file_inode(src);
	src_exception.state = src_lock->open_context->state;

	dst_lock = nfs_get_lock_context(nfs_file_open_context(dst));
	if (IS_ERR(dst_lock)) {
		err = PTR_ERR(dst_lock);
		goto out_put_src_lock;
	}

	dst_exception.inode = file_inode(dst);
	dst_exception.state = dst_lock->open_context->state;

	do {
		inode_lock(file_inode(dst));
		err = _nfs42_proc_copy(src, pos_src, src_lock,
				       dst, pos_dst, dst_lock, count);
		inode_unlock(file_inode(dst));

		if (err == -ENOTSUPP) {
			err = -EOPNOTSUPP;
			break;
		}

		err2 = nfs4_handle_exception(server, err, &src_exception);
		err  = nfs4_handle_exception(server, err, &dst_exception);
		if (!err)
			err = err2;
	} while (src_exception.retry || dst_exception.retry);

	nfs_put_lock_context(dst_lock);
out_put_src_lock:
	nfs_put_lock_context(src_lock);
	return err;
}

static loff_t _nfs42_proc_llseek(struct file *filep,
		struct nfs_lock_context *lock, loff_t offset, int whence)
{
	struct inode *inode = file_inode(filep);
	struct nfs42_seek_args args = {
		.sa_fh		= NFS_FH(inode),
		.sa_offset	= offset,
		.sa_what	= (whence == SEEK_HOLE) ?
					NFS4_CONTENT_HOLE : NFS4_CONTENT_DATA,
	};
	struct nfs42_seek_res res;
	struct rpc_message msg = {
		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEEK],
		.rpc_argp = &args,
		.rpc_resp = &res,
	};
	struct nfs_server *server = NFS_SERVER(inode);
	int status;

	if (!nfs_server_capable(inode, NFS_CAP_SEEK))
		return -ENOTSUPP;

	status = nfs4_set_rw_stateid(&args.sa_stateid, lock->open_context,
			lock, FMODE_READ);
	if (status)
		return status;

	status = nfs_filemap_write_and_wait_range(inode->i_mapping,
			offset, LLONG_MAX);
	if (status)
		return status;

	status = nfs4_call_sync(server->client, server, &msg,
				&args.seq_args, &res.seq_res, 0);
	if (status == -ENOTSUPP)
		server->caps &= ~NFS_CAP_SEEK;
	if (status)
		return status;

	return vfs_setpos(filep, res.sr_offset, inode->i_sb->s_maxbytes);
}

loff_t nfs42_proc_llseek(struct file *filep, loff_t offset, int whence)
{
	struct nfs_server *server = NFS_SERVER(file_inode(filep));
	struct nfs4_exception exception = { };
	struct nfs_lock_context *lock;
	loff_t err;

	lock = nfs_get_lock_context(nfs_file_open_context(filep));
	if (IS_ERR(lock))
		return PTR_ERR(lock);

	exception.inode = file_inode(filep);
	exception.state = lock->open_context->state;

	do {
		err = _nfs42_proc_llseek(filep, lock, offset, whence);
		if (err >= 0)
			break;
		if (err == -ENOTSUPP) {
			err = -EOPNOTSUPP;
			break;
		}
		err = nfs4_handle_exception(server, err, &exception);
	} while (exception.retry);

	nfs_put_lock_context(lock);
	return err;
}


static void
nfs42_layoutstat_prepare(struct rpc_task *task, void *calldata)
{
	struct nfs42_layoutstat_data *data = calldata;
	struct inode *inode = data->inode;
	struct nfs_server *server = NFS_SERVER(inode);
	struct pnfs_layout_hdr *lo;

	spin_lock(&inode->i_lock);
	lo = NFS_I(inode)->layout;
	if (!pnfs_layout_is_valid(lo)) {
		spin_unlock(&inode->i_lock);
		rpc_exit(task, 0);
		return;
	}
	nfs4_stateid_copy(&data->args.stateid, &lo->plh_stateid);
	spin_unlock(&inode->i_lock);
	nfs41_setup_sequence(nfs4_get_session(server), &data->args.seq_args,
			     &data->res.seq_res, task);

}

static void
nfs42_layoutstat_done(struct rpc_task *task, void *calldata)
{
	struct nfs42_layoutstat_data *data = calldata;
	struct inode *inode = data->inode;
	struct pnfs_layout_hdr *lo;

	if (!nfs4_sequence_done(task, &data->res.seq_res))
		return;

	switch (task->tk_status) {
	case 0:
		break;
	case -NFS4ERR_EXPIRED:
	case -NFS4ERR_ADMIN_REVOKED:
	case -NFS4ERR_DELEG_REVOKED:
	case -NFS4ERR_STALE_STATEID:
	case -NFS4ERR_BAD_STATEID:
		spin_lock(&inode->i_lock);
		lo = NFS_I(inode)->layout;
		if (pnfs_layout_is_valid(lo) &&
		    nfs4_stateid_match(&data->args.stateid,
					     &lo->plh_stateid)) {
			LIST_HEAD(head);

			/*
			 * Mark the bad layout state as invalid, then retry
			 * with the current stateid.
			 */
			pnfs_mark_layout_stateid_invalid(lo, &head);
			spin_unlock(&inode->i_lock);
			pnfs_free_lseg_list(&head);
		} else
			spin_unlock(&inode->i_lock);
		break;
	case -NFS4ERR_OLD_STATEID:
		spin_lock(&inode->i_lock);
		lo = NFS_I(inode)->layout;
		if (pnfs_layout_is_valid(lo) &&
		    nfs4_stateid_match_other(&data->args.stateid,
					&lo->plh_stateid)) {
			/* Do we need to delay before resending? */
			if (!nfs4_stateid_is_newer(&lo->plh_stateid,
						&data->args.stateid))
				rpc_delay(task, HZ);
			rpc_restart_call_prepare(task);
		}
		spin_unlock(&inode->i_lock);
		break;
	case -ENOTSUPP:
	case -EOPNOTSUPP:
		NFS_SERVER(inode)->caps &= ~NFS_CAP_LAYOUTSTATS;
	}

	dprintk("%s server returns %d\n", __func__, task->tk_status);
}

static void
nfs42_layoutstat_release(void *calldata)
{
	struct nfs42_layoutstat_data *data = calldata;
	struct nfs_server *nfss = NFS_SERVER(data->args.inode);

	if (nfss->pnfs_curr_ld->cleanup_layoutstats)
		nfss->pnfs_curr_ld->cleanup_layoutstats(data);

	pnfs_put_layout_hdr(NFS_I(data->args.inode)->layout);
	smp_mb__before_atomic();
	clear_bit(NFS_INO_LAYOUTSTATS, &NFS_I(data->args.inode)->flags);
	smp_mb__after_atomic();
	nfs_iput_and_deactive(data->inode);
	kfree(data->args.devinfo);
	kfree(data);
}

static const struct rpc_call_ops nfs42_layoutstat_ops = {
	.rpc_call_prepare = nfs42_layoutstat_prepare,
	.rpc_call_done = nfs42_layoutstat_done,
	.rpc_release = nfs42_layoutstat_release,
};

int nfs42_proc_layoutstats_generic(struct nfs_server *server,
				   struct nfs42_layoutstat_data *data)
{
	struct rpc_message msg = {
		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTSTATS],
		.rpc_argp = &data->args,
		.rpc_resp = &data->res,
	};
	struct rpc_task_setup task_setup = {
		.rpc_client = server->client,
		.rpc_message = &msg,
		.callback_ops = &nfs42_layoutstat_ops,
		.callback_data = data,
		.flags = RPC_TASK_ASYNC,
	};
	struct rpc_task *task;

	data->inode = nfs_igrab_and_active(data->args.inode);
	if (!data->inode) {
		nfs42_layoutstat_release(data);
		return -EAGAIN;
	}
	nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 0);
	task = rpc_run_task(&task_setup);
	if (IS_ERR(task))
		return PTR_ERR(task);
	rpc_put_task(task);
	return 0;
}

static int _nfs42_proc_clone(struct rpc_message *msg, struct file *src_f,
		struct file *dst_f, struct nfs_lock_context *src_lock,
		struct nfs_lock_context *dst_lock, loff_t src_offset,
		loff_t dst_offset, loff_t count)
{
	struct inode *src_inode = file_inode(src_f);
	struct inode *dst_inode = file_inode(dst_f);
	struct nfs_server *server = NFS_SERVER(dst_inode);
	struct nfs42_clone_args args = {
		.src_fh = NFS_FH(src_inode),
		.dst_fh = NFS_FH(dst_inode),
		.src_offset = src_offset,
		.dst_offset = dst_offset,
		.count = count,
		.dst_bitmask = server->cache_consistency_bitmask,
	};
	struct nfs42_clone_res res = {
		.server	= server,
	};
	int status;

	msg->rpc_argp = &args;
	msg->rpc_resp = &res;

	status = nfs4_set_rw_stateid(&args.src_stateid, src_lock->open_context,
			src_lock, FMODE_READ);
	if (status)
		return status;

	status = nfs4_set_rw_stateid(&args.dst_stateid, dst_lock->open_context,
			dst_lock, FMODE_WRITE);
	if (status)
		return status;

	res.dst_fattr = nfs_alloc_fattr();
	if (!res.dst_fattr)
		return -ENOMEM;

	status = nfs4_call_sync(server->client, server, msg,
				&args.seq_args, &res.seq_res, 0);
	if (status == 0)
		status = nfs_post_op_update_inode(dst_inode, res.dst_fattr);

	kfree(res.dst_fattr);
	return status;
}

int nfs42_proc_clone(struct file *src_f, struct file *dst_f,
		     loff_t src_offset, loff_t dst_offset, loff_t count)
{
	struct rpc_message msg = {
		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLONE],
	};
	struct inode *inode = file_inode(src_f);
	struct nfs_server *server = NFS_SERVER(file_inode(src_f));
	struct nfs_lock_context *src_lock;
	struct nfs_lock_context *dst_lock;
	struct nfs4_exception src_exception = { };
	struct nfs4_exception dst_exception = { };
	int err, err2;

	if (!nfs_server_capable(inode, NFS_CAP_CLONE))
		return -EOPNOTSUPP;

	src_lock = nfs_get_lock_context(nfs_file_open_context(src_f));
	if (IS_ERR(src_lock))
		return PTR_ERR(src_lock);

	src_exception.inode = file_inode(src_f);
	src_exception.state = src_lock->open_context->state;

	dst_lock = nfs_get_lock_context(nfs_file_open_context(dst_f));
	if (IS_ERR(dst_lock)) {
		err = PTR_ERR(dst_lock);
		goto out_put_src_lock;
	}

	dst_exception.inode = file_inode(dst_f);
	dst_exception.state = dst_lock->open_context->state;

	do {
		err = _nfs42_proc_clone(&msg, src_f, dst_f, src_lock, dst_lock,
					src_offset, dst_offset, count);
		if (err == -ENOTSUPP || err == -EOPNOTSUPP) {
			NFS_SERVER(inode)->caps &= ~NFS_CAP_CLONE;
			err = -EOPNOTSUPP;
			break;
		}

		err2 = nfs4_handle_exception(server, err, &src_exception);
		err = nfs4_handle_exception(server, err, &dst_exception);
		if (!err)
			err = err2;
	} while (src_exception.retry || dst_exception.retry);

	nfs_put_lock_context(dst_lock);
out_put_src_lock:
	nfs_put_lock_context(src_lock);
	return err;
}
Пример #17
0
int
main (int argc, char *argv[])
{
  if (rpc_test_get_connection_path)
    g_connection_path = rpc_test_get_connection_path ();
  else
    g_connection_path = NPW_CONNECTION_PATH "/Test.RPC";

#ifdef BUILD_CLIENT
  gchar **child_args;

  if (argc < 2)
    g_error ("no server program provided on command line");

  signal (SIGSEGV, urgent_exit_sig);
  signal (SIGBUS,  urgent_exit_sig);
  signal (SIGINT,  urgent_exit_sig);
  signal (SIGABRT, urgent_exit_sig);

  if ((child_args = clone_args (argv)) == NULL)
    g_error ("could not create server program arguments\n");
  g_free (child_args[0]);
  child_args[0] = g_strdup (argv[1]);

  if (!g_spawn_async (NULL,
		      child_args,
		      NULL,
		      G_SPAWN_DO_NOT_REAP_CHILD,
		      NULL,
		      NULL,
		      &g_child_pid,
		      NULL))
    g_error ("could not start server program '%s'", child_args[0]);

  g_strfreev (child_args);

  if ((g_connection = rpc_init_client (g_connection_path)) == NULL)
    g_error ("failed to initialize RPC client connection");
#endif

#ifdef BUILD_SERVER
  if ((g_connection = rpc_init_server (g_connection_path)) == NULL)
    g_error ("failed to initialize RPC server connection");
#endif

  int        fd            = -1;
  GSource   *rpc_source    = NULL;
  guint      rpc_source_id = 0;
  GPollFD    rpc_event_poll_fd;

#ifdef BUILD_CLIENT
  fd = rpc_socket (g_connection);
#endif
#ifdef BUILD_SERVER
  fd = rpc_listen_socket (g_connection);
#endif
  RPC_TEST_ENSURE (fd >= 0);

  if ((rpc_source = g_source_new (&rpc_event_funcs, sizeof (GSource))) == NULL)
    g_error ("failed to initialize RPC source");

  rpc_source_id = g_source_attach (rpc_source, NULL);
  memset (&rpc_event_poll_fd, 0, sizeof (rpc_event_poll_fd));
  rpc_event_poll_fd.fd      = fd;
  rpc_event_poll_fd.events  = G_IO_IN;
  rpc_event_poll_fd.revents = 0;
  g_source_add_poll (rpc_source, &rpc_event_poll_fd);

  static const rpc_method_descriptor_t vtable[] = {
    { RPC_TEST_METHOD_EXIT, handle_rpc_test_exit }
  };
  if (rpc_connection_add_method_descriptor (g_connection, &vtable[0]) < 0)
    g_error ("could not add method descriptor for TEST_RPC_METHOD_EXIT");

  g_main_loop = g_main_loop_new (NULL, TRUE);
#ifdef BUILD_CLIENT
  g_child_watch_id = g_child_watch_add (g_child_pid, child_exited_cb, NULL);
#endif
  rpc_test_init_invoke (argv);
  g_main_loop_run (g_main_loop);
  if (rpc_source_id)
    g_source_remove (rpc_source_id);
  if (g_connection)
    rpc_exit (g_connection);
  return g_exit_status;
}