Пример #1
0
static int
lrun(lua_State *L) {
	check_schedule(L);
	int threads = schedule_threads(S);
	struct worker w[threads];
	struct thread t[threads];
	struct workshop ws;
	ws.threads = threads;
	ws.w = w;
	int i;
	for (i=0;i<threads;i++) {
		w[i].id = i;
		w[i].suspend = 0;
		w[i].workshop = &ws;
		thread_event_create(&w[i].event);
		t[i].func = worker_func;
		t[i].ud = &w[i];
	}
	thread_join(t,threads);
	for (i=0;i<threads;i++) {
		thread_event_release(&w[i].event);
	}
	return 0;
}
Пример #2
0
//////////////////////////////////
// Main entry function of the GPU cache model
//////////////////////////////////
int main(int argc, char** argv) {
    srand(time(0));
    std::cout << SPLIT_STRING << std::endl;
    message("");

    // Flush messages as soon as possible
    std::cout.setf(std::ios_base::unitbuf);

    // Read the hardware settings from file
    Settings hardware = get_settings();

    // Print cache statistics
    message("Cache configuration:");
    std::cout << "### \t Cache size: ~" << hardware.cache_bytes/1024 << "KB" << std::endl;
    std::cout << "### \t Line size: " << hardware.line_size << " bytes" << std::endl;
    std::cout << "### \t Layout: " << hardware.cache_ways << " ways, " << hardware.cache_sets << " sets" << std::endl;
    message("");

    // Parse the input argument and make sure that there is only one
    if (argc != 3) {
        message("Error: provide one argument only (a folder containing input trace files)");
        message("");
        std::cout << SPLIT_STRING << std::endl;
        exit(1);
    }
    std::string benchname = argv[1];
    std::string suitename = argv[2];

    // Loop over all found traces in the folder (one trace per kernel)
    for (unsigned kernel_id = 0; kernel_id < 20; kernel_id++) {
        std::vector<Thread> threads(MAX_THREADS);
        for (unsigned t=0; t<MAX_THREADS; t++) {
            threads[t] = Thread();
        }

        // Set the kernelname and include a counter
        std::string kernelname;
        if (kernel_id < 10) {
            kernelname = benchname+"_0"+std::to_string(kernel_id);
        }
        else {
            kernelname = benchname+"_" +std::to_string(kernel_id);
        }

        // Load a memory access trace from a file
        Dim3 blockdim = read_file(threads, kernelname, benchname, suitename);
        unsigned blocksize = blockdim.x*blockdim.y*blockdim.z;

        // There was not a single trace that could be found - exit with an error
        if (blocksize == 0 && kernel_id == 0) {
            std::cout << "### Error: could not read file 'output/" << benchname << "/" << kernelname << ".trc'" << std::endl;
            message("");
            std::cout << SPLIT_STRING << std::endl;
            exit(1);
        }

        // The final tracefile is already processed, exit the loop
        if (blocksize == 0) {
            break;
        }

        // Assign threads to warps, threadblocks and GPU cores
        message("");
        std::cout << "### Assigning threads to warps/blocks/cores...";
        unsigned num_blocks = ceil(threads.size()/(float)(blocksize));
        unsigned num_warps_per_block = ceil(blocksize/(float)(hardware.warp_size));
        std::vector<std::vector<unsigned>> warps(num_warps_per_block*num_blocks);
        std::vector<std::vector<unsigned>> blocks(num_blocks);
        std::vector<std::vector<unsigned>> cores(hardware.num_cores);
        schedule_threads(threads, warps, blocks, cores, hardware, blocksize);
        std::cout << "done" << std::endl;

        // Model only a single core, modelling multiple cores requires a loop over 'cid'
        unsigned cid = 0;

        // Compute the number of active blocks on this core
        unsigned hardware_max_active_blocks = std::min(hardware.max_active_threads/blocksize, hardware.max_active_blocks);
        unsigned active_blocks = std::min((unsigned)cores[cid].size(), hardware_max_active_blocks);

        // Start the computation of the reuse distance profile
        message("");
        std::cout << "### [core " << cid << "]:" << std::endl;
        std::cout << "### Running " << active_blocks << " block(s) at a time" << std::endl;
        std::cout << "### Calculating the reuse distances";

        // Create a Gaussian distribution to model memory latencies
        std::random_device random;
        std::mt19937 gen(random());

        // Compute the reuse distance for 4 different cases
        std::vector<map_type<unsigned,unsigned>> distances(NUM_CASES);
        for (unsigned runs = 0; runs < NUM_CASES; runs++) {
            std::cout << "...";
            unsigned sets, ways;
            unsigned ml, ms, nml;
            unsigned mshr;

            // CASE 0 | Normal - full model
            sets = hardware.cache_sets;
            ways = hardware.cache_ways;
            ml = hardware.mem_latency;
            ms = hardware.mem_latency_stddev;
            nml = NON_MEM_LATENCY;
            mshr = hardware.num_mshr;

            // CASE 1 | Only 1 set: don't model associativity
            if (runs == 1) {
                sets = 1;
                ways = hardware.cache_ways*hardware.cache_sets;
            }

            // CASE 2 | Memory latency to 0: don't model latencies
            if (runs == 2) {
                ml = 0;
                ms = 0;
                nml = 0;
            }

            // CASE 3 | MSHR count to infinite: don't model MSHRs
            if (runs == 3) {
                mshr = INF;
            }

            // Calculate the reuse distance profile
            std::normal_distribution<> distribution(0,ms);
            reuse_distance(cores[cid], blocks, warps, threads, distances[runs], active_blocks, hardware,
                           sets, ways, ml, nml, mshr, gen, distribution);
        }
        std::cout << "done" << std::endl;

        // Process the reuse distance profile to obtain the cache hit/miss rate
        message("");
        output_miss_rate(distances, kernelname, benchname,suitename, hardware);

        // Display the cache hit/miss rate from the output of the verifier (if available)
        message("");
        verify_miss_rate(kernelname, benchname);
        message("");
    }

    // End of the program
    std::cout << SPLIT_STRING << std::endl;
    return 0;
}