Пример #1
0
void
sgssvx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, float *R, float *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X, float *recip_pivot_growth, 
       float *rcond, float *ferr, float *berr, 
       mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info )
{


    DNformat  *Bstore, *Xstore;
    float    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    float    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    float    diag_pivot_thresh;
    double    t0;      /* temporary time */
    double    *utime;

    /* External functions */
    extern float slangs(char *, SuperMatrix *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    if ( nofact ) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	colequ = lsame_(equed, "C") || lsame_(equed, "B");
	smlnum = slamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

#if 0
printf("dgssvx: Fact=%4d, Trans=%4d, equed=%c\n",
       options->Fact, options->Trans, *equed);
#endif

    /* Test the input parameters */
    if (options->Fact != DOFACT && options->Fact != SamePattern &&
	options->Fact != SamePattern_SameRowPerm &&
	options->Fact != FACTORED &&
	options->Trans != NOTRANS && options->Trans != TRANS && 
	options->Trans != CONJ &&
	options->Equil != NO && options->Equil != YES)
	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_S || A->Mtype != SLU_GE )
	*info = -2;
    else if (options->Fact == FACTORED &&
	     !(rowequ || colequ || lsame_(equed, "N")))
	*info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -12;
	    else if ( B->ncol < 0 ) *info = -13;
	    else if ( B->ncol > 0 ) { /* no checking if B->ncol=0 */
	         if ( Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_S || 
		      B->Mtype != SLU_GE )
		*info = -13;
            }
	    if ( X->ncol < 0 ) *info = -14;
            else if ( X->ncol > 0 ) { /* no checking if X->ncol=0 */
                 if ( Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      (B->ncol != 0 && B->ncol != X->ncol) ||
                      X->Stype != SLU_DN ||
		      X->Dtype != SLU_S || X->Mtype != SLU_GE )
		*info = -14;
            }
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("sgssvx", &i);
	return;
    }
    
    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;

    utime = stat->utime;
    
    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	sCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	trant = options->Trans;
	AA = A;
    }

    if ( nofact && equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	sgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    slaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	    colequ = lsame_(equed, "C") || lsame_(equed, "B");
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }


    if ( nofact ) {
	
        t0 = SuperLU_timer_();
	/*
	 * Gnet column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = NATURAL:  natural ordering 
	 *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
	 *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
	 *   permc_spec = COLAMD:   approximate minimum degree column ordering
	 *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
	 */
	permc_spec = options->ColPerm;
	if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
            get_perm_c(permc_spec, AA, perm_c);
	utime[COLPERM] = SuperLU_timer_() - t0;

	t0 = SuperLU_timer_();
	sp_preorder(options, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;
    
/*	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout); */
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	sgstrf(options, &AC, relax, panel_size, etree,
                work, lwork, perm_c, perm_r, L, U, stat, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( options->PivotGrowth ) {
        if ( *info > 0 ) {
	    if ( *info <= A->ncol ) {
	        /* Compute the reciprocal pivot growth factor of the leading
	           rank-deficient *info columns of A. */
	        *recip_pivot_growth = sPivotGrowth(*info, AA, perm_c, L, U);
	    }
	    return;
        }

        /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
        *recip_pivot_growth = sPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
        /* Estimate the reciprocal of the condition number of A. */
        t0 = SuperLU_timer_();
        if ( notran ) {
	    *(unsigned char *)norm = '1';
        } else {
	    *(unsigned char *)norm = 'I';
        }
        anorm = slangs(norm, AA);
        sgscon(norm, L, U, anorm, rcond, stat, info);
        utime[RCOND] = SuperLU_timer_() - t0;
    }
    
    if ( nrhs > 0 ) {
        /* Scale the right hand side if equilibration was performed. */
        if ( notran ) {
	    if ( rowequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i)
		        Bmat[i + j*ldb] *= R[i];
	    }
        } else if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
	        for (i = 0; i < A->nrow; ++i)
	            Bmat[i + j*ldb] *= C[i];
        }

        /* Compute the solution matrix X. */
        for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
            for (i = 0; i < B->nrow; i++)
	        Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
        t0 = SuperLU_timer_();
        sgstrs (trant, L, U, perm_c, perm_r, X, stat, info);
        utime[SOLVE] = SuperLU_timer_() - t0;
    
        /* Use iterative refinement to improve the computed solution and compute
           error bounds and backward error estimates for it. */
        t0 = SuperLU_timer_();
        if ( options->IterRefine != NOREFINE ) {
            sgsrfs(trant, AA, L, U, perm_c, perm_r, equed, R, C, B,
                   X, ferr, berr, stat, info);
        } else {
            for (j = 0; j < nrhs; ++j) ferr[j] = berr[j] = 1.0;
        }
        utime[REFINE] = SuperLU_timer_() - t0;

        /* Transform the solution matrix X to a solution of the original system. */
        if ( notran ) {
	    if ( colequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i)
                        Xmat[i + j*ldx] *= C[i];
	    }
        } else if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
	        for (i = 0; i < A->nrow; ++i)
	            Xmat[i + j*ldx] *= R[i];
        }
    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
        /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
        if ( *rcond < slamch_("E") ) *info = A->ncol + 1;
    }

    if ( nofact ) {
        sQuerySpace(L, U, mem_usage);
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
Пример #2
0
main(int argc, char *argv[])
{
/* 
 * Purpose
 * =======
 *
 * SDRIVE is the main test program for the FLOAT linear 
 * equation driver routines SGSSV and SGSSVX.
 * 
 * The program is invoked by a shell script file -- stest.csh.
 * The output from the tests are written into a file -- stest.out.
 *
 * =====================================================================
 */
    float         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    GlobalLU_t   Glu; /* Not needed on return. */
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    float  zero = 0.0;
    float         *R, *C;
    float         *ferr, *berr;
    float         *rwork;
    float	   *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    float         *xact;
    float         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    float         rpg, rcond;
    int            i, j, k1;
    float         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    double         u;
    float         anorm, cndnum;
    float         *Afull;
    float         result[NTESTS];
    superlu_options_t options;
    fact_t         fact;
    trans_t        trans;
    SuperLUStat_t  stat;
    static char    matrix_type[8];
    static char    equed[1], path[4], sym[1], dist[1];
    FILE           *fp;

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static fact_t  facts[] = {FACTORED, DOFACT, SamePattern,
			      SamePattern_SameRowPerm};
    static trans_t transs[]  = {NOTRANS, TRANS, CONJ};

    /* Some function prototypes */ 
    extern int sgst01(int, int, SuperMatrix *, SuperMatrix *, 
		      SuperMatrix *, int *, int *, float *);
    extern int sgst02(trans_t, int, int, int, SuperMatrix *, float *,
                      int, float *, int, float *resid);
    extern int sgst04(int, int, float *, int, 
                      float *, int, float rcond, float *resid);
    extern int sgst07(trans_t, int, int, SuperMatrix *, float *, int,
                         float *, int, float *, int, 
                         float *, float *, float *);
    extern int slatb4_slu(char *, int *, int *, int *, char *, int *, int *, 
	               float *, int *, float *, char *);
    extern int slatms_slu(int *, int *, char *, int *, char *, float *d,
                       int *, float *, float *, int *, int *,
                       char *, float *, int *, float *, int *);
    extern int sp_sconvert(int, int, float *, int, int, int,
	                   float *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "SGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;

    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
		       &panel_size, &relax, &nrhs, &maxsuper,
		       &rowblk, &colblk, &lwork, &u, &fp);
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
	    exit (-1);
	}
    }

    /* Set the default input options. */
    set_default_options(&options);
    options.DiagPivotThresh = u;
    options.PrintStat = NO;
    options.PivotGrowth = YES;
    options.ConditionNumber = YES;
    options.IterRefine = SLU_SINGLE;
    
    if ( strcmp(matrix_type, "LA") == 0 ) {
	/* Test LAPACK matrix suite. */
	m = n;
	lda = SUPERLU_MAX(n, 1);
	nnz = n * n;        /* upper bound */
	fimat = 1;
	nimat = NTYPES;
	Afull = floatCalloc(lda * n);
	sallocateA(n, nnz, &a, &asub, &xa);
    } else {
	/* Read a sparse matrix */
	fimat = nimat = 0;
	sreadhb(fp, &m, &n, &nnz, &a, &asub, &xa);
    }

    sallocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = floatMalloc(m * nrhs);
    bsav = floatMalloc(m * nrhs);
    solx = floatMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (float *) SUPERLU_MALLOC(m*sizeof(float));
    C       = (float *) SUPERLU_MALLOC(n*sizeof(float));
    ferr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    berr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);    
    rwork   = (float *) SUPERLU_MALLOC(j*sizeof(float));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = floatCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
    options.ColPerm = MY_PERMC;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
	
	if ( imat ) {

	    /* Skip types 5, 6, or 7 if the matrix size is too small. */
	    zerot = (imat >= 5 && imat <= 7);
	    if ( zerot && n < imat-4 )
		continue;
	    
	    /* Set up parameters with SLATB4 and generate a test matrix
	       with SLATMS.  */
	    slatb4_slu(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
		    &cndnum, dist);

	    slatms_slu(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
		    &anorm, &kl, &ku, "No packing", Afull, &lda,
		    &wwork[0], &info);

	    if ( info ) {
		printf(FMT3, "SLATMS", info, izero, n, nrhs, imat, nfail);
		continue;
	    }

	    /* For types 5-7, zero one or more columns of the matrix
	       to test that INFO is returned correctly.   */
	    if ( zerot ) {
		if ( imat == 5 ) izero = 1;
		else if ( imat == 6 ) izero = n;
		else izero = n / 2 + 1;
		ioff = (izero - 1) * lda;
		if ( imat < 7 ) {
		    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
		} else {
		    for (j = 0; j < n - izero + 1; ++j)
			for (i = 0; i < n; ++i)
			    Afull[ioff + i + j*lda] = zero;
		}
	    } else {
		izero = 0;
	    }

	    /* Convert to sparse representation. */
	    sp_sconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

	} else {
	    izero = 0;
	    zerot = 0;
	}
	
	sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);

	/* Save a copy of matrix A in ASAV */
	sCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
			      SLU_NC, SLU_S, SLU_GE);
	sCopy_CompCol_Matrix(&A, &ASAV);
	
	/* Form exact solution. */
	sGenXtrue(n, nrhs, xact, ldx);
	
	StatInit(&stat);

	for (iequed = 0; iequed < 4; ++iequed) {
	    *equed = equeds[iequed];
	    if (iequed == 0) nfact = 4;
	    else nfact = 1; /* Only test factored, pre-equilibrated matrix */

	    for (ifact = 0; ifact < nfact; ++ifact) {
		fact = facts[ifact];
		options.Fact = fact;

		for (equil = 0; equil < 2; ++equil) {
		    options.Equil = equil;
		    prefact   = ( options.Fact == FACTORED ||
				  options.Fact == SamePattern_SameRowPerm );
                                /* Need a first factor */
		    nofact    = (options.Fact != FACTORED);  /* Not factored */

		    /* Restore the matrix A. */
		    sCopy_CompCol_Matrix(&ASAV, &A);
			
		    if ( zerot ) {
                        if ( prefact ) continue;
		    } else if ( options.Fact == FACTORED ) {
                        if ( equil || iequed ) {
			    /* Compute row and column scale factors to
			       equilibrate matrix A.    */
			    sgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);

			    /* Force equilibration. */
			    if ( !info && n > 0 ) {
				if ( strncmp(equed, "R", 1)==0 ) {
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if ( strncmp(equed, "C", 1)==0 ) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if ( strncmp(equed, "B", 1)==0 ) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}
			    }
			
			    /* Equilibrate the matrix. */
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
		    }
		    
		    if ( prefact ) { /* Need a factor for the first time */
			
		        /* Save Fact option. */
		        fact = options.Fact;
			options.Fact = DOFACT;

			/* Preorder the matrix, obtain the column etree. */
			sp_preorder(&options, &A, perm_c, etree, &AC);

			/* Factor the matrix AC. */
			sgstrf(&options, &AC, relax, panel_size,
                               etree, work, lwork, perm_c, perm_r, &L, &U,
                               &Glu, &stat, &info);

			if ( info ) { 
                            printf("** First factor: info %d, equed %c\n",
				   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }
	
                        Destroy_CompCol_Permuted(&AC);
			
		        /* Restore Fact option. */
			options.Fact = fact;
		    } /* if .. first time factor */
		    
		    for (itran = 0; itran < NTRAN; ++itran) {
			trans = transs[itran];
                        options.Trans = trans;

			/* Restore the matrix A. */
			sCopy_CompCol_Matrix(&ASAV, &A);
			
 			/* Set the right hand side. */
			sFillRHS(trans, nrhs, xact, ldx, &A, &B);
			sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

			/*----------------
			 * Test sgssv
			 *----------------*/
			if ( options.Fact == DOFACT && itran == 0) {
                            /* Not yet factored, and untransposed */
	
			    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
			    sgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
                                  &stat, &info);
			    
			    if ( info && info != izero ) {
                                printf(FMT3, "sgssv",
				       info, izero, n, nrhs, imat, nfail);
			    } else {
                                /* Reconstruct matrix from factors and
	                           compute residual. */
                                sgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				nt = 1;
				if ( izero == 0 ) {
				    /* Compute residual of the computed
				       solution. */
				    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
						       wwork, ldb);
				    sgst02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
				    nt = 2;
				}
				
				/* Print information about the tests that
				   did not pass the threshold.      */
				for (i = 0; i < nt; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT1, "sgssv", n, i,
					       result[i]);
					++nfail;
				    }
				}
				nrun += nt;
			    } /* else .. info == 0 */

			    /* Restore perm_c. */
			    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

		            if (lwork == 0) {
			        Destroy_SuperNode_Matrix(&L);
			        Destroy_CompCol_Matrix(&U);
			    }
			} /* if .. end of testing sgssv */
    
			/*----------------
			 * Test sgssvx
			 *----------------*/
    
			/* Equilibrate the matrix if fact = FACTORED and
			   equed = 'R', 'C', or 'B'.   */
			if ( options.Fact == FACTORED &&
			     (equil || iequed) && n > 0 ) {
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
			
			/* Solve the system and compute the condition number
			   and error bounds using sgssvx.      */
			sgssvx(&options, &A, perm_c, perm_r, etree,
                               equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
                               &rcond, ferr, berr, &Glu,
			       &mem_usage, &stat, &info);

			if ( info && info != izero ) {
			    printf(FMT3, "sgssvx",
				   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
			} else {
			    if ( !prefact ) {
			    	/* Reconstruct matrix from factors and
	 			   compute residual. */
                                sgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				k1 = 0;
			    } else {
			   	k1 = 1;
			    }

			    if ( !info ) {
				/* Compute residual of the computed solution.*/
				sCopy_Dense_Matrix(m, nrhs, bsav, ldb,
						  wwork, ldb);
				sgst02(trans, m, n, nrhs, &ASAV, solx, ldx,
					  wwork, ldb, &result[1]);

				/* Check solution from generated exact
				   solution. */
				sgst04(n, nrhs, solx, ldx, xact, ldx, rcond,
					  &result[2]);

				/* Check the error bounds from iterative
				   refinement. */
				sgst07(trans, n, nrhs, &ASAV, bsav, ldb,
					  solx, ldx, xact, ldx, ferr, berr,
					  &result[3]);

				/* Print information about the tests that did
				   not pass the threshold.    */
				for (i = k1; i < NTESTS; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT2, "sgssvx",
					       options.Fact, trans, *equed,
					       n, imat, i, result[i]);
					++nfail;
				    }
				}
				nrun += NTESTS;
			    } /* if .. info == 0 */
			} /* else .. end of testing sgssvx */

		    } /* for itran ... */

		    if ( lwork == 0 ) {
			Destroy_SuperNode_Matrix(&L);
			Destroy_CompCol_Matrix(&U);
		    }

		} /* for equil ... */
	    } /* for ifact ... */
	} /* for iequed ... */
#if 0    
    if ( !info ) {
	PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif
        Destroy_SuperMatrix_Store(&A);
        Destroy_SuperMatrix_Store(&ASAV);
        StatFree(&stat);

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("SGE", nfail, nrun, nerrs);

    if ( strcmp(matrix_type, "LA") == 0 ) SUPERLU_FREE (Afull);
    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);    
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
#if 0
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
#else
    SUPERLU_FREE(a); SUPERLU_FREE(asub); SUPERLU_FREE(xa);
    SUPERLU_FREE(a_save); SUPERLU_FREE(asub_save); SUPERLU_FREE(xa_save);
#endif
    if ( lwork > 0 ) {
	SUPERLU_FREE (work);
	Destroy_SuperMatrix_Store(&L);
	Destroy_SuperMatrix_Store(&U);
    }

    return 0;
}
Пример #3
0
int main ( int argc, char *argv[] )

/**********************************************************************/
/*
  Purpose:

    SUPER_LU_S3 solves a sparse system read from a file using SGSSVX.

  Discussion:

    The sparse matrix is stored in a file using the Harwell-Boeing
    sparse matrix format.  The file should be assigned to the standard
    input of this program.  For instance, if the matrix is stored
    in the file "g10_rua.txt", the execution command might be:

      super_lu_s3 < g10_rua.txt

  Modified:

    25 April 2004

  Reference:

    James Demmel, John Gilbert, Xiaoye Li,
    SuperLU Users's Guide,
    Sections 1 and 2.

  Local parameters:

    SuperMatrix L, the computed L factor.

    int *perm_c, the column permutation vector.

    int *perm_r, the row permutations from partial pivoting.

    SuperMatrix U, the computed U factor.
*/
{
  SuperMatrix A;
  NCformat *Astore;
  float *a;
  int *asub;
  SuperMatrix B;
  float *berr;
  float *C;
  char equed[1];
  yes_no_t equil;
  int *etree;
  float *ferr;
  int i;
  int info;
  SuperMatrix L;
  int ldx;
  SCformat *Lstore;
  int lwork;
  int m;
  mem_usage_t mem_usage;
  int n;
  int nnz;
  int nrhs;
  superlu_options_t options;
  int *perm_c;
  int *perm_r;
  float *R;
  float rcond;
  float *rhsb;
  float *rhsx;
  float rpg;
  float *sol;
  SuperLUStat_t stat;
  trans_t trans;
  SuperMatrix U;
  float u;
  NCformat *Ustore;
  void *work;
  SuperMatrix X;
  int *xa;
  float *xact;
/*
  Say hello.
*/
  printf ( "\n" );
  printf ( "SUPER_LU_S3:\n" );
  printf ( "  Read a sparse matrix A from standard input,\n");
  printf ( "  stored in Harwell-Boeing Sparse Matrix format.\n" );
  printf ( "\n" );
  printf ( "  Solve a linear system A * X = B using SGSSVX.\n" );
/* 
  Defaults 
*/
  lwork = 0;
  nrhs = 1;
  equil = YES;	
  u = 1.0;
  trans = NOTRANS;
/* 
  Set the default input options:
  options.Fact = DOFACT;
  options.Equil = YES;
  options.ColPerm = COLAMD;
  options.DiagPivotThresh = 1.0;
  options.Trans = NOTRANS;
  options.IterRefine = NOREFINE;
  options.SymmetricMode = NO;
  options.PivotGrowth = NO;
  options.ConditionNumber = NO;
  options.PrintStat = YES;
*/
  set_default_options ( &options );
/*
  Can use command line input to modify the defaults. 
*/
  parse_command_line ( argc, argv, &lwork, &u, &equil, &trans );

  options.Equil = equil;
  options.DiagPivotThresh = u;
  options.Trans = trans;

  printf ( "\n" );
  printf ( "  Length of work array LWORK = %d\n", lwork );
  printf ( "  Equilibration option EQUIL = %d\n", equil );
  printf ( "  Diagonal pivot threshhold value U = %f\n", u );
  printf ( "  Tranpose option TRANS = %d\n", trans );
/*
  Add more functionalities that the defaults. 

  Compute reciprocal pivot growth 
*/
  options.PivotGrowth = YES;    
/* 
  Compute reciprocal condition number 
*/
  options.ConditionNumber = YES;
/* 
  Perform single-precision refinement 
*/
  options.IterRefine = SINGLE;  
    
  if ( 0 < lwork ) 
  {
    work = SUPERLU_MALLOC(lwork);
    if ( !work ) 
    {
      ABORT ( "SUPERLU_MALLOC cannot allocate work[]" );
    }
  }
/* 
  Read matrix A from a file in Harwell-Boeing format.
*/
  sreadhb ( &m, &n, &nnz, &a, &asub, &xa );
/*
  Create storage for a compressed column matrix.
*/
  sCreate_CompCol_Matrix ( &A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE );
  Astore = A.Store;

  printf ( "\n" );
  printf ( "  Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz );
    
  rhsb = floatMalloc ( m * nrhs );
  if ( !rhsb ) 
  {
    ABORT ( "Malloc fails for rhsb[]." );
  }

  rhsx = floatMalloc ( m * nrhs );
  if ( !rhsx ) 
  {
    ABORT ( "Malloc fails for rhsx[]." );
  }

  sCreate_Dense_Matrix ( &B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE );

  sCreate_Dense_Matrix ( &X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE );

  xact = floatMalloc ( n * nrhs );
  if ( !xact ) 
  {
    ABORT ( "SUPERLU_MALLOC cannot allocate xact[]" );
  }
  ldx = n;
  sGenXtrue ( n, nrhs, xact, ldx );
  sFillRHS ( trans, nrhs, xact, ldx, &A, &B );
    
  etree = intMalloc ( n );
  if ( !etree )
  {
    ABORT ( "Malloc fails for etree[]." );
  }

  perm_c = intMalloc ( n );
  if ( !perm_c ) 
  {
    ABORT ( "Malloc fails for perm_c[]." );
  }

  perm_r = intMalloc ( m );
  if ( !perm_r )
  {
    ABORT ( "Malloc fails for perm_r[]." );
  }

  R = (float *) SUPERLU_MALLOC ( A.nrow * sizeof(float) );
  if ( !R ) 
  {
    ABORT ( "SUPERLU_MALLOC fails for R[]." );
  }

  C = (float *) SUPERLU_MALLOC ( A.ncol * sizeof(float) );
  if ( !C )
  {
    ABORT ( "SUPERLU_MALLOC fails for C[]." );
  }

  ferr = (float *) SUPERLU_MALLOC ( nrhs * sizeof(float) );
  if ( !ferr )
  {
    ABORT ( "SUPERLU_MALLOC fails for ferr[]." );
  }

  berr = (float *) SUPERLU_MALLOC ( nrhs * sizeof(float) );
  if ( !berr ) 
  {
    ABORT ( "SUPERLU_MALLOC fails for berr[]." );
  }
/* 
  Initialize the statistics variables. 
*/
  StatInit(&stat);
/* 
  Solve the system and compute the condition number and error bounds using SGSSVX.      
*/
  sgssvx ( &options, &A, perm_c, perm_r, etree, equed, R, C,
    &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
    &mem_usage, &stat, &info );

  printf ( "\n" );
  printf ( "  SGSSVX returns INFO = %d\n", info );

  if ( info == 0 || info == n+1 )
  {
    sol = (float*) ((DNformat*) X.Store)->nzval; 

    if ( options.PivotGrowth == YES )
    {
      printf ( "\n" );
      printf ( "  Reciprocal pivot growth = %e\n", rpg);
    }

    if ( options.ConditionNumber == YES )
    {
      printf ( "\n" );
      printf ( "  Reciprocal condition number = %e\n", rcond);
    }

    if ( options.IterRefine != NOREFINE )
    {
      printf ( "\n" );
      printf ( "  Iterative Refinement:\n");
      printf ( "%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
      for ( i = 0; i < nrhs; i++ )
      {
        printf ( "%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
      }
    }

    Lstore = (SCformat *) L.Store;
    Ustore = (NCformat *) U.Store;

    printf ( "\n" );
    printf ( "  Number of nonzeros in factor L = %d\n", Lstore->nnz );
    printf ( "  Number of nonzeros in factor U = %d\n", Ustore->nnz );
    printf ( "  Number of nonzeros in L+U = %d\n", 
      Lstore->nnz + Ustore->nnz - n );

    printf ( "\n" );
    printf ( "  L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n", 
      mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
      mem_usage.expansions );
	     
    fflush ( stdout );

  } 
  else if ( info > 0 && lwork == -1 )
  {
    printf ( "\n" );
    printf ( "  Estimated memory: %d bytes\n", info - n );
  }

  if ( options.PrintStat ) 
  {
    StatPrint ( &stat );
  }

  StatFree ( &stat );

  SUPERLU_FREE ( rhsb );
  SUPERLU_FREE ( rhsx );
  SUPERLU_FREE ( xact );
  SUPERLU_FREE ( etree );
  SUPERLU_FREE ( perm_r );
  SUPERLU_FREE ( perm_c );
  SUPERLU_FREE ( R );
  SUPERLU_FREE ( C );
  SUPERLU_FREE ( ferr );
  SUPERLU_FREE ( berr );
  Destroy_CompCol_Matrix ( &A );
  Destroy_SuperMatrix_Store ( &B );
  Destroy_SuperMatrix_Store ( &X );

  if ( 0 <= lwork )
  {
    Destroy_SuperNode_Matrix ( &L );
    Destroy_CompCol_Matrix ( &U );
  }
/*
  Say goodbye.
*/
  printf ( "\n" );
  printf ( "SUPER_LU_S3:\n" );
  printf ( "  Normal end of execution.\n");

  return 0;
}
Пример #4
0
void
psgssv(int nprocs, SuperMatrix *A, int *perm_c, int *perm_r, 
       SuperMatrix *L, SuperMatrix *U, SuperMatrix *B, int *info )
{
/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley,
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 * Purpose
 * =======
 *
 * PSGSSV solves the system of linear equations A*X=B, using the parallel
 * LU factorization routine PSGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc is a 
 *           permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *      to the tranpose of A:
 *
 *      2.1. Permute columns of tranpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 * 
 *   See supermatrix.h for the definition of "SuperMatrix" structure.
 *
 *
 * Arguments
 * =========
 *
 * nprocs (input) int
 *        Number of processes (or threads) to be spawned and used to perform
 *        the LU factorization by psgstrf(). There is a single thread of
 *        control to call psgstrf(), and all threads spawned by psgstrf()
 *        are terminated before returning from psgstrf().
 *
 * A      (input) SuperMatrix*
 *        Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
 *        A->nrow = A->ncol. Currently, the type of A can be:
 *        Stype = NC or NR; Dtype = _D; Mtype = GE. In the future,
 *        more general A will be handled.
 *
 * perm_c (input/output) int*
 *        If A->Stype=NC, column permutation vector of size A->ncol,
 *        which defines the permutation matrix Pc; perm_c[i] = j means 
 *        column i of A is in position j in A*Pc.
 *        On exit, perm_c may be overwritten by the product of the input
 *        perm_c and a permutation that postorders the elimination tree
 *        of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *        is already in postorder.
 *
 *        If A->Stype=NR, column permutation vector of size A->nrow
 *        which describes permutation of columns of tranpose(A) 
 *        (rows of A) as described above.
 * 
 * perm_r (output) int*,
 *        If A->Stype=NR, row permutation vector of size A->nrow, 
 *        which defines the permutation matrix Pr, and is determined 
 *        by partial pivoting.  perm_r[i] = j means row i of A is in 
 *        position j in Pr*A.
 *
 *        If A->Stype=NR, permutation vector of size A->ncol, which
 *        determines permutation of rows of transpose(A)
 *        (columns of A) as described above.
 *
 * L      (output) SuperMatrix*
 *        The factor L from the factorization 
 *            Pr*A*Pc=L*U              (if A->Stype=NC) or
 *            Pr*transpose(A)*Pc=L*U   (if A->Stype=NR).
 *        Uses compressed row subscripts storage for supernodes, i.e.,
 *        L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U      (output) SuperMatrix*
 *	  The factor U from the factorization
 *            Pr*A*Pc=L*U              (if A->Stype=NC) or
 *            Pr*transpose(A)*Pc=L*U   (if A->Stype=NR).
 *        Use column-wise storage scheme, i.e., U has types:
 *        Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * B      (input/output) SuperMatrix*
 *        B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *        On entry, the right hand side matrix.
 *        On exit, the solution matrix if info = 0;
 *
 * info   (output) int*
 *	  = 0: successful exit
 *        > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    trans_t  trans;
    NCformat *Astore;
    DNformat *Bstore;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int i, n, panel_size, relax;
    fact_t   fact;
    yes_no_t refact, usepr;
    float diag_pivot_thresh, drop_tol;
    void *work;
    int lwork;
    superlumt_options_t superlumt_options;
    Gstat_t  Gstat;
    double   t; /* Temporary time */
    double   *utime;
    flops_t  *ops, flopcnt;

    /* ------------------------------------------------------------
       Test the input parameters.
       ------------------------------------------------------------*/
    Astore = A->Store;
    Bstore = B->Store;
    *info = 0;
    if ( nprocs <= 0 ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 || 
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_S || A->Mtype != SLU_GE )
	*info = -2;
    else if (B->ncol < 0 || Bstore->lda < SUPERLU_MAX(1, A->nrow)) *info = -7;
    if ( *info != 0 ) {
        i = -(*info);
	xerbla_("psgssv", &i);
	return;
    }

#if 0
    /* Use the best sequential code. 
       if this part is commented out, we will use the parallel code 
       run on one processor. */
    if ( nprocs == 1 ) {
        return;
    }
#endif

    fact               = EQUILIBRATE;
    refact             = NO;
    trans              = NOTRANS;
    panel_size         = sp_ienv(1);
    relax              = sp_ienv(2);
    diag_pivot_thresh  = 1.0;
    usepr              = NO;
    drop_tol           = 0.0;
    work               = NULL;
    lwork              = 0;

    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    n = A->ncol;
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);
    utime = Gstat.utime;
    ops = Gstat.ops;

    /* ------------------------------------------------------------
       Convert A to NC format when necessary.
       ------------------------------------------------------------*/
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	sCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	trans = TRANS;
    } else if ( A->Stype == SLU_NC ) AA = A;

    /* ------------------------------------------------------------
       Initialize the option structure superlumt_options using the
       user-input parameters;
       Apply perm_c to the columns of original A to form AC.
       ------------------------------------------------------------*/
    psgstrf_init(nprocs, fact, trans, refact, panel_size, relax,
		 diag_pivot_thresh, usepr, drop_tol, perm_c, perm_r,
		 work, lwork, AA, &AC, &superlumt_options, &Gstat);

    /* ------------------------------------------------------------
       Compute the LU factorization of A.
       The following routine will create nprocs threads.
       ------------------------------------------------------------*/
    psgstrf(&superlumt_options, &AC, perm_r, L, U, &Gstat, info);

    flopcnt = 0;
    for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
    ops[FACT] = flopcnt;

#if ( PRNTlevel==1 )
    printf("nprocs = %d, flops %e, Mflops %.2f\n",
	   nprocs, flopcnt, flopcnt/utime[FACT]*1e-6);
    printf("Parameters: w %d, relax %d, maxsuper %d, rowblk %d, colblk %d\n",
	   sp_ienv(1), sp_ienv(2), sp_ienv(3), sp_ienv(4), sp_ienv(5));
    fflush(stdout);
#endif

    /* ------------------------------------------------------------
       Solve the system A*X=B, overwriting B with X.
       ------------------------------------------------------------*/
    if ( *info == 0 ) {
        t = SuperLU_timer_();
	sgstrs (trans, L, U, perm_r, perm_c, B, &Gstat, info);
	utime[SOLVE] = SuperLU_timer_() - t;
	ops[SOLVE] = ops[TRISOLVE];
    }

    /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    pxgstrf_finalize(&superlumt_options, &AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /* ------------------------------------------------------------
       Print timings, then deallocate statistic variables.
       ------------------------------------------------------------*/
    /*PrintStat(&Gstat);*/
    StatFree(&Gstat);
}
void
sgstrf (char *refact, SuperMatrix *A, float diag_pivot_thresh, 
	float drop_tol, int relax, int panel_size, int *etree, 
	void *work, int lwork, int *perm_r, int *perm_c, 
	SuperMatrix *L, SuperMatrix *U, int *info)
{
/*
 * Purpose
 * =======
 *
 * SGSTRF computes an LU factorization of a general sparse m-by-n
 * matrix A using partial pivoting with row interchanges.
 * The factorization has the form
 *     Pr * A = L * U
 * where Pr is a row permutation matrix, L is lower triangular with unit
 * diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper 
 * triangular (upper trapezoidal if A->nrow < A->ncol).
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * refact (input) char*
 *          Specifies whether we want to use perm_r from a previous factor.
 *          = 'Y': re-use perm_r; perm_r is input, and may be modified due to
 *                 different pivoting determined by diagonal threshold.
 *          = 'N': perm_r is determined by partial pivoting, and output.
 *
 * A        (input) SuperMatrix*
 *	    Original matrix A, permuted by columns, of dimension
 *          (A->nrow, A->ncol). The type of A can be:
 *          Stype = NCP; Dtype = D; Mtype = GE.
 *
 * diag_pivot_thresh (input) float
 *	    Diagonal pivoting threshold. At step j of the Gaussian elimination,
 *          if abs(A_jj) >= thresh * (max_(i>=j) abs(A_ij)), use A_jj as pivot.
 *	    0 <= thresh <= 1. The default value of thresh is 1, corresponding
 *          to partial pivoting.
 *
 * drop_tol (input) float (NOT IMPLEMENTED)
 *	    Drop tolerance parameter. At step j of the Gaussian elimination,
 *          if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
 *          0 <= drop_tol <= 1. The default value of drop_tol is 0.
 *
 * relax    (input) int
 *          To control degree of relaxing supernodes. If the number
 *          of nodes (columns) in a subtree of the elimination tree is less
 *          than relax, this subtree is considered as one supernode,
 *          regardless of the row structures of those columns.
 *
 * panel_size (input) int
 *          A panel consists of at most panel_size consecutive columns.
 *
 * etree    (input) int*, dimension (A->ncol)
 *          Elimination tree of A'*A.
 *          Note: etree is a vector of parent pointers for a forest whose
 *          vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
 *          On input, the columns of A should be permuted so that the
 *          etree is in a certain postorder.
 *
 * work     (input/output) void*, size (lwork) (in bytes)
 *          User-supplied work space and space for the output data structures.
 *          Not referenced if lwork = 0;
 *
 * lwork   (input) int
 *         Specifies the size of work array in bytes.
 *         = 0:  allocate space internally by system malloc;
 *         > 0:  use user-supplied work array of length lwork in bytes,
 *               returns error if space runs out.
 *         = -1: the routine guesses the amount of space needed without
 *               performing the factorization, and returns it in
 *               *info; no other side effects.
 *
 * perm_r   (input/output) int*, dimension (A->nrow)
 *          Row permutation vector which defines the permutation matrix Pr,
 *          perm_r[i] = j means row i of A is in position j in Pr*A.
 *          If refact is not 'Y', perm_r is output argument;
 *          If refact = 'Y', the pivoting routine will try to use the input
 *          perm_r, unless a certain threshold criterion is violated.
 *          In that case, perm_r is overwritten by a new permutation
 *          determined by partial pivoting or diagonal threshold pivoting.
 *
 * perm_c   (input) int*, dimension (A->ncol)
 *	    Column permutation vector, which defines the 
 *          permutation matrix Pc; perm_c[i] = j means column i of A is 
 *          in position j in A*Pc.
 *          When searching for diagonal, perm_c[*] is applied to the
 *          row subscripts of A, so that diagonal threshold pivoting
 *          can find the diagonal of A, rather than that of A*Pc.
 *
 * L        (output) SuperMatrix*
 *          The factor L from the factorization Pr*A=L*U; use compressed row 
 *          subscripts storage for supernodes, i.e., L has type: 
 *          Stype = SC, Dtype = _S, Mtype = TRLU.
 *
 * U        (output) SuperMatrix*
 *	    The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
 *          storage scheme, i.e., U has types: Stype = NC, 
 *          Dtype = _S, Mtype = TRU.
 *
 * info     (output) int*
 *          = 0: successful exit
 *          < 0: if info = -i, the i-th argument had an illegal value
 *          > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                and division by zero will occur if it is used to solve a
 *                system of equations.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol. If lwork = -1, it is
 *                the estimated amount of space needed, plus A->ncol.
 *
 * ======================================================================
 *
 * Local Working Arrays: 
 * ======================
 *   m = number of rows in the matrix
 *   n = number of columns in the matrix
 *
 *   xprune[0:n-1]: xprune[*] points to locations in subscript 
 *	vector lsub[*]. For column i, xprune[i] denotes the point where 
 *	structural pruning begins. I.e. only xlsub[i],..,xprune[i]-1 need 
 *	to be traversed for symbolic factorization.
 *
 *   marker[0:3*m-1]: marker[i] = j means that node i has been 
 *	reached when working on column j.
 *	Storage: relative to original row subscripts
 *	NOTE: There are 3 of them: marker/marker1 are used for panel dfs, 
 *	      see spanel_dfs.c; marker2 is used for inner-factorization,
 *            see scolumn_dfs.c.
 *
 *   parent[0:m-1]: parent vector used during dfs
 *      Storage: relative to new row subscripts
 *
 *   xplore[0:m-1]: xplore[i] gives the location of the next (dfs) 
 *	unexplored neighbor of i in lsub[*]
 *
 *   segrep[0:nseg-1]: contains the list of supernodal representatives
 *	in topological order of the dfs. A supernode representative is the 
 *	last column of a supernode.
 *      The maximum size of segrep[] is n.
 *
 *   repfnz[0:W*m-1]: for a nonzero segment U[*,j] that ends at a 
 *	supernodal representative r, repfnz[r] is the location of the first 
 *	nonzero in this segment.  It is also used during the dfs: repfnz[r]>0
 *	indicates the supernode r has been explored.
 *	NOTE: There are W of them, each used for one column of a panel. 
 *
 *   panel_lsub[0:W*m-1]: temporary for the nonzeros row indices below 
 *      the panel diagonal. These are filled in during spanel_dfs(), and are
 *      used later in the inner LU factorization within the panel.
 *	panel_lsub[]/dense[] pair forms the SPA data structure.
 *	NOTE: There are W of them.
 *
 *   dense[0:W*m-1]: sparse accumulating (SPA) vector for intermediate values;
 *	    	   NOTE: there are W of them.
 *
 *   tempv[0:*]: real temporary used for dense numeric kernels;
 *	The size of this array is defined by NUM_TEMPV() in ssp_defs.h.
 *
 */
    /* Local working arrays */
    NCPformat *Astore;
    int       *iperm_r; /* inverse of perm_r; not used if refact = 'N' */
    int       *iperm_c; /* inverse of perm_c */
    int       *iwork;
    float    *swork;
    int	      *segrep, *repfnz, *parent, *xplore;
    int	      *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
    int	      *xprune;
    int	      *marker;
    float    *dense, *tempv;
    int       *relax_end;
    float    *a;
    int       *asub;
    int       *xa_begin, *xa_end;
    int       *xsup, *supno;
    int       *xlsub, *xlusup, *xusub;
    int       nzlumax;
    static GlobalLU_t Glu; /* persistent to facilitate multiple factors. */

    /* Local scalars */
    int       pivrow;   /* pivotal row number in the original matrix A */
    int       nseg1;	/* no of segments in U-column above panel row jcol */
    int       nseg;	/* no of segments in each U-column */
    register int jcol;	
    register int kcol;	/* end column of a relaxed snode */
    register int icol;
    register int i, k, jj, new_next, iinfo;
    int       m, n, min_mn, jsupno, fsupc, nextlu, nextu;
    int       w_def;	/* upper bound on panel width */
    int       usepr;
    int       nnzL, nnzU;
    extern SuperLUStat_t SuperLUStat;
    int       *panel_histo = SuperLUStat.panel_histo;
    flops_t   *ops = SuperLUStat.ops;

    iinfo    = 0;
    m        = A->nrow;
    n        = A->ncol;
    min_mn   = MIN(m, n);
    Astore   = A->Store;
    a        = Astore->nzval;
    asub     = Astore->rowind;
    xa_begin = Astore->colbeg;
    xa_end   = Astore->colend;

    /* Allocate storage common to the factor routines */
    *info = sLUMemInit(refact, work, lwork, m, n, Astore->nnz,
		      panel_size, L, U, &Glu, &iwork, &swork);
    if ( *info ) return;
    
    xsup    = Glu.xsup;
    supno   = Glu.supno;
    xlsub   = Glu.xlsub;
    xlusup  = Glu.xlusup;
    xusub   = Glu.xusub;
    
    SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
	     &repfnz, &panel_lsub, &xprune, &marker);
    sSetRWork(m, panel_size, swork, &dense, &tempv);
    
    usepr = lsame_(refact, "Y");
    if ( usepr ) {
	/* Compute the inverse of perm_r */
	iperm_r = (int *) intMalloc(m);
	for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
    }
    iperm_c = (int *) intMalloc(n);
    for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;

    /* Identify relaxed snodes */
    relax_end = (int *) intMalloc(n);
    relax_snode(n, etree, relax, marker, relax_end); 
    
    ifill (perm_r, m, EMPTY);
    ifill (marker, m * NO_MARKER, EMPTY);
    supno[0] = -1;
    xsup[0]  = xlsub[0] = xusub[0] = xlusup[0] = 0;
    w_def    = panel_size;

    /* 
     * Work on one "panel" at a time. A panel is one of the following: 
     *	   (a) a relaxed supernode at the bottom of the etree, or
     *	   (b) panel_size contiguous columns, defined by the user
     */
    for (jcol = 0; jcol < min_mn; ) {

	if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
   	    kcol = relax_end[jcol];	  /* end of the relaxed snode */
	    panel_histo[kcol-jcol+1]++;

	    /* --------------------------------------
	     * Factorize the relaxed supernode(jcol:kcol) 
	     * -------------------------------------- */
	    /* Determine the union of the row structure of the snode */
	    if ( (*info = ssnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
				    xprune, marker, &Glu)) != 0 )
		return;

            nextu    = xusub[jcol];
	    nextlu   = xlusup[jcol];
	    jsupno   = supno[jcol];
	    fsupc    = xsup[jsupno];
	    new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
	    nzlumax = Glu.nzlumax;
	    while ( new_next > nzlumax ) {
		if ( *info = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, &Glu) )
		    return;
	    }
    
	    for (icol = jcol; icol<= kcol; icol++) {
		xusub[icol+1] = nextu;
		
    		/* Scatter into SPA dense[*] */
    		for (k = xa_begin[icol]; k < xa_end[icol]; k++)
        	    dense[asub[k]] = a[k];

	       	/* Numeric update within the snode */
	        ssnode_bmod(icol, jsupno, fsupc, dense, tempv, &Glu);

		if ( *info = spivotL(icol, diag_pivot_thresh, &usepr, perm_r,
				    iperm_r, iperm_c, &pivrow, &Glu) )
		    if ( iinfo == 0 ) iinfo = *info;
		
#ifdef DEBUG
		sprint_lu_col("[1]: ", icol, pivrow, xprune, &Glu);
#endif

	    }

	    jcol = icol;

	} else { /* Work on one panel of panel_size columns */
	    
	    /* Adjust panel_size so that a panel won't overlap with the next 
	     * relaxed snode.
	     */
	    panel_size = w_def;
	    for (k = jcol + 1; k < MIN(jcol+panel_size, min_mn); k++) 
		if ( relax_end[k] != EMPTY ) {
		    panel_size = k - jcol;
		    break;
		}
	    if ( k == min_mn ) panel_size = min_mn - jcol;
	    panel_histo[panel_size]++;

	    /* symbolic factor on a panel of columns */
	    spanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
		      dense, panel_lsub, segrep, repfnz, xprune,
		      marker, parent, xplore, &Glu);
	    
	    /* numeric sup-panel updates in topological order */
	    spanel_bmod(m, panel_size, jcol, nseg1, dense,
		       tempv, segrep, repfnz, &Glu);
	    
	    /* Sparse LU within the panel, and below panel diagonal */
    	    for ( jj = jcol; jj < jcol + panel_size; jj++) {
 		k = (jj - jcol) * m; /* column index for w-wide arrays */

		nseg = nseg1;	/* Begin after all the panel segments */

	    	if ((*info = scolumn_dfs(m, jj, perm_r, &nseg, &panel_lsub[k],
					segrep, &repfnz[k], xprune, marker,
					parent, xplore, &Glu)) != 0) return;

	      	/* Numeric updates */
	    	if ((*info = scolumn_bmod(jj, (nseg - nseg1), &dense[k],
					 tempv, &segrep[nseg1], &repfnz[k],
					 jcol, &Glu)) != 0) return;
		
	        /* Copy the U-segments to ucol[*] */
		if ((*info = scopy_to_ucol(jj, nseg, segrep, &repfnz[k],
					  perm_r, &dense[k], &Glu)) != 0)
		    return;

	    	if ( *info = spivotL(jj, diag_pivot_thresh, &usepr, perm_r,
				    iperm_r, iperm_c, &pivrow, &Glu) )
		    if ( iinfo == 0 ) iinfo = *info;

		/* Prune columns (0:jj-1) using column jj */
	    	spruneL(jj, perm_r, pivrow, nseg, segrep,
		       &repfnz[k], xprune, &Glu);

		/* Reset repfnz[] for this column */
	    	resetrep_col (nseg, segrep, &repfnz[k]);
		
#ifdef DEBUG
		sprint_lu_col("[2]: ", jj, pivrow, xprune, &Glu);
#endif

	    }

   	    jcol += panel_size;	/* Move to the next panel */

	} /* else */

    } /* for */

    *info = iinfo;
    
    if ( m > n ) {
	k = 0;
        for (i = 0; i < m; ++i) 
            if ( perm_r[i] == EMPTY ) {
    		perm_r[i] = n + k;
		++k;
	    }
    }

    countnz(min_mn, xprune, &nnzL, &nnzU, &Glu);
    fixupL(min_mn, perm_r, &Glu);

    sLUWorkFree(iwork, swork, &Glu); /* Free work space and compress storage */

    if ( lsame_(refact, "Y") ) {
        /* L and U structures may have changed due to possibly different
	   pivoting, although the storage is available. */
        ((SCformat *)L->Store)->nnz = nnzL;
	((SCformat *)L->Store)->nsuper = Glu.supno[n];
	((NCformat *)U->Store)->nnz = nnzU;
    } else {
        sCreate_SuperNode_Matrix(L, A->nrow, A->ncol, nnzL, Glu.lusup, 
	                         Glu.xlusup, Glu.lsub, Glu.xlsub, Glu.supno,
			         Glu.xsup, SC, _S, TRLU);
    	sCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU, Glu.ucol, 
			       Glu.usub, Glu.xusub, NC, _S, TRU);
    }
    
    ops[FACT] += ops[TRSV] + ops[GEMV];	
    
    if ( usepr ) SUPERLU_FREE (iperm_r);
    SUPERLU_FREE (iperm_c);
    SUPERLU_FREE (relax_end);

}
Пример #6
0
void
sgssv(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
      SuperMatrix *L, SuperMatrix *U, SuperMatrix *B,
      SuperLUStat_t *stat, int *info )
{
/*
 * Purpose
 * =======
 *
 * SGSSV solves the system of linear equations A*X=B, using the
 * LU factorization from SGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = SLU_NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc
 *           is a permutation matrix. For more details of this step, 
 *           see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = SLU_NR), apply the
 *      above algorithm to the transpose of A:
 *
 *      2.1. Permute columns of transpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 * 
 * Arguments
 * =========
 *
 * options (input) superlu_options_t*
 *         The structure defines the input parameters to control
 *         how the LU decomposition will be performed and how the
 *         system will be solved.
 *
 * A       (input) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = SLU_NC or SLU_NR; Dtype = SLU_S; Mtype = SLU_GE.
 *         In the future, more general A may be handled.
 *
 * perm_c  (input/output) int*
 *         If A->Stype = SLU_NC, column permutation vector of size A->ncol
 *         which defines the permutation matrix Pc; perm_c[i] = j means 
 *         column i of A is in position j in A*Pc.
 *         If A->Stype = SLU_NR, column permutation vector of size A->nrow
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 *         If options->ColPerm = MY_PERMC or options->Fact = SamePattern or
 *            options->Fact = SamePattern_SameRowPerm, it is an input argument.
 *            On exit, perm_c may be overwritten by the product of the input
 *            perm_c and a permutation that postorders the elimination tree
 *            of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *            is already in postorder.
 *         Otherwise, it is an output argument.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = SLU_NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined 
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *         If A->Stype = SLU_NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If options->RowPerm = MY_PERMR or
 *            options->Fact = SamePattern_SameRowPerm, perm_r is an
 *            input argument.
 *         otherwise it is an output argument.
 *
 * L       (output) SuperMatrix*
 *         The factor L from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = SLU_NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.
 *         
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = SLU_NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * stat   (output) SuperLUStat_t*
 *        Record the statistics on runtime and doubleing-point operation count.
 *        See util.h for the definition of 'SuperLUStat_t'.
 *
 * info    (output) int*
 *	   = 0: successful exit
 *         > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    DNformat *Bstore;
    SuperMatrix *AA = NULL;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    int      permc_spec;
    trans_t  trans = NOTRANS;
    double   *utime;
    double   t;	/* Temporary time */

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( options->Fact != DOFACT ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	 A->Dtype != SLU_S || A->Mtype != SLU_GE )
	*info = -2;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
	B->Stype != SLU_DN || B->Dtype != SLU_S || B->Mtype != SLU_GE )
	*info = -7;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("sgssv", &i);
	return;
    }

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	sCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	trans = TRANS;
    } else {
        if ( A->Stype == SLU_NC ) AA = A;
    }

    t = SuperLU_timer_();
    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = NATURAL:  natural ordering 
     *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
     *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
     *   permc_spec = COLAMD:   approximate minimum degree column ordering
     *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
     */
    permc_spec = options->ColPerm;
    if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
      get_perm_c(permc_spec, AA, perm_c);
    utime[COLPERM] = SuperLU_timer_() - t;

    etree = intMalloc(A->ncol);

    t = SuperLU_timer_();
    sp_preorder(options, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t;

    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    sgstrf(options, &AC, relax, panel_size,
	   etree, NULL, lwork, perm_c, perm_r, L, U, stat, info);
    utime[FACT] = SuperLU_timer_() - t;

    t = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        sgstrs (trans, L, U, perm_c, perm_r, B, stat, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
Пример #7
0
main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * The driver program SLINSOLX1.
 *
 * This example illustrates how to use SGSSVX to solve systems with the same
 * A but different right-hand side.
 * In this case, we factorize A only once in the first call to DGSSVX,
 * and reuse the following data structures in the subsequent call to SGSSVX:
 *     perm_c, perm_r, R, C, L, U.
 * 
 */
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, L, U;
    SuperMatrix    B, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    float         *a;
    int            *asub, *xa;
    int            *perm_c; /* column permutation vector */
    int            *perm_r; /* row permutations from partial pivoting */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, m, n, nnz;
    float         *rhsb, *rhsx, *xact;
    float         *R, *C;
    float         *ferr, *berr;
    float         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void    parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;

    /* Set the default values for options argument:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
    */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;
    
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("SLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    sreadhb(&m, &n, &nnz, &a, &asub, &xa);
    
    sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    ldx = n;
    sGenXtrue(n, nrhs, xact, ldx);
    sFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* ONLY PERFORM THE LU DECOMPOSITION */
    B.ncol = 0;  /* Indicate not to solve the system */
    sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("LU factorization: sgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    /* ------------------------------------------------------------
       NOW WE SOLVE THE LINEAR SYSTEM USING THE FACTORED FORM OF A.
       ------------------------------------------------------------*/
    options.Fact = FACTORED; /* Indicate the factored form of A is supplied. */
    B.ncol = nrhs;  /* Set the number of right-hand side */

    /* Initialize the statistics variables. */
    StatInit(&stat);

    sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("Triangular solve: sgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        float *sol = (float*) ((DNformat*) X.Store)->nzval; 

	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);
    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork >= 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Пример #8
0
int main(int argc, char *argv[])
{
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, L, U;
    SuperMatrix    B, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    float         *a;
    int            *asub, *xa;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, m, n, nnz;
    float         *rhsb, *rhsx, *xact;
    float         *R, *C;
    float         *ferr, *berr;
    float         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void  parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;
    
    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
    */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;

    /* Add more functionalities that the defaults. */
    options.PivotGrowth = YES;    /* Compute reciprocal pivot growth */
    options.ConditionNumber = YES;/* Compute reciprocal condition number */
    options.IterRefine = SLU_SINGLE;  /* Perform single-precision refinement */
    
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("SLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    sreadhb(&m, &n, &nnz, &a, &asub, &xa);
    
    sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    ldx = n;
    sGenXtrue(n, nrhs, xact, ldx);
    sFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    
    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* Solve the system and compute the condition number
       and error bounds using dgssvx.      */
    
    sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("sgssvx(): info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        float *sol = (float*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth == YES )
            printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber == YES )
	    printf("Recip. condition number = %e\n", rcond);
	if ( options.IterRefine != NOREFINE ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	     
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork == 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    } else if ( lwork > 0 ) {
        SUPERLU_FREE(work);
    }

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Пример #9
0
void
sgsitrf(superlu_options_t *options, SuperMatrix *A, int relax, int panel_size,
	int *etree, void *work, int lwork, int *perm_c, int *perm_r,
	SuperMatrix *L, SuperMatrix *U, 
    	GlobalLU_t *Glu, /* persistent to facilitate multiple factorizations */
	SuperLUStat_t *stat, int *info)
{
    /* Local working arrays */
    NCPformat *Astore;
    int       *iperm_r = NULL; /* inverse of perm_r; used when
				  options->Fact == SamePattern_SameRowPerm */
    int       *iperm_c; /* inverse of perm_c */
    int       *swap, *iswap; /* swap is used to store the row permutation
				during the factorization. Initially, it is set
				to iperm_c (row indeces of Pc*A*Pc').
				iswap is the inverse of swap. After the
				factorization, it is equal to perm_r. */
    int       *iwork;
    float   *swork;
    int       *segrep, *repfnz, *parent, *xplore;
    int       *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
    int       *marker, *marker_relax;
    float    *dense, *tempv;
    int       *relax_end, *relax_fsupc;
    float    *a;
    int       *asub;
    int       *xa_begin, *xa_end;
    int       *xsup, *supno;
    int       *xlsub, *xlusup, *xusub;
    int       nzlumax;
    float    *amax; 
    float    drop_sum;
    float alpha, omega;  /* used in MILU, mimicing DRIC */
    float    *swork2;	   /* used by the second dropping rule */

    /* Local scalars */
    fact_t    fact = options->Fact;
    double    diag_pivot_thresh = options->DiagPivotThresh;
    double    drop_tol = options->ILU_DropTol; /* tau */
    double    fill_ini = options->ILU_FillTol; /* tau^hat */
    double    gamma = options->ILU_FillFactor;
    int       drop_rule = options->ILU_DropRule;
    milu_t    milu = options->ILU_MILU;
    double    fill_tol;
    int       pivrow;	/* pivotal row number in the original matrix A */
    int       nseg1;	/* no of segments in U-column above panel row jcol */
    int       nseg;	/* no of segments in each U-column */
    register int jcol;
    register int kcol;	/* end column of a relaxed snode */
    register int icol;
    register int i, k, jj, new_next, iinfo;
    int       m, n, min_mn, jsupno, fsupc, nextlu, nextu;
    int       w_def;	/* upper bound on panel width */
    int       usepr, iperm_r_allocated = 0;
    int       nnzL, nnzU;
    int       *panel_histo = stat->panel_histo;
    flops_t   *ops = stat->ops;

    int       last_drop;/* the last column which the dropping rules applied */
    int       quota;
    int       nnzAj;	/* number of nonzeros in A(:,1:j) */
    int       nnzLj, nnzUj;
    double    tol_L = drop_tol, tol_U = drop_tol;
    float zero = 0.0;
    float one = 1.0;

    /* Executable */	   
    iinfo    = 0;
    m	     = A->nrow;
    n	     = A->ncol;
    min_mn   = SUPERLU_MIN(m, n);
    Astore   = A->Store;
    a	     = Astore->nzval;
    asub     = Astore->rowind;
    xa_begin = Astore->colbeg;
    xa_end   = Astore->colend;

    /* Allocate storage common to the factor routines */
    *info = sLUMemInit(fact, work, lwork, m, n, Astore->nnz, panel_size,
		       gamma, L, U, Glu, &iwork, &swork);
    if ( *info ) return;

    xsup    = Glu->xsup;
    supno   = Glu->supno;
    xlsub   = Glu->xlsub;
    xlusup  = Glu->xlusup;
    xusub   = Glu->xusub;

    SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
	     &repfnz, &panel_lsub, &marker_relax, &marker);
    sSetRWork(m, panel_size, swork, &dense, &tempv);

    usepr = (fact == SamePattern_SameRowPerm);
    if ( usepr ) {
	/* Compute the inverse of perm_r */
	iperm_r = (int *) intMalloc(m);
	for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
	iperm_r_allocated = 1;
    }

    iperm_c = (int *) intMalloc(n);
    for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;
    swap = (int *)intMalloc(n);
    for (k = 0; k < n; k++) swap[k] = iperm_c[k];
    iswap = (int *)intMalloc(n);
    for (k = 0; k < n; k++) iswap[k] = perm_c[k];
    amax = (float *) SUPERLU_MALLOC(panel_size * sizeof(float));
    if (drop_rule & DROP_SECONDARY)
	swork2 = SUPERLU_MALLOC(n * sizeof(float));
    else
	swork2 = NULL;

    nnzAj = 0;
    nnzLj = 0;
    nnzUj = 0;
    last_drop = SUPERLU_MAX(min_mn - 2 * sp_ienv(7), (int)(min_mn * 0.95));
    alpha = pow((double)n, -1.0 / options->ILU_MILU_Dim);

    /* Identify relaxed snodes */
    relax_end = (int *) intMalloc(n);
    relax_fsupc = (int *) intMalloc(n);
    if ( options->SymmetricMode == YES )
	ilu_heap_relax_snode(n, etree, relax, marker, relax_end, relax_fsupc);
    else
	ilu_relax_snode(n, etree, relax, marker, relax_end, relax_fsupc);

    ifill (perm_r, m, EMPTY);
    ifill (marker, m * NO_MARKER, EMPTY);
    supno[0] = -1;
    xsup[0]  = xlsub[0] = xusub[0] = xlusup[0] = 0;
    w_def    = panel_size;

    /* Mark the rows used by relaxed supernodes */
    ifill (marker_relax, m, EMPTY);
    i = mark_relax(m, relax_end, relax_fsupc, xa_begin, xa_end,
	         asub, marker_relax);
#if ( PRNTlevel >= 1)
    printf("%d relaxed supernodes.\n", i);
#endif

    /*
     * Work on one "panel" at a time. A panel is one of the following:
     *	   (a) a relaxed supernode at the bottom of the etree, or
     *	   (b) panel_size contiguous columns, defined by the user
     */
    for (jcol = 0; jcol < min_mn; ) {

	if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
	    kcol = relax_end[jcol];	  /* end of the relaxed snode */
	    panel_histo[kcol-jcol+1]++;

	    /* Drop small rows in the previous supernode. */
	    if (jcol > 0 && jcol < last_drop) {
		int first = xsup[supno[jcol - 1]];
		int last = jcol - 1;
		int quota;

		/* Compute the quota */
		if (drop_rule & DROP_PROWS)
		    quota = gamma * Astore->nnz / m * (m - first) / m
			    * (last - first + 1);
		else if (drop_rule & DROP_COLUMN) {
		    int i;
		    quota = 0;
		    for (i = first; i <= last; i++)
			quota += xa_end[i] - xa_begin[i];
		    quota = gamma * quota * (m - first) / m;
		} else if (drop_rule & DROP_AREA)
		    quota = gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
			    - nnzLj;
		else
		    quota = m * n;
		fill_tol = pow(fill_ini, 1.0 - 0.5 * (first + last) / min_mn);

		/* Drop small rows */
		i = ilu_sdrop_row(options, first, last, tol_L, quota, &nnzLj,
				  &fill_tol, Glu, tempv, swork2, 0);
		/* Reset the parameters */
		if (drop_rule & DROP_DYNAMIC) {
		    if (gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
			     < nnzLj)
			tol_L = SUPERLU_MIN(1.0, tol_L * 2.0);
		    else
			tol_L = SUPERLU_MAX(drop_tol, tol_L * 0.5);
		}
		if (fill_tol < 0) iinfo -= (int)fill_tol;
#ifdef DEBUG
		num_drop_L += i * (last - first + 1);
#endif
	    }

	    /* --------------------------------------
	     * Factorize the relaxed supernode(jcol:kcol)
	     * -------------------------------------- */
	    /* Determine the union of the row structure of the snode */
	    if ( (*info = ilu_ssnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
					 marker, Glu)) != 0 )
		return;

	    nextu    = xusub[jcol];
	    nextlu   = xlusup[jcol];
	    jsupno   = supno[jcol];
	    fsupc    = xsup[jsupno];
	    new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
	    nzlumax = Glu->nzlumax;
	    while ( new_next > nzlumax ) {
		if ((*info = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, Glu)))
		    return;
	    }

	    for (icol = jcol; icol <= kcol; icol++) {
		xusub[icol+1] = nextu;

		amax[0] = 0.0;
		/* Scatter into SPA dense[*] */
		for (k = xa_begin[icol]; k < xa_end[icol]; k++) {
		    register float tmp = fabs(a[k]);
		    if (tmp > amax[0]) amax[0] = tmp;
		    dense[asub[k]] = a[k];
		}
		nnzAj += xa_end[icol] - xa_begin[icol];
		if (amax[0] == 0.0) {
		    amax[0] = fill_ini;
#if ( PRNTlevel >= 1)
		    printf("Column %d is entirely zero!\n", icol);
		    fflush(stdout);
#endif
		}

		/* Numeric update within the snode */
		ssnode_bmod(icol, jsupno, fsupc, dense, tempv, Glu, stat);

		if (usepr) pivrow = iperm_r[icol];
		fill_tol = pow(fill_ini, 1.0 - (double)icol / (double)min_mn);
		if ( (*info = ilu_spivotL(icol, diag_pivot_thresh, &usepr,
					  perm_r, iperm_c[icol], swap, iswap,
					  marker_relax, &pivrow,
                                          amax[0] * fill_tol, milu, zero,
                                          Glu, stat)) ) {
		    iinfo++;
		    marker[pivrow] = kcol;
		}

	    }

	    jcol = kcol + 1;

	} else { /* Work on one panel of panel_size columns */

	    /* Adjust panel_size so that a panel won't overlap with the next
	     * relaxed snode.
	     */
	    panel_size = w_def;
	    for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++)
		if ( relax_end[k] != EMPTY ) {
		    panel_size = k - jcol;
		    break;
		}
	    if ( k == min_mn ) panel_size = min_mn - jcol;
	    panel_histo[panel_size]++;

	    /* symbolic factor on a panel of columns */
	    ilu_spanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
                          dense, amax, panel_lsub, segrep, repfnz,
                          marker, parent, xplore, Glu);

	    /* numeric sup-panel updates in topological order */
	    spanel_bmod(m, panel_size, jcol, nseg1, dense,
			tempv, segrep, repfnz, Glu, stat);

	    /* Sparse LU within the panel, and below panel diagonal */
	    for (jj = jcol; jj < jcol + panel_size; jj++) {

		k = (jj - jcol) * m; /* column index for w-wide arrays */

		nseg = nseg1;	/* Begin after all the panel segments */

		nnzAj += xa_end[jj] - xa_begin[jj];

		if ((*info = ilu_scolumn_dfs(m, jj, perm_r, &nseg,
					     &panel_lsub[k], segrep, &repfnz[k],
					     marker, parent, xplore, Glu)))
		    return;

		/* Numeric updates */
		if ((*info = scolumn_bmod(jj, (nseg - nseg1), &dense[k],
					  tempv, &segrep[nseg1], &repfnz[k],
					  jcol, Glu, stat)) != 0) return;

		/* Make a fill-in position if the column is entirely zero */
		if (xlsub[jj + 1] == xlsub[jj]) {
		    register int i, row;
		    int nextl;
		    int nzlmax = Glu->nzlmax;
		    int *lsub = Glu->lsub;
		    int *marker2 = marker + 2 * m;

		    /* Allocate memory */
		    nextl = xlsub[jj] + 1;
		    if (nextl >= nzlmax) {
			int error = sLUMemXpand(jj, nextl, LSUB, &nzlmax, Glu);
			if (error) { *info = error; return; }
			lsub = Glu->lsub;
		    }
		    xlsub[jj + 1]++;
		    assert(xlusup[jj]==xlusup[jj+1]);
		    xlusup[jj + 1]++;
		    ((float *) Glu->lusup)[xlusup[jj]] = zero;

		    /* Choose a row index (pivrow) for fill-in */
		    for (i = jj; i < n; i++)
			if (marker_relax[swap[i]] <= jj) break;
		    row = swap[i];
		    marker2[row] = jj;
		    lsub[xlsub[jj]] = row;
#ifdef DEBUG
		    printf("Fill col %d.\n", jj);
		    fflush(stdout);
#endif
		}

		/* Computer the quota */
		if (drop_rule & DROP_PROWS)
		    quota = gamma * Astore->nnz / m * jj / m;
		else if (drop_rule & DROP_COLUMN)
		    quota = gamma * (xa_end[jj] - xa_begin[jj]) *
			    (jj + 1) / m;
		else if (drop_rule & DROP_AREA)
		    quota = gamma * 0.9 * nnzAj * 0.5 - nnzUj;
		else
		    quota = m;

		/* Copy the U-segments to ucol[*] and drop small entries */
		if ((*info = ilu_scopy_to_ucol(jj, nseg, segrep, &repfnz[k],
					       perm_r, &dense[k], drop_rule,
					       milu, amax[jj - jcol] * tol_U,
					       quota, &drop_sum, &nnzUj, Glu,
					       swork2)) != 0)
		    return;

		/* Reset the dropping threshold if required */
		if (drop_rule & DROP_DYNAMIC) {
		    if (gamma * 0.9 * nnzAj * 0.5 < nnzLj)
			tol_U = SUPERLU_MIN(1.0, tol_U * 2.0);
		    else
			tol_U = SUPERLU_MAX(drop_tol, tol_U * 0.5);
		}

		if (drop_sum != zero)
		{
		    if (drop_sum > zero)
			omega = SUPERLU_MIN(2.0 * (1.0 - alpha)
				* amax[jj - jcol] / drop_sum, one);
		    else
			omega = SUPERLU_MAX(2.0 * (1.0 - alpha)
				* amax[jj - jcol] / drop_sum, -one);
		    drop_sum *= omega;
                }
		if (usepr) pivrow = iperm_r[jj];
		fill_tol = pow(fill_ini, 1.0 - (double)jj / (double)min_mn);
		if ( (*info = ilu_spivotL(jj, diag_pivot_thresh, &usepr, perm_r,
					  iperm_c[jj], swap, iswap,
					  marker_relax, &pivrow,
					  amax[jj - jcol] * fill_tol, milu,
					  drop_sum, Glu, stat)) ) {
		    iinfo++;
		    marker[m + pivrow] = jj;
		    marker[2 * m + pivrow] = jj;
		}

		/* Reset repfnz[] for this column */
		resetrep_col (nseg, segrep, &repfnz[k]);

		/* Start a new supernode, drop the previous one */
		if (jj > 0 && supno[jj] > supno[jj - 1] && jj < last_drop) {
		    int first = xsup[supno[jj - 1]];
		    int last = jj - 1;
		    int quota;

		    /* Compute the quota */
		    if (drop_rule & DROP_PROWS)
			quota = gamma * Astore->nnz / m * (m - first) / m
				* (last - first + 1);
		    else if (drop_rule & DROP_COLUMN) {
			int i;
			quota = 0;
			for (i = first; i <= last; i++)
			    quota += xa_end[i] - xa_begin[i];
			quota = gamma * quota * (m - first) / m;
		    } else if (drop_rule & DROP_AREA)
			quota = gamma * nnzAj * (1.0 - 0.5 * (last + 1.0)
				/ m) - nnzLj;
		    else
			quota = m * n;
		    fill_tol = pow(fill_ini, 1.0 - 0.5 * (first + last) /
			    (double)min_mn);

		    /* Drop small rows */
		    i = ilu_sdrop_row(options, first, last, tol_L, quota,
				      &nnzLj, &fill_tol, Glu, tempv, swork2,
				      1);

		    /* Reset the parameters */
		    if (drop_rule & DROP_DYNAMIC) {
			if (gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
				< nnzLj)
			    tol_L = SUPERLU_MIN(1.0, tol_L * 2.0);
			else
			    tol_L = SUPERLU_MAX(drop_tol, tol_L * 0.5);
		    }
		    if (fill_tol < 0) iinfo -= (int)fill_tol;
#ifdef DEBUG
		    num_drop_L += i * (last - first + 1);
#endif
		} /* if start a new supernode */

	    } /* for */

	    jcol += panel_size; /* Move to the next panel */

	} /* else */

    } /* for */

    *info = iinfo;

    if ( m > n ) {
	k = 0;
	for (i = 0; i < m; ++i)
	    if ( perm_r[i] == EMPTY ) {
		perm_r[i] = n + k;
		++k;
	    }
    }

    ilu_countnz(min_mn, &nnzL, &nnzU, Glu);
    fixupL(min_mn, perm_r, Glu);

    sLUWorkFree(iwork, swork, Glu); /* Free work space and compress storage */

    if ( fact == SamePattern_SameRowPerm ) {
	/* L and U structures may have changed due to possibly different
	   pivoting, even though the storage is available.
	   There could also be memory expansions, so the array locations
	   may have changed, */
	((SCformat *)L->Store)->nnz = nnzL;
	((SCformat *)L->Store)->nsuper = Glu->supno[n];
	((SCformat *)L->Store)->nzval = (float *) Glu->lusup;
	((SCformat *)L->Store)->nzval_colptr = Glu->xlusup;
	((SCformat *)L->Store)->rowind = Glu->lsub;
	((SCformat *)L->Store)->rowind_colptr = Glu->xlsub;
	((NCformat *)U->Store)->nnz = nnzU;
	((NCformat *)U->Store)->nzval = (float *) Glu->ucol;
	((NCformat *)U->Store)->rowind = Glu->usub;
	((NCformat *)U->Store)->colptr = Glu->xusub;
    } else {
	sCreate_SuperNode_Matrix(L, A->nrow, min_mn, nnzL,
              (float *) Glu->lusup, Glu->xlusup,
              Glu->lsub, Glu->xlsub, Glu->supno, Glu->xsup,
	      SLU_SC, SLU_S, SLU_TRLU);
	sCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU,
	      (float *) Glu->ucol, Glu->usub, Glu->xusub,
	      SLU_NC, SLU_S, SLU_TRU);
    }

    ops[FACT] += ops[TRSV] + ops[GEMV];
    stat->expansions = --(Glu->num_expansions);

    if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
    SUPERLU_FREE (iperm_c);
    SUPERLU_FREE (relax_end);
    SUPERLU_FREE (swap);
    SUPERLU_FREE (iswap);
    SUPERLU_FREE (relax_fsupc);
    SUPERLU_FREE (amax);
    if ( swork2 ) SUPERLU_FREE (swork2);

}
Пример #10
0
void
sgsisx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, float *R, float *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X,
       float *recip_pivot_growth, float *rcond,
       mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info)
{

    DNformat  *Bstore, *Xstore;
    float    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec, mc64;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    float    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    float    diag_pivot_thresh;
    double    t0;      /* temporary time */
    double    *utime;

    int *perm = NULL;

    /* External functions */
    extern float slangs(char *, SuperMatrix *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    mc64 = (options->RowPerm == LargeDiag);
    if ( nofact ) {
        *(unsigned char *)equed = 'N';
        rowequ = FALSE;
        colequ = FALSE;
    } else {
        rowequ = lsame_(equed, "R") || lsame_(equed, "B");
        colequ = lsame_(equed, "C") || lsame_(equed, "B");
        smlnum = slamch_("Safe minimum");
        bignum = 1. / smlnum;
    }

    /* Test the input parameters */
    if (!nofact && options->Fact != DOFACT && options->Fact != SamePattern &&
        options->Fact != SamePattern_SameRowPerm &&
        !notran && options->Trans != TRANS && options->Trans != CONJ &&
        !equil && options->Equil != NO)
        *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
              (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
              A->Dtype != SLU_S || A->Mtype != SLU_GE )
        *info = -2;
    else if (options->Fact == FACTORED &&
             !(rowequ || colequ || lsame_(equed, "N")))
        *info = -6;
    else {
        if (rowequ) {
            rcmin = bignum;
            rcmax = 0.;
            for (j = 0; j < A->nrow; ++j) {
                rcmin = SUPERLU_MIN(rcmin, R[j]);
                rcmax = SUPERLU_MAX(rcmax, R[j]);
            }
            if (rcmin <= 0.) *info = -7;
            else if ( A->nrow > 0)
                rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
            else rowcnd = 1.;
        }
        if (colequ && *info == 0) {
            rcmin = bignum;
            rcmax = 0.;
            for (j = 0; j < A->nrow; ++j) {
                rcmin = SUPERLU_MIN(rcmin, C[j]);
                rcmax = SUPERLU_MAX(rcmax, C[j]);
            }
            if (rcmin <= 0.) *info = -8;
            else if (A->nrow > 0)
                colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
            else colcnd = 1.;
        }
        if (*info == 0) {
            if ( lwork < -1 ) *info = -12;
            else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
                      B->Stype != SLU_DN || B->Dtype != SLU_S ||
                      B->Mtype != SLU_GE )
                *info = -13;
            else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
                      (B->ncol != 0 && B->ncol != X->ncol) ||
                      X->Stype != SLU_DN ||
                      X->Dtype != SLU_S || X->Mtype != SLU_GE )
                *info = -14;
        }
    }
    if (*info != 0) {
        i = -(*info);
        xerbla_("sgsisx", &i);
        return;
    }

    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
        NRformat *Astore = A->Store;
        AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
        sCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
                               Astore->nzval, Astore->colind, Astore->rowptr,
                               SLU_NC, A->Dtype, A->Mtype);
        if ( notran ) { /* Reverse the transpose argument. */
            trant = TRANS;
            notran = 0;
        } else {
            trant = NOTRANS;
            notran = 1;
        }
    } else { /* A->Stype == SLU_NC */
        trant = options->Trans;
        AA = A;
    }

    if ( nofact ) {
        register int i, j;
        NCformat *Astore = AA->Store;
        int nnz = Astore->nnz;
        int *colptr = Astore->colptr;
        int *rowind = Astore->rowind;
        float *nzval = (float *)Astore->nzval;
        int n = AA->nrow;

        if ( mc64 ) {
            *equed = 'B';
            /*rowequ = colequ = 1;*/
            t0 = SuperLU_timer_();
            if ((perm = intMalloc(n)) == NULL)
                ABORT("SUPERLU_MALLOC fails for perm[]");

            info1 = sldperm(5, n, nnz, colptr, rowind, nzval, perm, R, C);

            if (info1 > 0) { /* MC64 fails, call sgsequ() later */
                mc64 = 0;
                SUPERLU_FREE(perm);
                perm = NULL;
            } else {
                rowequ = colequ = 1;
                for (i = 0; i < n; i++) {
                    R[i] = exp(R[i]);
                    C[i] = exp(C[i]);
                }
                /* permute and scale the matrix */
                for (j = 0; j < n; j++) {
                    for (i = colptr[j]; i < colptr[j + 1]; i++) {
                        nzval[i] *= R[rowind[i]] * C[j];
                        rowind[i] = perm[rowind[i]];
                    }
                }
            }
            utime[EQUIL] = SuperLU_timer_() - t0;
        }
        if ( !mc64 & equil ) {
            t0 = SuperLU_timer_();
            /* Compute row and column scalings to equilibrate the matrix A. */
            sgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);

            if ( info1 == 0 ) {
                /* Equilibrate matrix A. */
                slaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
                rowequ = lsame_(equed, "R") || lsame_(equed, "B");
                colequ = lsame_(equed, "C") || lsame_(equed, "B");
            }
            utime[EQUIL] = SuperLU_timer_() - t0;
        }
    }


    if ( nofact ) {

        t0 = SuperLU_timer_();
        /*
         * Gnet column permutation vector perm_c[], according to permc_spec:
         *   permc_spec = NATURAL:  natural ordering
         *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
         *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
         *   permc_spec = COLAMD:   approximate minimum degree column ordering
         *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
         */
        permc_spec = options->ColPerm;
        if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
            get_perm_c(permc_spec, AA, perm_c);
        utime[COLPERM] = SuperLU_timer_() - t0;

        t0 = SuperLU_timer_();
        sp_preorder(options, AA, perm_c, etree, &AC);
        utime[ETREE] = SuperLU_timer_() - t0;

        /* Compute the LU factorization of A*Pc. */
        t0 = SuperLU_timer_();
        sgsitrf(options, &AC, relax, panel_size, etree, work, lwork,
                perm_c, perm_r, L, U, stat, info);
        utime[FACT] = SuperLU_timer_() - t0;

        if ( lwork == -1 ) {
            mem_usage->total_needed = *info - A->ncol;
            return;
        }
    }

    if ( options->PivotGrowth ) {
        if ( *info > 0 ) return;

        /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
        *recip_pivot_growth = sPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
        /* Estimate the reciprocal of the condition number of A. */
        t0 = SuperLU_timer_();
        if ( notran ) {
            *(unsigned char *)norm = '1';
        } else {
            *(unsigned char *)norm = 'I';
        }
        anorm = slangs(norm, AA);
        sgscon(norm, L, U, anorm, rcond, stat, &info1);
        utime[RCOND] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) { /* Solve the system */
        float *tmp, *rhs_work;
        int n = A->nrow;
        if ( mc64 ) {
            if ((tmp = floatMalloc(n)) == NULL)
                ABORT("SUPERLU_MALLOC fails for tmp[]");
        }

        /* Scale and permute the right-hand side if equilibration
           and permutation from MC64 were performed. */
        if ( notran ) {
            if ( rowequ ) {
                for (j = 0; j < nrhs; ++j)
                    for (i = 0; i < n; ++i)
                        Bmat[i + j*ldb] *= R[i];
            }
            if ( mc64 ) {
                for (j = 0; j < nrhs; ++j) {
                   rhs_work = &Bmat[j*ldb];
                   for (i = 0; i < n; i++) tmp[perm[i]] = rhs_work[i];
                   for (i = 0; i < n; i++) rhs_work[i] = tmp[i];
                }
            }
        } else if ( colequ ) {
            for (j = 0; j < nrhs; ++j)
                for (i = 0; i < n; ++i) {
                    Bmat[i + j*ldb] *= C[i];
                }
        }

        /* Compute the solution matrix X. */
        for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
            for (i = 0; i < B->nrow; i++)
                Xmat[i + j*ldx] = Bmat[i + j*ldb];

        t0 = SuperLU_timer_();
        sgstrs (trant, L, U, perm_c, perm_r, X, stat, &info1);
        utime[SOLVE] = SuperLU_timer_() - t0;

        /* Transform the solution matrix X to a solution of the original
           system. */
        if ( notran ) {
            if ( colequ ) {
                for (j = 0; j < nrhs; ++j)
                    for (i = 0; i < n; ++i) {
                        Xmat[i + j*ldx] *= C[i];
                    }
            }
        } else { /* transposed system */
            if ( rowequ ) {
                if ( mc64 ) {
                    for (j = 0; j < nrhs; j++) {
                        for (i = 0; i < n; i++)
                            tmp[i] = Xmat[i + j * ldx]; /*dcopy*/
                        for (i = 0; i < n; i++)
                            Xmat[i + j * ldx] = R[i] * tmp[perm[i]];
                    }
                } else {
                    for (j = 0; j < nrhs; ++j)
                        for (i = 0; i < A->nrow; ++i) {
                            Xmat[i + j*ldx] *= R[i];
                        }
                }
            }
        }

        if ( mc64 ) SUPERLU_FREE(tmp);

    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
        /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
        if ( *rcond < slamch_("E") && *info == 0) *info = A->ncol + 1;
    }

    if (perm) SUPERLU_FREE(perm);

    if ( nofact ) {
        ilu_sQuerySpace(L, U, mem_usage);
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
        Destroy_SuperMatrix_Store(AA);
        SUPERLU_FREE(AA);
    }

}
Пример #11
0
main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * The driver program SLINSOLX2.
 *
 * This example illustrates how to use SGSSVX to solve systems repeatedly
 * with the same sparsity pattern of matrix A.
 * In this case, the column permutation vector perm_c is computed once.
 * The following data structures will be reused in the subsequent call to
 * SGSSVX: perm_c, etree
 *
 */
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, A1, L, U;
    SuperMatrix    B, B1, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    float         *a, *a1;
    int            *asub, *xa, *asub1, *xa1;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, j, m, n, nnz;
    float         *rhsb, *rhsb1, *rhsx, *xact;
    float         *R, *C;
    float         *ferr, *berr;
    float         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void    parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;
    u     = 1.0;
    trans = NOTRANS;

    /* Set the default input options:
        options.Fact = DOFACT;
        options.Equil = YES;
        options.ColPerm = COLAMD;
        options.DiagPivotThresh = 1.0;
        options.Trans = NOTRANS;
        options.IterRefine = NOREFINE;
        options.SymmetricMode = NO;
        options.PivotGrowth = NO;
        options.ConditionNumber = NO;
        options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;

    if ( lwork > 0 ) {
        work = SUPERLU_MALLOC(lwork);
        if ( !work ) {
            ABORT("DLINSOLX: cannot allocate work[]");
        }
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    sreadhb(&m, &n, &nnz, &a, &asub, &xa);
    if ( !(a1 = floatMalloc(nnz)) ) ABORT("Malloc fails for a1[].");
    if ( !(asub1 = intMalloc(nnz)) ) ABORT("Malloc fails for asub1[].");
    if ( !(xa1 = intMalloc(n+1)) ) ABORT("Malloc fails for xa1[].");
    for (i = 0; i < nnz; ++i) {
        a1[i] = a[i];
        asub1[i] = asub[i];
    }
    for (i = 0; i < n+1; ++i) xa1[i] = xa[i];

    sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);

    if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsb1 = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb1[].");
    if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    ldx = n;
    sGenXtrue(n, nrhs, xact, ldx);
    sFillRHS(trans, nrhs, xact, ldx, &A, &B);
    for (j = 0; j < nrhs; ++j)
        for (i = 0; i < m; ++i) rhsb1[i+j*m] = rhsb[i+j*m];

    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for berr[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);

    /* ------------------------------------------------------------
       WE SOLVE THE LINEAR SYSTEM FOR THE FIRST TIME: AX = B
       ------------------------------------------------------------*/
    sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("First system: sgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        float *sol = (float*) ((DNformat*) X.Store)->nzval;

        if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
        if ( options.ConditionNumber )
            printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
        printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
        printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
        printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
        printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

        printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
               mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
        if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
            printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
            for (i = 0; i < nrhs; ++i)
              printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
        }
        fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);
    Destroy_CompCol_Matrix(&A);
    Destroy_Dense_Matrix(&B);
    if ( lwork >= 0 ) { /* Deallocate storage associated with L and U. */
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }

    /* ------------------------------------------------------------
       NOW WE SOLVE ANOTHER LINEAR SYSTEM: A1*X = B1
       ONLY THE SPARSITY PATTERN OF A1 IS THE SAME AS THAT OF A.
       ------------------------------------------------------------*/
    options.Fact = SamePattern;
    StatInit(&stat); /* Initialize the statistics variables. */

    sCreate_CompCol_Matrix(&A1, m, n, nnz, a1, asub1, xa1,
                           SLU_NC, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&B1, m, nrhs, rhsb1, m, SLU_DN, SLU_S, SLU_GE);

    sgssvx(&options, &A1, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B1, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("\nSecond system: sgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        float *sol = (float*) ((DNformat*) X.Store)->nzval;

        if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
        if ( options.ConditionNumber )
            printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
        printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
        printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
        printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
        printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
               mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
        if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
            printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
            for (i = 0; i < nrhs; ++i)
              printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
        }
        fflush(stdout);
    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A1);
    Destroy_Dense_Matrix(&B1);
    Destroy_Dense_Matrix(&X);
    if ( lwork == 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    } else if ( lwork > 0 ) {
        SUPERLU_FREE(work);
    }

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Пример #12
0
int main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    float   *a;
    int      *asub, *xa;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, m, n, nnz;
    float   *xact, *rhs;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    FILE      *fp = stdin;
    
#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Read the matrix in Harwell-Boeing format. */
    sreadhb(fp, &m, &n, &nnz, &a, &asub, &xa);

    sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    nrhs   = 1;
    if ( !(rhs = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    sCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    ldx = n;
    sGenXtrue(n, nrhs, xact, ldx);
    sFillRHS(options.Trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    sgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);
    
    if ( info == 0 ) {

	/* This is how you could access the solution matrix. */
        float *sol = (float*) ((DNformat*) B.Store)->nzval; 

	 /* Compute the infinity norm of the error. */
	sinf_norm_error(nrhs, &B, xact);

	Lstore = (SCformat *) L.Store;
	Ustore = (NCformat *) U.Store;
    	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);
	
	sQuerySpace(&L, &U, &mem_usage);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	
    } else {
	printf("sgssv() error returns INFO= %d\n", info);
	if ( info <= n ) { /* factorization completes */
	    sQuerySpace(&L, &U, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	}
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Пример #13
0
/* Here is a driver inspired by A. Sheffer's "cow flattener". */
static NLboolean __nlSolve_SUPERLU( NLboolean do_perm) {

    /* OpenNL Context */
    __NLSparseMatrix* M  = &(__nlCurrentContext->M);
    NLfloat* b          = __nlCurrentContext->b;
    NLfloat* x          = __nlCurrentContext->x;

    /* Compressed Row Storage matrix representation */
    NLuint    n      = __nlCurrentContext->n;
    NLuint    nnz    = __nlSparseMatrixNNZ(M); /* Number of Non-Zero coeffs */
    NLint*    xa     = __NL_NEW_ARRAY(NLint, n+1);
    NLfloat* rhs    = __NL_NEW_ARRAY(NLfloat, n);
    NLfloat* a      = __NL_NEW_ARRAY(NLfloat, nnz);
    NLint*    asub   = __NL_NEW_ARRAY(NLint, nnz);

    /* Permutation vector */
    NLint*    perm_r  = __NL_NEW_ARRAY(NLint, n);
    NLint*    perm    = __NL_NEW_ARRAY(NLint, n);

    /* SuperLU variables */
    SuperMatrix A, B; /* System       */
    SuperMatrix L, U; /* Inverse of A */
    NLint info;       /* status code  */
    DNformat *vals = NULL; /* access to result */
    float *rvals  = NULL; /* access to result */

    /* SuperLU options and stats */
    superlu_options_t options;
    SuperLUStat_t     stat;


    /* Temporary variables */
    __NLRowColumn* Ri = NULL;
    NLuint         i,jj,count;
    
    __nl_assert(!(M->storage & __NL_SYMMETRIC));
    __nl_assert(M->storage & __NL_ROWS);
    __nl_assert(M->m == M->n);
    
    
    /*
     * Step 1: convert matrix M into SuperLU compressed column 
     *   representation.
     * -------------------------------------------------------
     */

    count = 0;
    for(i=0; i<n; i++) {
        Ri = &(M->row[i]);
        xa[i] = count;
        for(jj=0; jj<Ri->size; jj++) {
            a[count]    = Ri->coeff[jj].value;
            asub[count] = Ri->coeff[jj].index;
            count++;
        }
    }
    xa[n] = nnz;

    /* Save memory for SuperLU */
    __nlSparseMatrixClear(M);


    /*
     * Rem: symmetric storage does not seem to work with
     * SuperLU ... (->deactivated in main SLS::Solver driver)
     */
    sCreate_CompCol_Matrix(
        &A, n, n, nnz, a, asub, xa, 
        SLU_NR,              /* Row_wise, no supernode */
        SLU_S,               /* floats                */ 
        SLU_GE               /* general storage        */
    );

    /* Step 2: create vector */
    sCreate_Dense_Matrix(
        &B, n, 1, b, n, 
        SLU_DN, /* Fortran-type column-wise storage */
        SLU_S,  /* floats                          */
        SLU_GE  /* general                          */
    );
            

    /* Step 3: get permutation matrix 
     * ------------------------------
     * com_perm: 0 -> no re-ordering
     *           1 -> re-ordering for A^t.A
     *           2 -> re-ordering for A^t+A
     *           3 -> approximate minimum degree ordering
     */
    get_perm_c(do_perm ? 3 : 0, &A, perm);

    /* Step 4: call SuperLU main routine
     * ---------------------------------
     */

    set_default_options(&options);
    options.ColPerm = MY_PERMC;
    StatInit(&stat);

    sgssv(&options, &A, perm, perm_r, &L, &U, &B, &stat, &info);

    /* Step 5: get the solution
     * ------------------------
     * Fortran-type column-wise storage
     */
    vals = (DNformat*)B.Store;
    rvals = (float*)(vals->nzval);
    if(info == 0) {
        for(i = 0; i <  n; i++){
            x[i] = rvals[i];
        }
    }

    /* Step 6: cleanup
     * ---------------
     */

    /*
     *  For these two ones, only the "store" structure
     * needs to be deallocated (the arrays have been allocated
     * by us).
     */
    Destroy_SuperMatrix_Store(&A);
    Destroy_SuperMatrix_Store(&B);

    
    /*
     *   These ones need to be fully deallocated (they have been
     * allocated by SuperLU).
     */
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);

    StatFree(&stat);

    __NL_DELETE_ARRAY(xa);
    __NL_DELETE_ARRAY(rhs);
    __NL_DELETE_ARRAY(a);
    __NL_DELETE_ARRAY(asub);
    __NL_DELETE_ARRAY(perm_r);
    __NL_DELETE_ARRAY(perm);

    return (info == 0);
}
Пример #14
0
void
psgssvx(int nprocs, superlumt_options_t *superlumt_options, SuperMatrix *A,
        int *perm_c, int *perm_r, equed_t *equed, float *R, float *C,
        SuperMatrix *L, SuperMatrix *U,
        SuperMatrix *B, SuperMatrix *X, float *recip_pivot_growth,
        float *rcond, float *ferr, float *berr,
        superlu_memusage_t *superlu_memusage, int *info)
{
    /*
     * -- SuperLU MT routine (version 2.0) --
     * Lawrence Berkeley National Lab, Univ. of California Berkeley,
     * and Xerox Palo Alto Research Center.
     * September 10, 2007
     *
     * Purpose
     * =======
     *
     * psgssvx() solves the system of linear equations A*X=B or A'*X=B, using
     * the LU factorization from sgstrf(). Error bounds on the solution and
     * a condition estimate are also provided. It performs the following steps:
     *
     * 1. If A is stored column-wise (A->Stype = NC):
     *
     *    1.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
     *         the system:
     *           trans = NOTRANS: diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B
     *           trans = TRANS:  (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
     *           trans = CONJ:   (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
     *         Whether or not the system will be equilibrated depends on the
     *         scaling of the matrix A, but if equilibration is used, A is
     *         overwritten by diag(R)*A*diag(C) and B by diag(R)*B
     *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
     *
     *    1.2. Permute columns of A, forming A*Pc, where Pc is a permutation matrix
     *         that usually preserves sparsity.
     *         For more details of this step, see ssp_colorder.c.
     *
     *    1.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to
     *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
     *         Pr*A*Pc = L*U, with Pr determined by partial pivoting.
     *
     *    1.4. Compute the reciprocal pivot growth factor.
     *
     *    1.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
     *         returns with info = i. Otherwise, the factored form of A is used to
     *         estimate the condition number of the matrix A. If the reciprocal of
     *         the condition number is less than machine precision,
     *         info = A->ncol+1 is returned as a warning, but the routine still
     *         goes on to solve for X and computes error bounds as described below.
     *
     *    1.6. The system of equations is solved for X using the factored form
     *         of A.
     *
     *    1.7. Iterative refinement is applied to improve the computed solution
     *         matrix and calculate error bounds and backward error estimates
     *         for it.
     *
     *    1.8. If equilibration was used, the matrix X is premultiplied by
     *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
     *         so that it solves the original system before equilibration.
     *
     * 2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
     *    to the tranpose of A:
     *
     *    2.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
     *         the system:
     *           trans = NOTRANS:diag(R)*A'*diag(C)*inv(diag(C))*X = diag(R)*B
     *           trans = TRANS: (diag(R)*A'*diag(C))**T *inv(diag(R))*X = diag(C)*B
     *           trans = CONJ:  (diag(R)*A'*diag(C))**H *inv(diag(R))*X = diag(C)*B
     *         Whether or not the system will be equilibrated depends on the
     *         scaling of the matrix A, but if equilibration is used, A' is
     *         overwritten by diag(R)*A'*diag(C) and B by diag(R)*B
     *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
     *
     *    2.2. Permute columns of transpose(A) (rows of A),
     *         forming transpose(A)*Pc, where Pc is a permutation matrix that
     *         usually preserves sparsity.
     *         For more details of this step, see ssp_colorder.c.
     *
     *    2.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to
     *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
     *         Pr*transpose(A)*Pc = L*U, with the permutation Pr determined by
     *         partial pivoting.
     *
     *    2.4. Compute the reciprocal pivot growth factor.
     *
     *    2.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
     *         returns with info = i. Otherwise, the factored form of transpose(A)
     *         is used to estimate the condition number of the matrix A.
     *         If the reciprocal of the condition number is less than machine
     *         precision, info = A->nrow+1 is returned as a warning, but the
     *         routine still goes on to solve for X and computes error bounds
     *         as described below.
     *
     *    2.6. The system of equations is solved for X using the factored form
     *         of transpose(A).
     *
     *    2.7. Iterative refinement is applied to improve the computed solution
     *         matrix and calculate error bounds and backward error estimates
     *         for it.
     *
     *    2.8. If equilibration was used, the matrix X is premultiplied by
     *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
     *         so that it solves the original system before equilibration.
     *
     * See supermatrix.h for the definition of 'SuperMatrix' structure.
     *
     * Arguments
     * =========
     *
     * nprocs (input) int
     *         Number of processes (or threads) to be spawned and used to perform
     *         the LU factorization by psgstrf(). There is a single thread of
     *         control to call psgstrf(), and all threads spawned by psgstrf()
     *         are terminated before returning from psgstrf().
     *
     * superlumt_options (input) superlumt_options_t*
     *         The structure defines the input parameters and data structure
     *         to control how the LU factorization will be performed.
     *         The following fields should be defined for this structure:
     *
     *         o fact (fact_t)
     *           Specifies whether or not the factored form of the matrix
     *           A is supplied on entry, and if not, whether the matrix A should
     *           be equilibrated before it is factored.
     *           = FACTORED: On entry, L, U, perm_r and perm_c contain the
     *             factored form of A. If equed is not NOEQUIL, the matrix A has
     *             been equilibrated with scaling factors R and C.
     *             A, L, U, perm_r are not modified.
     *           = DOFACT: The matrix A will be factored, and the factors will be
     *             stored in L and U.
     *           = EQUILIBRATE: The matrix A will be equilibrated if necessary,
     *             then factored into L and U.
     *
     *         o trans (trans_t)
     *           Specifies the form of the system of equations:
     *           = NOTRANS: A * X = B        (No transpose)
     *           = TRANS:   A**T * X = B     (Transpose)
     *           = CONJ:    A**H * X = B     (Transpose)
     *
     *         o refact (yes_no_t)
     *           Specifies whether this is first time or subsequent factorization.
     *           = NO:  this factorization is treated as the first one;
     *           = YES: it means that a factorization was performed prior to this
     *               one. Therefore, this factorization will re-use some
     *               existing data structures, such as L and U storage, column
     *               elimination tree, and the symbolic information of the
     *               Householder matrix.
     *
     *         o panel_size (int)
     *           A panel consists of at most panel_size consecutive columns.
     *
     *         o relax (int)
     *           To control degree of relaxing supernodes. If the number
     *           of nodes (columns) in a subtree of the elimination tree is less
     *           than relax, this subtree is considered as one supernode,
     *           regardless of the row structures of those columns.
     *
     *         o diag_pivot_thresh (float)
     *           Diagonal pivoting threshold. At step j of the Gaussian
     *           elimination, if
     *               abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),
     *           use A_jj as pivot, else use A_ij with maximum magnitude.
     *           0 <= diag_pivot_thresh <= 1. The default value is 1,
     *           corresponding to partial pivoting.
     *
     *         o usepr (yes_no_t)
     *           Whether the pivoting will use perm_r specified by the user.
     *           = YES: use perm_r; perm_r is input, unchanged on exit.
     *           = NO:  perm_r is determined by partial pivoting, and is output.
     *
     *         o drop_tol (double) (NOT IMPLEMENTED)
     *	     Drop tolerance parameter. At step j of the Gaussian elimination,
     *           if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
     *           0 <= drop_tol <= 1. The default value of drop_tol is 0,
     *           corresponding to not dropping any entry.
     *
     *         o work (void*) of size lwork
     *           User-supplied work space and space for the output data structures.
     *           Not referenced if lwork = 0;
     *
     *         o lwork (int)
     *           Specifies the length of work array.
     *           = 0:  allocate space internally by system malloc;
     *           > 0:  use user-supplied work array of length lwork in bytes,
     *                 returns error if space runs out.
     *           = -1: the routine guesses the amount of space needed without
     *                 performing the factorization, and returns it in
     *                 superlu_memusage->total_needed; no other side effects.
     *
     * A       (input/output) SuperMatrix*
     *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
     *         A->nrow = A->ncol. Currently, the type of A can be:
     *         Stype = NC or NR, Dtype = _D, Mtype = GE. In the future,
     *         more general A will be handled.
     *
     *         On entry, If superlumt_options->fact = FACTORED and equed is not
     *         NOEQUIL, then A must have been equilibrated by the scaling factors
     *         in R and/or C.  On exit, A is not modified
     *         if superlumt_options->fact = FACTORED or DOFACT, or
     *         if superlumt_options->fact = EQUILIBRATE and equed = NOEQUIL.
     *
     *         On exit, if superlumt_options->fact = EQUILIBRATE and equed is not
     *         NOEQUIL, A is scaled as follows:
     *         If A->Stype = NC:
     *           equed = ROW:  A := diag(R) * A
     *           equed = COL:  A := A * diag(C)
     *           equed = BOTH: A := diag(R) * A * diag(C).
     *         If A->Stype = NR:
     *           equed = ROW:  transpose(A) := diag(R) * transpose(A)
     *           equed = COL:  transpose(A) := transpose(A) * diag(C)
     *           equed = BOTH: transpose(A) := diag(R) * transpose(A) * diag(C).
     *
     * perm_c  (input/output) int*
     *	   If A->Stype = NC, Column permutation vector of size A->ncol,
     *         which defines the permutation matrix Pc; perm_c[i] = j means
     *         column i of A is in position j in A*Pc.
     *         On exit, perm_c may be overwritten by the product of the input
     *         perm_c and a permutation that postorders the elimination tree
     *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
     *         is already in postorder.
     *
     *         If A->Stype = NR, column permutation vector of size A->nrow,
     *         which describes permutation of columns of tranpose(A)
     *         (rows of A) as described above.
     *
     * perm_r  (input/output) int*
     *         If A->Stype = NC, row permutation vector of size A->nrow,
     *         which defines the permutation matrix Pr, and is determined
     *         by partial pivoting.  perm_r[i] = j means row i of A is in
     *         position j in Pr*A.
     *
     *         If A->Stype = NR, permutation vector of size A->ncol, which
     *         determines permutation of rows of transpose(A)
     *         (columns of A) as described above.
     *
     *         If superlumt_options->usepr = NO, perm_r is output argument;
     *         If superlumt_options->usepr = YES, the pivoting routine will try
     *            to use the input perm_r, unless a certain threshold criterion
     *            is violated. In that case, perm_r is overwritten by a new
     *            permutation determined by partial pivoting or diagonal
     *            threshold pivoting.
     *
     * equed   (input/output) equed_t*
     *         Specifies the form of equilibration that was done.
     *         = NOEQUIL: No equilibration.
     *         = ROW:  Row equilibration, i.e., A was premultiplied by diag(R).
     *         = COL:  Column equilibration, i.e., A was postmultiplied by diag(C).
     *         = BOTH: Both row and column equilibration, i.e., A was replaced
     *                 by diag(R)*A*diag(C).
     *         If superlumt_options->fact = FACTORED, equed is an input argument,
     *         otherwise it is an output argument.
     *
     * R       (input/output) double*, dimension (A->nrow)
     *         The row scale factors for A or transpose(A).
     *         If equed = ROW or BOTH, A (if A->Stype = NC) or transpose(A)
     *            (if A->Stype = NR) is multiplied on the left by diag(R).
     *         If equed = NOEQUIL or COL, R is not accessed.
     *         If fact = FACTORED, R is an input argument; otherwise, R is output.
     *         If fact = FACTORED and equed = ROW or BOTH, each element of R must
     *            be positive.
     *
     * C       (input/output) double*, dimension (A->ncol)
     *         The column scale factors for A or transpose(A).
     *         If equed = COL or BOTH, A (if A->Stype = NC) or trnspose(A)
     *            (if A->Stype = NR) is multiplied on the right by diag(C).
     *         If equed = NOEQUIL or ROW, C is not accessed.
     *         If fact = FACTORED, C is an input argument; otherwise, C is output.
     *         If fact = FACTORED and equed = COL or BOTH, each element of C must
     *            be positive.
     *
     * L       (output) SuperMatrix*
     *	   The factor L from the factorization
     *             Pr*A*Pc=L*U              (if A->Stype = NC) or
     *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
     *         Uses compressed row subscripts storage for supernodes, i.e.,
     *         L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
     *
     * U       (output) SuperMatrix*
     *	   The factor U from the factorization
     *             Pr*A*Pc=L*U              (if A->Stype = NC) or
     *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
     *         Uses column-wise storage scheme, i.e., U has types:
     *         Stype = NCP, Dtype = _D, Mtype = TRU.
     *
     * B       (input/output) SuperMatrix*
     *         B has types: Stype = DN, Dtype = _D, Mtype = GE.
     *         On entry, the right hand side matrix.
     *         On exit,
     *            if equed = NOEQUIL, B is not modified; otherwise
     *            if A->Stype = NC:
     *               if trans = NOTRANS and equed = ROW or BOTH, B is overwritten
     *                  by diag(R)*B;
     *               if trans = TRANS or CONJ and equed = COL of BOTH, B is
     *                  overwritten by diag(C)*B;
     *            if A->Stype = NR:
     *               if trans = NOTRANS and equed = COL or BOTH, B is overwritten
     *                  by diag(C)*B;
     *               if trans = TRANS or CONJ and equed = ROW of BOTH, B is
     *                  overwritten by diag(R)*B.
     *
     * X       (output) SuperMatrix*
     *         X has types: Stype = DN, Dtype = _D, Mtype = GE.
     *         If info = 0 or info = A->ncol+1, X contains the solution matrix
     *         to the original system of equations. Note that A and B are modified
     *         on exit if equed is not NOEQUIL, and the solution to the
     *         equilibrated system is inv(diag(C))*X if trans = NOTRANS and
     *         equed = COL or BOTH, or inv(diag(R))*X if trans = TRANS or CONJ
     *         and equed = ROW or BOTH.
     *
     * recip_pivot_growth (output) float*
     *         The reciprocal pivot growth factor computed as
     *             max_j ( max_i(abs(A_ij)) / max_i(abs(U_ij)) ).
     *         If recip_pivot_growth is much less than 1, the stability of the
     *         LU factorization could be poor.
     *
     * rcond   (output) float*
     *         The estimate of the reciprocal condition number of the matrix A
     *         after equilibration (if done). If rcond is less than the machine
     *         precision (in particular, if rcond = 0), the matrix is singular
     *         to working precision. This condition is indicated by a return
     *         code of info > 0.
     *
     * ferr    (output) float*, dimension (B->ncol)
     *         The estimated forward error bound for each solution vector
     *         X(j) (the j-th column of the solution matrix X).
     *         If XTRUE is the true solution corresponding to X(j), FERR(j)
     *         is an estimated upper bound for the magnitude of the largest
     *         element in (X(j) - XTRUE) divided by the magnitude of the
     *         largest element in X(j).  The estimate is as reliable as
     *         the estimate for RCOND, and is almost always a slight
     *         overestimate of the true error.
     *
     * berr    (output) float*, dimension (B->ncol)
     *         The componentwise relative backward error of each solution
     *         vector X(j) (i.e., the smallest relative change in
     *         any element of A or B that makes X(j) an exact solution).
     *
     * superlu_memusage (output) superlu_memusage_t*
     *         Record the memory usage statistics, consisting of following fields:
     *         - for_lu (float)
     *           The amount of space used in bytes for L\U data structures.
     *         - total_needed (float)
     *           The amount of space needed in bytes to perform factorization.
     *         - expansions (int)
     *           The number of memory expansions during the LU factorization.
     *
     * info    (output) int*
     *         = 0: successful exit
     *         < 0: if info = -i, the i-th argument had an illegal value
     *         > 0: if info = i, and i is
     *              <= A->ncol: U(i,i) is exactly zero. The factorization has
     *                    been completed, but the factor U is exactly
     *                    singular, so the solution and error bounds
     *                    could not be computed.
     *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
     *                    precision, meaning that the matrix is singular to
     *                    working precision. Nevertheless, the solution and
     *                    error bounds are computed because there are a number
     *                    of situations where the computed solution can be more
     *                    accurate than the value of RCOND would suggest.
     *              > A->ncol+1: number of bytes allocated when memory allocation
     *                    failure occurred, plus A->ncol.
     *
     */

    NCformat  *Astore;
    DNformat  *Bstore, *Xstore;
    float    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, dofact, notran, rowequ;
    char      norm[1];
    trans_t   trant;
    int       i, j, info1;
    float amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       n, relax, panel_size;
    Gstat_t   Gstat;
    double    t0;      /* temporary time */
    double    *utime;
    flops_t   *ops, flopcnt;

    /* External functions */
    extern float slangs(char *, SuperMatrix *);
    extern double slamch_(char *);

    Astore = A->Store;
    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    n      = A->ncol;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    superlumt_options->perm_c = perm_c;
    superlumt_options->perm_r = perm_r;

    *info = 0;
    dofact = (superlumt_options->fact == DOFACT);
    equil = (superlumt_options->fact == EQUILIBRATE);
    notran = (superlumt_options->trans == NOTRANS);
    if (dofact || equil) {
        *equed = NOEQUIL;
        rowequ = FALSE;
        colequ = FALSE;
    } else {
        rowequ = (*equed == ROW) || (*equed == BOTH);
        colequ = (*equed == COL) || (*equed == BOTH);
        smlnum = slamch_("Safe minimum");
        bignum = 1. / smlnum;
    }

    /* ------------------------------------------------------------
       Test the input parameters.
       ------------------------------------------------------------*/
    if ( nprocs <= 0 ) *info = -1;
    else if ( (!dofact && !equil && (superlumt_options->fact != FACTORED))
              || (!notran && (superlumt_options->trans != TRANS) &&
                  (superlumt_options->trans != CONJ))
              || (superlumt_options->refact != YES &&
                  superlumt_options->refact != NO)
              || (superlumt_options->usepr != YES &&
                  superlumt_options->usepr != NO)
              || superlumt_options->lwork < -1 )
        *info = -2;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
              (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
              A->Dtype != SLU_S || A->Mtype != SLU_GE )
        *info = -3;
    else if ((superlumt_options->fact == FACTORED) &&
             !(rowequ || colequ || (*equed == NOEQUIL))) *info = -6;
    else {
        if (rowequ) {
            rcmin = bignum;
            rcmax = 0.;
            for (j = 0; j < A->nrow; ++j) {
                rcmin = SUPERLU_MIN(rcmin, R[j]);
                rcmax = SUPERLU_MAX(rcmax, R[j]);
            }
            if (rcmin <= 0.) *info = -7;
            else if ( A->nrow > 0)
                rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
            else rowcnd = 1.;
        }
        if (colequ && *info == 0) {
            rcmin = bignum;
            rcmax = 0.;
            for (j = 0; j < A->nrow; ++j) {
                rcmin = SUPERLU_MIN(rcmin, C[j]);
                rcmax = SUPERLU_MAX(rcmax, C[j]);
            }
            if (rcmin <= 0.) *info = -8;
            else if (A->nrow > 0)
                colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
            else colcnd = 1.;
        }
        if (*info == 0) {
            if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
                    B->Stype != SLU_DN || B->Dtype != SLU_S ||
                    B->Mtype != SLU_GE )
                *info = -11;
            else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
                      B->ncol != X->ncol || X->Stype != SLU_DN ||
                      X->Dtype != SLU_S || X->Mtype != SLU_GE )
                *info = -12;
        }
    }
    if (*info != 0) {
        i = -(*info);
        xerbla_("psgssvx", &i);
        return;
    }


    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables.
       ------------------------------------------------------------*/
    panel_size = superlumt_options->panel_size;
    relax = superlumt_options->relax;
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);
    utime = Gstat.utime;
    ops = Gstat.ops;

    /* ------------------------------------------------------------
       Convert A to NC format when necessary.
       ------------------------------------------------------------*/
    if ( A->Stype == SLU_NR ) {
        NRformat *Astore = A->Store;
        AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
        sCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
                               Astore->nzval, Astore->colind, Astore->rowptr,
                               SLU_NC, A->Dtype, A->Mtype);
        if ( notran ) { /* Reverse the transpose argument. */
            trant = TRANS;
            notran = 0;
        } else {
            trant = NOTRANS;
            notran = 1;
        }
    } else { /* A->Stype == NC */
        trant = superlumt_options->trans;
        AA = A;
    }

    /* ------------------------------------------------------------
       Diagonal scaling to equilibrate the matrix.
       ------------------------------------------------------------*/
    if ( equil ) {
        t0 = SuperLU_timer_();
        /* Compute row and column scalings to equilibrate the matrix A. */
        sgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);

        if ( info1 == 0 ) {
            /* Equilibrate matrix A. */
            slaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
            rowequ = (*equed == ROW) || (*equed == BOTH);
            colequ = (*equed == COL) || (*equed == BOTH);
        }
        utime[EQUIL] = SuperLU_timer_() - t0;
    }

    /* ------------------------------------------------------------
       Scale the right hand side.
       ------------------------------------------------------------*/
    if ( notran ) {
        if ( rowequ ) {
            for (j = 0; j < nrhs; ++j)
                for (i = 0; i < A->nrow; ++i) {
                    Bmat[i + j*ldb] *= R[i];
                }
        }
    } else if ( colequ ) {
        for (j = 0; j < nrhs; ++j)
            for (i = 0; i < A->nrow; ++i) {
                Bmat[i + j*ldb] *= C[i];
            }
    }


    /* ------------------------------------------------------------
       Perform the LU factorization.
       ------------------------------------------------------------*/
    if ( dofact || equil ) {

        /* Obtain column etree, the column count (colcnt_h) and supernode
        partition (part_super_h) for the Householder matrix. */
        t0 = SuperLU_timer_();
        sp_colorder(AA, perm_c, superlumt_options, &AC);
        utime[ETREE] = SuperLU_timer_() - t0;

#if ( PRNTlevel >= 2 )
        printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n",
               relax, panel_size, sp_ienv(3), sp_ienv(4));
        fflush(stdout);
#endif

        /* Compute the LU factorization of A*Pc. */
        t0 = SuperLU_timer_();
        psgstrf(superlumt_options, &AC, perm_r, L, U, &Gstat, info);
        utime[FACT] = SuperLU_timer_() - t0;

        flopcnt = 0;
        for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
        ops[FACT] = flopcnt;

        if ( superlumt_options->lwork == -1 ) {
            superlu_memusage->total_needed = *info - A->ncol;
            return;
        }
    }

    if ( *info > 0 ) {
        if ( *info <= A->ncol ) {
            /* Compute the reciprocal pivot growth factor of the leading
               rank-deficient *info columns of A. */
            *recip_pivot_growth = sPivotGrowth(*info, AA, perm_c, L, U);
        }
    } else {

        /* ------------------------------------------------------------
           Compute the reciprocal pivot growth factor *recip_pivot_growth.
           ------------------------------------------------------------*/
        *recip_pivot_growth = sPivotGrowth(A->ncol, AA, perm_c, L, U);

        /* ------------------------------------------------------------
           Estimate the reciprocal of the condition number of A.
           ------------------------------------------------------------*/
        t0 = SuperLU_timer_();
        if ( notran ) {
            *(unsigned char *)norm = '1';
        } else {
            *(unsigned char *)norm = 'I';
        }
        anorm = slangs(norm, AA);
        sgscon(norm, L, U, anorm, rcond, info);
        utime[RCOND] = SuperLU_timer_() - t0;

        /* ------------------------------------------------------------
           Compute the solution matrix X.
           ------------------------------------------------------------*/
        for (j = 0; j < nrhs; j++)    /* Save a copy of the right hand sides */
            for (i = 0; i < B->nrow; i++)
                Xmat[i + j*ldx] = Bmat[i + j*ldb];

        t0 = SuperLU_timer_();
        sgstrs(trant, L, U, perm_r, perm_c, X, &Gstat, info);
        utime[SOLVE] = SuperLU_timer_() - t0;
        ops[SOLVE] = ops[TRISOLVE];

        /* ------------------------------------------------------------
           Use iterative refinement to improve the computed solution and
           compute error bounds and backward error estimates for it.
           ------------------------------------------------------------*/
        t0 = SuperLU_timer_();
        sgsrfs(trant, AA, L, U, perm_r, perm_c, *equed,
               R, C, B, X, ferr, berr, &Gstat, info);
        utime[REFINE] = SuperLU_timer_() - t0;

        /* ------------------------------------------------------------
           Transform the solution matrix X to a solution of the original
           system.
           ------------------------------------------------------------*/
        if ( notran ) {
            if ( colequ ) {
                for (j = 0; j < nrhs; ++j)
                    for (i = 0; i < A->nrow; ++i) {
                        Xmat[i + j*ldx] *= C[i];
                    }
            }
        } else if ( rowequ ) {
            for (j = 0; j < nrhs; ++j)
                for (i = 0; i < A->nrow; ++i) {
                    Xmat[i + j*ldx] *= R[i];
                }
        }

        /* Set INFO = A->ncol+1 if the matrix is singular to
           working precision.*/
        if ( *rcond < slamch_("E") ) *info = A->ncol + 1;

    }

    superlu_sQuerySpace(nprocs, L, U, panel_size, superlu_memusage);

    /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    if ( superlumt_options->refact == NO ) {
        SUPERLU_FREE(superlumt_options->etree);
        SUPERLU_FREE(superlumt_options->colcnt_h);
        SUPERLU_FREE(superlumt_options->part_super_h);
    }
    if ( dofact || equil ) {
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
        Destroy_SuperMatrix_Store(AA);
        SUPERLU_FREE(AA);
    }

    /* ------------------------------------------------------------
       Print timings, then deallocate statistic variables.
       ------------------------------------------------------------*/
#ifdef PROFILE
    {
        SCPformat *Lstore = (SCPformat *) L->Store;
        ParallelProfile(n, Lstore->nsuper+1, Gstat.num_panels, nprocs, &Gstat);
    }
#endif
    PrintStat(&Gstat);
    StatFree(&Gstat);
}
Пример #15
0
/* Here is a driver inspired by A. Sheffer's "cow flattener". */
static NLboolean __nlFactorize_SUPERLU(__NLContext *context, NLint *permutation) {

	/* OpenNL Context */
	__NLSparseMatrix* M = (context->least_squares)? &context->MtM: &context->M;
	NLuint n = context->n;
	NLuint nnz = __nlSparseMatrixNNZ(M); /* number of non-zero coeffs */

	/* Compressed Row Storage matrix representation */
	NLint	*xa		= __NL_NEW_ARRAY(NLint, n+1);
	NLfloat	*rhs	= __NL_NEW_ARRAY(NLfloat, n);
	NLfloat	*a		= __NL_NEW_ARRAY(NLfloat, nnz);
	NLint	*asub	= __NL_NEW_ARRAY(NLint, nnz);
	NLint	*etree	= __NL_NEW_ARRAY(NLint, n);

	/* SuperLU variables */
	SuperMatrix At, AtP;
	NLint info, panel_size, relax;
	superlu_options_t options;

	/* Temporary variables */
	NLuint i, jj, count;
	
	__nl_assert(!(M->storage & __NL_SYMMETRIC));
	__nl_assert(M->storage & __NL_ROWS);
	__nl_assert(M->m == M->n);
	
	/* Convert M to compressed column format */
	for(i=0, count=0; i<n; i++) {
		__NLRowColumn *Ri = M->row + i;
		xa[i] = count;

		for(jj=0; jj<Ri->size; jj++, count++) {
			a[count] = Ri->coeff[jj].value;
			asub[count] = Ri->coeff[jj].index;
		}
	}
	xa[n] = nnz;

	/* Free M, don't need it anymore at this point */
	__nlSparseMatrixClear(M);

	/* Create superlu A matrix transposed */
	sCreate_CompCol_Matrix(
		&At, n, n, nnz, a, asub, xa, 
		SLU_NC,		/* Colum wise, no supernode */
		SLU_S,		/* floats */ 
		SLU_GE		/* general storage */
	);

	/* Set superlu options */
	set_default_options(&options);
	options.ColPerm = MY_PERMC;
	options.Fact = DOFACT;

	StatInit(&(context->slu.stat));

	panel_size = sp_ienv(1); /* sp_ienv give us the defaults */
	relax = sp_ienv(2);

	/* Compute permutation and permuted matrix */
	context->slu.perm_r = __NL_NEW_ARRAY(NLint, n);
	context->slu.perm_c = __NL_NEW_ARRAY(NLint, n);

	if ((permutation == NULL) || (*permutation == -1)) {
		get_perm_c(3, &At, context->slu.perm_c);

		if (permutation)
			memcpy(permutation, context->slu.perm_c, sizeof(NLint)*n);
	}
	else
		memcpy(context->slu.perm_c, permutation, sizeof(NLint)*n);

	sp_preorder(&options, &At, context->slu.perm_c, etree, &AtP);

	/* Decompose into L and U */
	sgstrf(&options, &AtP, relax, panel_size,
		etree, NULL, 0, context->slu.perm_c, context->slu.perm_r,
		&(context->slu.L), &(context->slu.U), &(context->slu.stat), &info);

	/* Cleanup */

	Destroy_SuperMatrix_Store(&At);
	Destroy_CompCol_Permuted(&AtP);

	__NL_DELETE_ARRAY(etree);
	__NL_DELETE_ARRAY(xa);
	__NL_DELETE_ARRAY(rhs);
	__NL_DELETE_ARRAY(a);
	__NL_DELETE_ARRAY(asub);

	context->slu.alloc_slu = NL_TRUE;

	return (info == 0);
}
Пример #16
0
void
sgstrf (superlu_options_t *options, SuperMatrix *A,
        int relax, int panel_size, int *etree, void *work, int lwork,
        int *perm_c, int *perm_r, SuperMatrix *L, SuperMatrix *U,
    	GlobalLU_t *Glu, /* persistent to facilitate multiple factorizations */
        SuperLUStat_t *stat, int *info)
{
    /* Local working arrays */
    NCPformat *Astore;
    int       *iperm_r = NULL; /* inverse of perm_r; used when 
                                  options->Fact == SamePattern_SameRowPerm */
    int       *iperm_c; /* inverse of perm_c */
    int       *iwork;
    float    *swork;
    int	      *segrep, *repfnz, *parent, *xplore;
    int	      *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
    int	      *xprune;
    int	      *marker;
    float    *dense, *tempv;
    int       *relax_end;
    float    *a;
    int       *asub;
    int       *xa_begin, *xa_end;
    int       *xsup, *supno;
    int       *xlsub, *xlusup, *xusub;
    int       nzlumax;
    float fill_ratio = sp_ienv(6);  /* estimated fill ratio */

    /* Local scalars */
    fact_t    fact = options->Fact;
    double    diag_pivot_thresh = options->DiagPivotThresh;
    int       pivrow;   /* pivotal row number in the original matrix A */
    int       nseg1;	/* no of segments in U-column above panel row jcol */
    int       nseg;	/* no of segments in each U-column */
    register int jcol;	
    register int kcol;	/* end column of a relaxed snode */
    register int icol;
    register int i, k, jj, new_next, iinfo;
    int       m, n, min_mn, jsupno, fsupc, nextlu, nextu;
    int       w_def;	/* upper bound on panel width */
    int       usepr, iperm_r_allocated = 0;
    int       nnzL, nnzU;
    int       *panel_histo = stat->panel_histo;
    flops_t   *ops = stat->ops;

    iinfo    = 0;
    m        = A->nrow;
    n        = A->ncol;
    min_mn   = SUPERLU_MIN(m, n);
    Astore   = A->Store;
    a        = Astore->nzval;
    asub     = Astore->rowind;
    xa_begin = Astore->colbeg;
    xa_end   = Astore->colend;

    /* Allocate storage common to the factor routines */
    *info = sLUMemInit(fact, work, lwork, m, n, Astore->nnz,
                       panel_size, fill_ratio, L, U, Glu, &iwork, &swork);
    if ( *info ) return;
    
    xsup    = Glu->xsup;
    supno   = Glu->supno;
    xlsub   = Glu->xlsub;
    xlusup  = Glu->xlusup;
    xusub   = Glu->xusub;
    
    SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
	     &repfnz, &panel_lsub, &xprune, &marker);
    sSetRWork(m, panel_size, swork, &dense, &tempv);
    
    usepr = (fact == SamePattern_SameRowPerm);
    if ( usepr ) {
	/* Compute the inverse of perm_r */
	iperm_r = (int *) intMalloc(m);
	for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
	iperm_r_allocated = 1;
    }
    iperm_c = (int *) intMalloc(n);
    for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;

    /* Identify relaxed snodes */
    relax_end = (int *) intMalloc(n);
    if ( options->SymmetricMode == YES ) {
        heap_relax_snode(n, etree, relax, marker, relax_end); 
    } else {
        relax_snode(n, etree, relax, marker, relax_end); 
    }
    
    ifill (perm_r, m, EMPTY);
    ifill (marker, m * NO_MARKER, EMPTY);
    supno[0] = -1;
    xsup[0]  = xlsub[0] = xusub[0] = xlusup[0] = 0;
    w_def    = panel_size;

    /* 
     * Work on one "panel" at a time. A panel is one of the following: 
     *	   (a) a relaxed supernode at the bottom of the etree, or
     *	   (b) panel_size contiguous columns, defined by the user
     */
    for (jcol = 0; jcol < min_mn; ) {

	if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
   	    kcol = relax_end[jcol];	  /* end of the relaxed snode */
	    panel_histo[kcol-jcol+1]++;

	    /* --------------------------------------
	     * Factorize the relaxed supernode(jcol:kcol) 
	     * -------------------------------------- */
	    /* Determine the union of the row structure of the snode */
	    if ( (*info = ssnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
				    xprune, marker, Glu)) != 0 )
		return;

            nextu    = xusub[jcol];
	    nextlu   = xlusup[jcol];
	    jsupno   = supno[jcol];
	    fsupc    = xsup[jsupno];
	    new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
	    nzlumax = Glu->nzlumax;
	    while ( new_next > nzlumax ) {
		if ( (*info = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, Glu)) )
		    return;
	    }
    
	    for (icol = jcol; icol<= kcol; icol++) {
		xusub[icol+1] = nextu;
		
    		/* Scatter into SPA dense[*] */
    		for (k = xa_begin[icol]; k < xa_end[icol]; k++)
        	    dense[asub[k]] = a[k];

	       	/* Numeric update within the snode */
	        ssnode_bmod(icol, jsupno, fsupc, dense, tempv, Glu, stat);

		if ( (*info = spivotL(icol, diag_pivot_thresh, &usepr, perm_r,
				      iperm_r, iperm_c, &pivrow, Glu, stat)) )
		    if ( iinfo == 0 ) iinfo = *info;
		
#ifdef DEBUG
		sprint_lu_col("[1]: ", icol, pivrow, xprune, Glu);
#endif

	    }

	    jcol = icol;

	} else { /* Work on one panel of panel_size columns */
	    
	    /* Adjust panel_size so that a panel won't overlap with the next 
	     * relaxed snode.
	     */
	    panel_size = w_def;
	    for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++) 
		if ( relax_end[k] != EMPTY ) {
		    panel_size = k - jcol;
		    break;
		}
	    if ( k == min_mn ) panel_size = min_mn - jcol;
	    panel_histo[panel_size]++;

	    /* symbolic factor on a panel of columns */
	    spanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
		      dense, panel_lsub, segrep, repfnz, xprune,
		      marker, parent, xplore, Glu);
	    
	    /* numeric sup-panel updates in topological order */
	    spanel_bmod(m, panel_size, jcol, nseg1, dense,
		        tempv, segrep, repfnz, Glu, stat);
	    
	    /* Sparse LU within the panel, and below panel diagonal */
    	    for ( jj = jcol; jj < jcol + panel_size; jj++) {
 		k = (jj - jcol) * m; /* column index for w-wide arrays */

		nseg = nseg1;	/* Begin after all the panel segments */

	    	if ((*info = scolumn_dfs(m, jj, perm_r, &nseg, &panel_lsub[k],
					segrep, &repfnz[k], xprune, marker,
					parent, xplore, Glu)) != 0) return;

	      	/* Numeric updates */
	    	if ((*info = scolumn_bmod(jj, (nseg - nseg1), &dense[k],
					 tempv, &segrep[nseg1], &repfnz[k],
					 jcol, Glu, stat)) != 0) return;
		
	        /* Copy the U-segments to ucol[*] */
		if ((*info = scopy_to_ucol(jj, nseg, segrep, &repfnz[k],
					  perm_r, &dense[k], Glu)) != 0)
		    return;

	    	if ( (*info = spivotL(jj, diag_pivot_thresh, &usepr, perm_r,
				      iperm_r, iperm_c, &pivrow, Glu, stat)) )
		    if ( iinfo == 0 ) iinfo = *info;

		/* Prune columns (0:jj-1) using column jj */
	    	spruneL(jj, perm_r, pivrow, nseg, segrep,
                        &repfnz[k], xprune, Glu);

		/* Reset repfnz[] for this column */
	    	resetrep_col (nseg, segrep, &repfnz[k]);
		
#ifdef DEBUG
		sprint_lu_col("[2]: ", jj, pivrow, xprune, Glu);
#endif

	    }

   	    jcol += panel_size;	/* Move to the next panel */

	} /* else */

    } /* for */

    *info = iinfo;
    
    if ( m > n ) {
	k = 0;
        for (i = 0; i < m; ++i) 
            if ( perm_r[i] == EMPTY ) {
    		perm_r[i] = n + k;
		++k;
	    }
    }

    countnz(min_mn, xprune, &nnzL, &nnzU, Glu);
    fixupL(min_mn, perm_r, Glu);

    sLUWorkFree(iwork, swork, Glu); /* Free work space and compress storage */

    if ( fact == SamePattern_SameRowPerm ) {
        /* L and U structures may have changed due to possibly different
	   pivoting, even though the storage is available.
	   There could also be memory expansions, so the array locations
           may have changed, */
        ((SCformat *)L->Store)->nnz = nnzL;
	((SCformat *)L->Store)->nsuper = Glu->supno[n];
	((SCformat *)L->Store)->nzval = Glu->lusup;
	((SCformat *)L->Store)->nzval_colptr = Glu->xlusup;
	((SCformat *)L->Store)->rowind = Glu->lsub;
	((SCformat *)L->Store)->rowind_colptr = Glu->xlsub;
	((NCformat *)U->Store)->nnz = nnzU;
	((NCformat *)U->Store)->nzval = Glu->ucol;
	((NCformat *)U->Store)->rowind = Glu->usub;
	((NCformat *)U->Store)->colptr = Glu->xusub;
    } else {
        sCreate_SuperNode_Matrix(L, A->nrow, min_mn, nnzL, Glu->lusup, 
	                         Glu->xlusup, Glu->lsub, Glu->xlsub, Glu->supno,
			         Glu->xsup, SLU_SC, SLU_S, SLU_TRLU);
    	sCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU, Glu->ucol, 
			       Glu->usub, Glu->xusub, SLU_NC, SLU_S, SLU_TRU);
    }
    
    ops[FACT] += ops[TRSV] + ops[GEMV];	
    stat->expansions = --(Glu->num_expansions);
    
    if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
    SUPERLU_FREE (iperm_c);
    SUPERLU_FREE (relax_end);

}
Пример #17
0
int main ( int argc, char *argv[] )

/******************************************************************************/
/*
  Purpose:

    MAIN is the main program for PSLINSOL.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    10 February 2014

  Author:

    Xiaoye Li
*/
{
  SuperMatrix   A;
  NCformat *Astore;
  float   *a;
  int      *asub, *xa;
  int      *perm_r; /* row permutations from partial pivoting */
  int      *perm_c; /* column permutation vector */
  SuperMatrix   L;       /* factor L */
  SCPformat *Lstore;
  SuperMatrix   U;       /* factor U */
  NCPformat *Ustore;
  SuperMatrix   B;
  int      nrhs, ldx, info, m, n, nnz, b;
  int      nprocs; /* maximum number of processors to use. */
  int      panel_size, relax, maxsup;
  int      permc_spec;
  trans_t  trans;
  float   *xact, *rhs;
  superlu_memusage_t   superlu_memusage;
  void   parse_command_line();

  timestamp ( );
  printf ( "\n" );
  printf ( "PSLINSOL:\n" );
  printf ( "  C/OpenMP version\n" );
  printf ( "  Call the OpenMP version of SuperLU to solve a linear system.\n" );

  nrhs              = 1;
  trans             = NOTRANS;
  nprocs             = 1;
  n                 = 1000;
  b                 = 1;
  panel_size        = sp_ienv(1);
  relax             = sp_ienv(2);
  maxsup            = sp_ienv(3);
/*
  Check for any commandline input.
*/  
  parse_command_line ( argc, argv, &nprocs, &n, &b, &panel_size, 
    &relax, &maxsup );

#if ( PRNTlevel>=1 || DEBUGlevel>=1 )
    cpp_defs();
#endif

#define HB
#if defined( DEN )
    m = n;
    nnz = n * n;
    sband(n, n, nnz, &a, &asub, &xa);
#elif defined( BAND )
    m = n;
    nnz = (2*b+1) * n;
    sband(n, b, nnz, &a, &asub, &xa);
#elif defined( BD )
    nb = 5;
    bs = 200;
    m = n = bs * nb;
    nnz = bs * bs * nb;
    sblockdiag(nb, bs, nnz, &a, &asub, &xa);
#elif defined( HB )
    sreadhb(&m, &n, &nnz, &a, &asub, &xa);
#else    
    sreadmt(&m, &n, &nnz, &a, &asub, &xa);
#endif

    sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if (!(rhs = floatMalloc(m * nrhs))) SUPERLU_ABORT("Malloc fails for rhs[].");
    sCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    ldx = n;
    sGenXtrue(n, nrhs, xact, ldx);
    sFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if (!(perm_r = intMalloc(m))) SUPERLU_ABORT("Malloc fails for perm_r[].");
    if (!(perm_c = intMalloc(n))) SUPERLU_ABORT("Malloc fails for perm_c[].");

    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = 0: natural ordering 
     *   permc_spec = 1: minimum degree ordering on structure of A'*A
     *   permc_spec = 2: minimum degree ordering on structure of A'+A
     *   permc_spec = 3: approximate minimum degree for unsymmetric matrices
     */    	
    permc_spec = 1;
    get_perm_c(permc_spec, &A, perm_c);

    psgssv(nprocs, &A, perm_c, perm_r, &L, &U, &B, &info);
    
    if ( info == 0 ) {
	sinf_norm_error(nrhs, &B, xact); /* Inf. norm of the error */

	Lstore = (SCPformat *) L.Store;
	Ustore = (NCPformat *) U.Store;
    	printf("#NZ in factor L = %d\n", Lstore->nnz);
    	printf("#NZ in factor U = %d\n", Ustore->nnz);
    	printf("#NZ in L+U = %d\n", Lstore->nnz + Ustore->nnz - L.ncol);
	
	superlu_sQuerySpace(nprocs, &L, &U, panel_size, &superlu_memusage);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	       superlu_memusage.for_lu/1024/1024, 
	       superlu_memusage.total_needed/1024/1024,
	       superlu_memusage.expansions);

    }

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_SCP(&L);
    Destroy_CompCol_NCP(&U);
/*
  Terminate.
*/
  printf ( "\n" );
  printf ( "PSLINSOL:\n" );
  printf ( "  Normal end of execution.\n" );
  printf ( "\n" );
  timestamp ( );

  return 0;
}
Пример #18
0
int main(int argc, char *argv[])
{
    void smatvec_mult(float alpha, float x[], float beta, float y[]);
    void spsolve(int n, float x[], float y[]);
    extern int sfgmr( int n,
	void (*matvec_mult)(float, float [], float, float []),
	void (*psolve)(int n, float [], float[]),
	float *rhs, float *sol, double tol, int restrt, int *itmax,
	FILE *fits);
    extern int sfill_diag(int n, NCformat *Astore);

    char     equed[1] = {'B'};
    yes_no_t equil;
    trans_t  trans;
    SuperMatrix A, L, U;
    SuperMatrix B, X;
    NCformat *Astore;
    NCformat *Ustore;
    SCformat *Lstore;
    GlobalLU_t	   Glu; /* facilitate multiple factorizations with 
                           SamePattern_SameRowPerm                  */
    float   *a;
    int      *asub, *xa;
    int      *etree;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    int      nrhs, ldx, lwork, info, m, n, nnz;
    float   *rhsb, *rhsx, *xact;
    float   *work = NULL;
    float   *R, *C;
    float   u, rpg, rcond;
    float zero = 0.0;
    float one = 1.0;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    FILE 	  *fp = stdin;

    int restrt, iter, maxit, i;
    double resid;
    float *x, *b;

#ifdef DEBUG
    extern int num_drop_L, num_drop_U;
#endif

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
	options.Equil = YES;
	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 0.1; //different from complete LU
	options.Trans = NOTRANS;
	options.IterRefine = NOREFINE;
	options.SymmetricMode = NO;
	options.PivotGrowth = NO;
	options.ConditionNumber = NO;
	options.PrintStat = YES;
	options.RowPerm = LargeDiag;
	options.ILU_DropTol = 1e-4;
	options.ILU_FillTol = 1e-2;
	options.ILU_FillFactor = 10.0;
	options.ILU_DropRule = DROP_BASIC | DROP_AREA;
	options.ILU_Norm = INF_NORM;
	options.ILU_MILU = SILU;
     */
    ilu_set_default_options(&options);

    /* Modify the defaults. */
    options.PivotGrowth = YES;	  /* Compute reciprocal pivot growth */
    options.ConditionNumber = YES;/* Compute reciprocal condition number */

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) ABORT("Malloc fails for work[].");
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    if (argc < 2)
    {
	printf("Usage:\n%s [OPTION] < [INPUT] > [OUTPUT]\nOPTION:\n"
		"-h -hb:\n\t[INPUT] is a Harwell-Boeing format matrix.\n"
		"-r -rb:\n\t[INPUT] is a Rutherford-Boeing format matrix.\n"
		"-t -triplet:\n\t[INPUT] is a triplet format matrix.\n",
		argv[0]);
	return 0;
    }
    else
    {
	switch (argv[1][1])
	{
	    case 'H':
	    case 'h':
		printf("Input a Harwell-Boeing format matrix:\n");
		sreadhb(fp, &m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'R':
	    case 'r':
		printf("Input a Rutherford-Boeing format matrix:\n");
		sreadrb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'T':
	    case 't':
		printf("Input a triplet format matrix:\n");
		sreadtriple(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    default:
		printf("Unrecognized format.\n");
		return 0;
	}
    }

    sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa,
                                SLU_NC, SLU_S, SLU_GE);
    Astore = A.Store;
    sfill_diag(n, Astore);
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    fflush(stdout);

    /* Generate the right-hand side */
    if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    ldx = n;
    sGenXtrue(n, nrhs, xact, ldx);
    sFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) )
	ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
	ABORT("SUPERLU_MALLOC fails for C[].");

    info = 0;
#ifdef DEBUG
    num_drop_L = 0;
    num_drop_U = 0;
#endif

    /* Initialize the statistics variables. */
    StatInit(&stat);

    /* Compute the incomplete factorization and compute the condition number
       and pivot growth using dgsisx. */
    B.ncol = 0;  /* not to perform triangular solution */
    sgsisx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work,
	   lwork, &B, &X, &rpg, &rcond, &Glu, &mem_usage, &stat, &info);

    /* Set RHS for GMRES. */
    if (!(b = floatMalloc(m))) ABORT("Malloc fails for b[].");
    if (*equed == 'R' || *equed == 'B') {
	for (i = 0; i < n; ++i) b[i] = rhsb[i] * R[i];
    } else {
	for (i = 0; i < m; i++) b[i] = rhsb[i];
    }

    printf("sgsisx(): info %d, equed %c\n", info, equed[0]);
    if (info > 0 || rcond < 1e-8 || rpg > 1e8)
	printf("WARNING: This preconditioner might be unstable.\n");

    if ( info == 0 || info == n+1 ) {
	if ( options.PivotGrowth == YES )
	    printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber == YES )
	    printf("Recip. condition number = %e\n", rcond);
    } else if ( info > 0 && lwork == -1 ) {
	printf("** Estimated memory: %d bytes\n", info - n);
    }

    Lstore = (SCformat *) L.Store;
    Ustore = (NCformat *) U.Store;
    printf("n(A) = %d, nnz(A) = %d\n", n, Astore->nnz);
    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    printf("Fill ratio: nnz(F)/nnz(A) = %.3f\n",
	    ((double)(Lstore->nnz) + (double)(Ustore->nnz) - (double)n)
	    / (double)Astore->nnz);
    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
    fflush(stdout);

    /* Set the global variables. */
    GLOBAL_A = &A;
    GLOBAL_L = &L;
    GLOBAL_U = &U;
    GLOBAL_STAT = &stat;
    GLOBAL_PERM_C = perm_c;
    GLOBAL_PERM_R = perm_r;
    GLOBAL_OPTIONS = &options;
    GLOBAL_R = R;
    GLOBAL_C = C;
    GLOBAL_MEM_USAGE = &mem_usage;

    /* Set the options to do solve-only. */
    options.Fact = FACTORED;
    options.PivotGrowth = NO;
    options.ConditionNumber = NO;

    /* Set the variables used by GMRES. */
    restrt = SUPERLU_MIN(n / 3 + 1, 50);
    maxit = 1000;
    iter = maxit;
    resid = 1e-8;
    if (!(x = floatMalloc(n))) ABORT("Malloc fails for x[].");

    if (info <= n + 1)
    {
	int i_1 = 1;
	double maxferr = 0.0, nrmA, nrmB, res, t;
        float temp;
	extern float snrm2_(int *, float [], int *);
	extern void saxpy_(int *, float *, float [], int *, float [], int *);

	/* Initial guess */
	for (i = 0; i < n; i++) x[i] = zero;

	t = SuperLU_timer_();

	/* Call GMRES */
	sfgmr(n, smatvec_mult, spsolve, b, x, resid, restrt, &iter, stdout);

	t = SuperLU_timer_() - t;

	/* Output the result. */
	nrmA = snrm2_(&(Astore->nnz), (float *)((DNformat *)A.Store)->nzval,
		&i_1);
	nrmB = snrm2_(&m, b, &i_1);
	sp_sgemv("N", -1.0, &A, x, 1, 1.0, b, 1);
	res = snrm2_(&m, b, &i_1);
	resid = res / nrmB;
	printf("||A||_F = %.1e, ||B||_2 = %.1e, ||B-A*X||_2 = %.1e, "
		"relres = %.1e\n", nrmA, nrmB, res, resid);

	if (iter >= maxit)
	{
	    if (resid >= 1.0) iter = -180;
	    else if (resid > 1e-8) iter = -111;
	}
	printf("iteration: %d\nresidual: %.1e\nGMRES time: %.2f seconds.\n",
		iter, resid, t);

	/* Scale the solution back if equilibration was performed. */
	if (*equed == 'C' || *equed == 'B') 
	    for (i = 0; i < n; i++) x[i] *= C[i];

	for (i = 0; i < m; i++) {
	    maxferr = SUPERLU_MAX(maxferr, fabs(x[i] - xact[i]));
        }
	printf("||X-X_true||_oo = %.1e\n", maxferr);
    }
#ifdef DEBUG
    printf("%d entries in L and %d entries in U dropped.\n",
	    num_drop_L, num_drop_U);
#endif
    fflush(stdout);

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork >= 0 ) {
	Destroy_SuperNode_Matrix(&L);
	Destroy_CompCol_Matrix(&U);
    }
    SUPERLU_FREE(b);
    SUPERLU_FREE(x);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif

    return 0;
}
Пример #19
0
int main ( int argc, char *argv[] )

/**********************************************************************/
/*
  Purpose:

    SUPER_LU_S2 solves a symmetric sparse system read from a file.

  Discussion:

    The sparse matrix is stored in a file using the Harwell-Boeing
    sparse matrix format.  The file should be assigned to the standard
    input of this program.  For instance, if the matrix is stored
    in the file "g10_rua.txt", the execution command might be:

      super_lu_s2 < g10_rua.txt

  Modified:

    25 April 2004

  Reference:

    James Demmel, John Gilbert, Xiaoye Li,
    SuperLU Users's Guide,
    Sections 1 and 2.

  Local parameters:

    SuperMatrix L, the computed L factor.

    int *perm_c, the column permutation vector.

    int *perm_r, the row permutations from partial pivoting.

    SuperMatrix U, the computed U factor.
*/
{
  SuperMatrix A;
  NCformat *Astore;
  float *a;
  int *asub;
  SuperMatrix B;
  int info;
  SuperMatrix L;
  int ldx;
  SCformat *Lstore;
  int m;
  mem_usage_t mem_usage;
  int n;
  int nnz;
  int nrhs;
  superlu_options_t options;
  int *perm_c;
  int *perm_r;
  float *rhs;
  float *sol;
  SuperLUStat_t stat;
  SuperMatrix U;
  NCformat *Ustore;
  int *xa;
  float *xact;
/*
  Say hello.
*/
  printf ( "\n" );
  printf ( "SUPER_LU_S2:\n" );
  printf ( "  Read a symmetric sparse matrix A from standard input,\n");
  printf ( "  stored in Harwell-Boeing Sparse Matrix format.\n" );
  printf ( "\n" );
  printf ( "  Solve a linear system A * X = B.\n" );
/* 
  Set the default input options:
  options.Fact = DOFACT;
  options.Equil = YES;
  options.ColPerm = COLAMD;
  options.DiagPivotThresh = 1.0;
  options.Trans = NOTRANS;
  options.IterRefine = NOREFINE;
  options.SymmetricMode = NO;
  options.PivotGrowth = NO;
  options.ConditionNumber = NO;
  options.PrintStat = YES;
*/
  set_default_options ( &options );
/* 
  Now we modify the default options to use the symmetric mode. 
*/
  options.SymmetricMode = YES;
  options.ColPerm = MMD_AT_PLUS_A;
  options.DiagPivotThresh = 0.001;
/* 
  Read the matrix in Harwell-Boeing format. 
*/
  sreadhb ( &m, &n, &nnz, &a, &asub, &xa );
/*
  Create storage for a compressed column matrix.
*/
  sCreate_CompCol_Matrix ( &A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE );
  Astore = A.Store;

  printf ( "\n" );
  printf ( "  Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz );
/*
  Set up the right hand side.
*/  
  nrhs = 1;
  rhs = floatMalloc ( m * nrhs );
  if ( !rhs ) 
  {
    ABORT ( " Malloc fails for rhs[]." );
  }

  sCreate_Dense_Matrix ( &B, m, nrhs, rhs, m, SLU_DN, SLU_S, SLU_GE );
  xact = floatMalloc ( n * nrhs );
  if ( !xact ) 
  {
    ABORT ( " Malloc fails for rhs[]." );
  }
  ldx = n;
  sGenXtrue ( n, nrhs, xact, ldx );
  sFillRHS ( options.Trans, nrhs, xact, ldx, &A, &B );

  perm_c = intMalloc ( n );
  if ( !perm_c ) 
  {
    ABORT ( "Malloc fails for perm_c[]." );
  }

  perm_r = intMalloc ( m );
  if ( !perm_r )
  {
    ABORT ( "Malloc fails for perm_r[]." );
  }
/* 
  Initialize the statistics variables. 
*/
  StatInit ( &stat );
/*
  Call SGSSV to factor the matrix and solve the linear system.
*/
  sgssv ( &options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info );
    
  if ( info == 0 )
  {
/* 
  To conveniently access the solution matrix, you need to get a pointer to it. 
*/
    sol = (float*) ((DNformat*) B.Store)->nzval; 

/* 
  Compute the infinity norm of the error. 
*/
    sinf_norm_error ( nrhs, &B, xact );

    Lstore = (SCformat *) L.Store;
    Ustore = (NCformat *) U.Store;

    printf ( "\n" );
    printf ( "  Number of nonzeros in factor L = %d\n", Lstore->nnz );
    printf ( "  Number of nonzeros in factor U = %d\n", Ustore->nnz );
    printf ( "  Number of nonzeros in L+U = %d\n", 
      Lstore->nnz + Ustore->nnz - n );
	
    sQuerySpace ( &L, &U, &mem_usage );

    printf ( "\n" );
    printf ( "  L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
      mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
      mem_usage.expansions);
  } 
  else
  {
    printf ( "\n" );
    printf ( "  SGSSV error returns INFO= %d\n", info );

    if ( info <= n ) 
    {
      sQuerySpace ( &L, &U, &mem_usage );

      printf ( "\n" );
      printf ("  L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
        mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
        mem_usage.expansions );
    }
  }

  if ( options.PrintStat ) 
  {
    StatPrint ( &stat );
  }
  StatFree ( &stat );
/*
  Free the memory.
*/
  SUPERLU_FREE ( rhs );
  SUPERLU_FREE ( xact );
  SUPERLU_FREE ( perm_r );
  SUPERLU_FREE ( perm_c );
  Destroy_CompCol_Matrix ( &A );
  Destroy_SuperMatrix_Store ( &B );
  Destroy_SuperNode_Matrix ( &L );
  Destroy_CompCol_Matrix ( &U );
/*
  Say goodbye.
*/
  printf ( "\n" );
  printf ( "SUPER_LU_S2:\n" );
  printf ( "  Normal end of execution.\n");

  return 0;
}