int usbmsc_archinitialize(void) { FAR struct sdio_dev_s *sdio; int ret; /* First, get an instance of the SDIO interface */ message("usbmsc_archinitialize: " "Initializing SDIO slot %d\n", STM32_MMCSDSLOTNO); sdio = sdio_initialize(STM32_MMCSDSLOTNO); if (!sdio) { message("usbmsc_archinitialize: Failed to initialize SDIO slot %d\n", STM32_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SPI interface to the MMC/SD driver */ message("usbmsc_archinitialize: " "Bind SDIO to the MMC/SD driver, minor=%d\n", CONFIG_SYSTEM_USBMSC_DEVMINOR1); ret = mmcsd_slotinitialize(CONFIG_SYSTEM_USBMSC_DEVMINOR1, sdio); if (ret != OK) { message("usbmsc_archinitialize: " "Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } message("usbmsc_archinitialize: " "Successfully bound SDIO to the MMC/SD driver\n"); /* Then let's guess and say that there is a card in the slot. I need to check to * see if the VSN board supports a GPIO to detect if there is a card in * the slot. */ sdio_mediachange(sdio, true); return OK; }
int board_usbmsc_initialize(int port) { FAR struct sdio_dev_s *sdio; int ret; /* First, get an instance of the SDIO interface */ syslg(LOG_INFO, "Initializing SDIO slot %d\n", SAM_MMCSDSLOTNO); sdio = sdio_initialize(SAM_MMCSDSLOTNO); if (!sdio) { syslog(LOG_ERR, "ERROR: Failed to initialize SDIO slot %d\n", SAM_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SPI interface to the MMC/SD driver */ syslog(LOG_INFO, "" "Bind SDIO to the MMC/SD driver, minor=%d\n", CONFIG_SYSTEM_USBMSC_DEVMINOR1); ret = mmcsd_slotinitialize(CONFIG_SYSTEM_USBMSC_DEVMINOR1, sdio); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } syslog(LOG_INFO, "Successfully bound SDIO to the MMC/SD driver\n"); /* Then let's guess and say that there is a card in the slot. I need to check to * see if the SAM3U10E-EVAL board supports a GPIO to detect if there is a card in * the slot. */ sdio_mediachange(sdio, true); return OK; }
int board_app_initialize(void) { #ifdef NSH_HAVEMMCSD FAR struct sdio_dev_s *sdio; int ret; /* First, get an instance of the SDIO interface */ syslog(LOG_INFO, "Initializing SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { syslog(LOG_ERR, "ERROR: Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SPI interface to the MMC/SD driver */ syslog(LOG_INFO, "Bind SDIO to the MMC/SD driver, minor=%d\n", CONFIG_NSH_MMCSDMINOR); ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } syslog(LOG_INFO, "Successfully bound SDIO to the MMC/SD driver\n"); /* Then let's guess and say that there is a card in the slot. I need to check to * see if the LPC313X10E-EVAL board supports a GPIO to detect if there is a card in * the slot. */ sdio_mediachange(sdio, true); #endif return OK; }
int stm32_sdinitialize(int minor) { #ifdef HAVE_MMCSD FAR struct sdio_dev_s *sdio; int ret; /* Configure the card-detect GPIO */ #warning REVISIT: Missing logic /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(STM32_MMCSDSLOTNO); if (!sdio) { fdbg("Failed to initialize SDIO slot %d\n", STM32_MMCSDSLOTNO); return -ENODEV; } fvdbg("Initialized SDIO slot %d\n", STM32_MMCSDSLOTNO); /* Now bind the SDIO interface to the MMC/SD driver */ ret = mmcsd_slotinitialize(minor, sdio); if (ret != OK) { fdbg("Failed to bind SDIO slot %d to the MMC/SD driver, minor=%d\n", STM32_MMCSDSLOTNO, minor); } fvdbg("Bound SDIO slot %d to the MMC/SD driver, minor=%d\n", STM32_MMCSDSLOTNO, minor); /* Then let's guess and say that there is a card in the slot. I need to check to * see if the M3 Wildfire board supports a GPIO to detect if there is a card in * the slot. */ #warning REVISIT: Need to read the current state of the card-detect pin #warning REVISIT: Need to support interrupts from the card-detect pin sdio_mediachange(sdio, true); #endif return OK; }
int nsh_archinitialize(void) { #ifdef NSH_HAVE_MMCSD FAR struct sdio_dev_s *sdio; int ret; /* Mount the SDIO-based MMC/SD block driver */ /* First, get an instance of the SDIO interface */ syslog(LOG_INFO, "Initializing SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { syslog(LOG_ERR, "ERROR: Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ syslog(LOG_INFO, "Bind SDIO to the MMC/SD driver, minor=%d\n", CONFIG_NSH_MMCSDMINOR); ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } syslog(LOG_INFO, "Successfully bound SDIO to the MMC/SD driver\n"); /* Then inform the HSMCI driver if there is or is not a card in the slot. */ sdio_mediachange(sdio, sam_cardinserted(0)); #endif return OK; }
static int sam_hsmci_cardetect_int(int irq, void *regs) { bool inserted; /* Get the state of the GPIO pin */ inserted = sam_cardinserted(0); /* Has the card detect state changed? */ if (inserted != g_hsmci.inserted) { /* Yes... remember that new state and inform the HSMCI driver */ g_hsmci.inserted = inserted; /* Report the new state to the SDIO driver */ sdio_mediachange(g_hsmci.hsmci, inserted); } return OK; }
__EXPORT int nsh_archinitialize(void) { /* configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN2); /* BATT_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN3); /* BATT_CURRENT_SENS */ stm32_configgpio(GPIO_ADC1_IN4); /* VDD_5V_SENS */ stm32_configgpio(GPIO_ADC1_IN11); /* BATT2_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN13); /* BATT2_CURRENT_SENS */ /* configure power supply control/sense pins */ stm32_configgpio(GPIO_VDD_3V3_PERIPH_EN); stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN); stm32_configgpio(GPIO_VDD_5V_PERIPH_EN); stm32_configgpio(GPIO_VDD_5V_HIPOWER_EN); stm32_configgpio(GPIO_VDD_BRICK_VALID); stm32_configgpio(GPIO_VDD_BRICK2_VALID); stm32_configgpio(GPIO_VDD_5V_PERIPH_OC); stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC); stm32_configgpio(GPIO_VBUS_VALID); // stm32_configgpio(GPIO_SBUS_INV); // stm32_configgpio(GPIO_8266_GPIO0); // stm32_configgpio(GPIO_SPEKTRUM_PWR_EN); // stm32_configgpio(GPIO_8266_PD); // stm32_configgpio(GPIO_8266_RST); // stm32_configgpio(GPIO_BTN_SAFETY_FMU); /* configure the GPIO pins to outputs and keep them low */ stm32_configgpio(GPIO_GPIO0_OUTPUT); stm32_configgpio(GPIO_GPIO1_OUTPUT); stm32_configgpio(GPIO_GPIO2_OUTPUT); stm32_configgpio(GPIO_GPIO3_OUTPUT); stm32_configgpio(GPIO_GPIO4_OUTPUT); stm32_configgpio(GPIO_GPIO5_OUTPUT); /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ dma_alloc_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_ICM, false); SPI_SELECT(spi1, PX4_SPIDEV_BARO, false); SPI_SELECT(spi1, PX4_SPIDEV_LIS, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); SPI_SELECT(spi1, PX4_SPIDEV_EEPROM, false); up_udelay(20); /* Get the SPI port for the FRAM */ spi2 = up_spiinitialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); /* Configure SPI 5-based devices */ spi5 = up_spiinitialize(PX4_SPI_EXT0); if (!spi5) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_EXT0); up_ledon(LED_RED); return -ENODEV; } /* Default SPI5 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi5, 10000000); SPI_SETBITS(spi5, 8); SPI_SETMODE(spi5, SPIDEV_MODE3); SPI_SELECT(spi5, PX4_SPIDEV_EXT0, false); /* Configure SPI 6-based devices */ spi6 = up_spiinitialize(PX4_SPI_EXT1); if (!spi6) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_EXT1); up_ledon(LED_RED); return -ENODEV; } /* Default SPI6 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi6, 10000000); SPI_SETBITS(spi6, 8); SPI_SETMODE(spi6, SPIDEV_MODE3); SPI_SELECT(spi6, PX4_SPIDEV_EXT1, false); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }
__EXPORT int nsh_archinitialize(void) { /* configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN2); /* BATT_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN3); /* BATT_CURRENT_SENS */ stm32_configgpio(GPIO_ADC1_IN4); /* VDD_5V_SENS */ stm32_configgpio(GPIO_ADC1_IN13); /* FMU_AUX_ADC_1 */ stm32_configgpio(GPIO_ADC1_IN14); /* FMU_AUX_ADC_2 */ stm32_configgpio(GPIO_ADC1_IN15); /* PRESSURE_SENS */ /* configure power supply control/sense pins */ stm32_configgpio(GPIO_VDD_5V_PERIPH_EN); stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN); stm32_configgpio(GPIO_VDD_BRICK_VALID); stm32_configgpio(GPIO_VDD_SERVO_VALID); stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC); stm32_configgpio(GPIO_VDD_5V_PERIPH_OC); #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ dma_alloc_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { syslog(LOG_ERR, "[boot] FAILED to initialize SPI port 1\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi1, PX4_SPIDEV_BARO, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); syslog(LOG_INFO, "[boot] Initialized SPI port 1 (SENSORS)\n"); /* Get the SPI port for the FRAM */ spi2 = up_spiinitialize(2); if (!spi2) { syslog(LOG_ERR, "[boot] FAILED to initialize SPI port 2\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); syslog(LOG_INFO, "[boot] Initialized SPI port 2 (RAMTRON FRAM)\n"); spi4 = up_spiinitialize(4); /* Default SPI4 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi4, 10000000); SPI_SETBITS(spi4, 8); SPI_SETMODE(spi4, SPIDEV_MODE3); SPI_SELECT(spi4, PX4_SPIDEV_EXT0, false); SPI_SELECT(spi4, PX4_SPIDEV_EXT1, false); syslog(LOG_INFO, "[boot] Initialized SPI port 4\n"); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { syslog(LOG_ERR, "[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { syslog(LOG_ERR, "[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); syslog(LOG_INFO, "[boot] Initialized SDIO\n"); #endif return OK; }
__EXPORT int nsh_archinitialize(void) { /* configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN2); /* BATT_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN3); /* BATT_CURRENT_SENS */ stm32_configgpio(GPIO_ADC1_IN4); /* VDD_5V_SENS */ // stm32_configgpio(GPIO_ADC1_IN10); /* used by VBUS valid */ // stm32_configgpio(GPIO_ADC1_IN11); /* unused */ // stm32_configgpio(GPIO_ADC1_IN12); /* used by MPU6000 CS */ stm32_configgpio(GPIO_ADC1_IN13); /* FMU_AUX_ADC_1 */ stm32_configgpio(GPIO_ADC1_IN14); /* FMU_AUX_ADC_2 */ stm32_configgpio(GPIO_ADC1_IN15); /* PRESSURE_SENS */ /* configure power supply control/sense pins */ stm32_configgpio(GPIO_VDD_5V_PERIPH_EN); stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN); stm32_configgpio(GPIO_VDD_BRICK_VALID); stm32_configgpio(GPIO_VDD_SERVO_VALID); stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC); stm32_configgpio(GPIO_VDD_5V_PERIPH_OC); /* configure the high-resolution time/callout interface */ hrt_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi1, PX4_SPIDEV_BARO, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); message("[boot] Successfully initialized SPI port 1\n"); /* Get the SPI port for the FRAM */ spi2 = up_spiinitialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (F4 max) and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi2, 375000000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); message("[boot] Successfully initialized SPI port 2\n"); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("nsh_archinitialize: Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("nsh_archinitialize: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); message("[boot] Initialized SDIO\n"); #endif return OK; }
int board_app_initialize(uintptr_t arg) { int ret; #ifdef NSH_HAVEMMCSD /* Card detect */ bool cd_status; /* Configure the card detect GPIO */ stm32_configgpio(GPIO_SD_CD); /* Register an interrupt handler for the card detect pin */ (void)stm32_gpiosetevent(GPIO_SD_CD, true, true, true, nsh_cdinterrupt, NULL); /* Mount the SDIO-based MMC/SD block driver */ /* First, get an instance of the SDIO interface */ syslog(LOG_INFO, "Initializing SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); g_sdiodev = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!g_sdiodev) { syslog(LOG_ERR, "ERROR: Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ syslog(LOG_INFO, "Bind SDIO to the MMC/SD driver, minor=%d\n", CONFIG_NSH_MMCSDMINOR); ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, g_sdiodev); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } syslog(LOG_INFO, "Successfully bound SDIO to the MMC/SD driver\n"); /* Use SD card detect pin to check if a card is inserted */ cd_status = !stm32_gpioread(GPIO_SD_CD); _info("Card detect : %hhu\n", cd_status); sdio_mediachange(g_sdiodev, cd_status); #endif #ifdef CONFIG_INPUT /* Initialize the touchscreen */ ret = stm32_tsc_setup(0); if (ret < 0) { syslog(LOG_ERR, "ERROR: stm32_tsc_setup failed: %d\n", ret); } #endif UNUSED(ret); return OK; }
int board_app_initialize(uintptr_t arg) { #ifdef HAVE_RTC_DRIVER FAR struct rtc_lowerhalf_s *rtclower; #endif #ifdef CONFIG_SENSORS_QENCODER int index; char buf[9]; #endif int ret; (void)ret; #ifdef HAVE_PROC /* Mount the proc filesystem */ syslog(LOG_INFO, "Mounting procfs to /proc\n"); ret = mount(NULL, CONFIG_NSH_PROC_MOUNTPOINT, "procfs", 0, NULL); if (ret < 0) { syslog(LOG_ERR, "ERROR: Failed to mount the PROC filesystem: %d (%d)\n", ret, errno); return ret; } #endif #if !defined(CONFIG_ARCH_LEDS) && defined(CONFIG_USERLED_LOWER) /* Register the LED driver */ ret = userled_lower_initialize(LED_DRIVER_PATH); if (ret < 0) { syslog(LOG_ERR, "ERROR: userled_lower_initialize() failed: %d\n", ret); } #endif #ifdef HAVE_RTC_DRIVER /* Instantiate the STM32L4 lower-half RTC driver */ rtclower = stm32l4_rtc_lowerhalf(); if (!rtclower) { serr("ERROR: Failed to instantiate the RTC lower-half driver\n"); return -ENOMEM; } else { /* Bind the lower half driver and register the combined RTC driver * as /dev/rtc0 */ ret = rtc_initialize(0, rtclower); if (ret < 0) { serr("ERROR: Failed to bind/register the RTC driver: %d\n", ret); return ret; } } #endif #ifdef HAVE_MMCSD /* First, get an instance of the SDIO interface */ g_sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!g_sdio) { syslog(LOG_ERR, "ERROR: Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, g_sdio); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no * card detect GPIO. */ sdio_mediachange(g_sdio, true); syslog(LOG_INFO, "[boot] Initialized SDIO\n"); #endif #ifdef CONFIG_PWM /* Initialize PWM and register the PWM device. */ ret = stm32l4_pwm_setup(); if (ret < 0) { syslog(LOG_ERR, "ERROR: stm32l4_pwm_setup() failed: %d\n", ret); } #endif #ifdef CONFIG_ADC /* Initialize ADC and register the ADC driver. */ ret = stm32l4_adc_setup(); if (ret < 0) { syslog(LOG_ERR, "ERROR: stm32l4_adc_setup failed: %d\n", ret); } #endif #ifdef CONFIG_TIMER /* Initialize and register the timer driver */ ret = board_timer_driver_initialize("/dev/timer0", 2); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to register the timer driver: %d\n", ret); return ret; } #endif #ifdef CONFIG_SENSORS_QENCODER /* Initialize and register the qencoder driver */ index = 0; #ifdef CONFIG_STM32L4_TIM1_QE sprintf(buf, "/dev/qe%d", index++); ret = stm32l4_qencoder_initialize(buf, 1); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to register the qencoder: %d\n", ret); return ret; } #endif #ifdef CONFIG_STM32L4_TIM2_QE sprintf(buf, "/dev/qe%d", index++); ret = stm32l4_qencoder_initialize(buf, 2); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to register the qencoder: %d\n", ret); return ret; } #endif #ifdef CONFIG_STM32L4_TIM3_QE sprintf(buf, "/dev/qe%d", index++); ret = stm32l4_qencoder_initialize(buf, 3); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to register the qencoder: %d\n", ret); return ret; } #endif #ifdef CONFIG_STM32L4_TIM4_QE sprintf(buf, "/dev/qe%d", index++); ret = stm32l4_qencoder_initialize(buf, 4); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to register the qencoder: %d\n", ret); return ret; } #endif #ifdef CONFIG_STM32L4_TIM5_QE sprintf(buf, "/dev/qe%d", index++); ret = stm32l4_qencoder_initialize(buf, 5); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to register the qencoder: %d\n", ret); return ret; } #endif #ifdef CONFIG_STM32L4_TIM8_QE sprintf(buf, "/dev/qe%d", index++); ret = stm32l4_qencoder_initialize(buf, 8); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to register the qencoder: %d\n", ret); return ret; } #endif #endif UNUSED(ret); return OK; }
int board_app_initialize(uintptr_t arg) { #ifdef HAVE_RTC_DRIVER FAR struct rtc_lowerhalf_s *lower; #endif #ifdef CONFIG_STM32_SPI1 FAR struct spi_dev_s *spi; FAR struct mtd_dev_s *mtd; #endif #ifdef HAVE_MMCSD FAR struct sdio_dev_s *sdio; #endif int ret; /* Register I2C drivers on behalf of the I2C tool */ stm32_i2ctool(); #ifdef HAVE_RTC_DRIVER /* Instantiate the STM32 lower-half RTC driver */ lower = stm32_rtc_lowerhalf(); if (!lower) { syslog(LOG_ERR, "ERROR: Failed to instantiate the RTC lower-half driver\n"); return -ENOMEM; } else { /* Bind the lower half driver and register the combined RTC driver * as /dev/rtc0 */ ret = rtc_initialize(0, lower); if (ret < 0) { syslog(LOG_ERR, "ERROR: Failed to bind/register the RTC driver: %d\n", ret); return ret; } } #endif /* Configure SPI-based devices */ #ifdef CONFIG_STM32_SPI1 /* Get the SPI port */ spi = stm32_spibus_initialize(1); if (!spi) { syslog(LOG_ERR, "ERROR: Failed to initialize SPI port 0\n"); return -ENODEV; } /* Now bind the SPI interface to the M25P64/128 SPI FLASH driver */ mtd = m25p_initialize(spi); if (!mtd) { syslog(LOG_ERR, "ERROR: Failed to bind SPI port 0 to the SPI FLASH driver\n"); return -ENODEV; } #warning "Now what are we going to do with this SPI FLASH driver?" #endif /* Mount the SDIO-based MMC/SD block driver */ #ifdef HAVE_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { syslog(LOG_ERR, "ERROR: Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. I need to check to * see if the STM3240G-EVAL board supports a GPIO to detect if there is a card in * the slot. */ sdio_mediachange(sdio, true); #endif #ifdef HAVE_USBHOST /* Initialize USB host operation. stm32_usbhost_initialize() starts a thread * will monitor for USB connection and disconnection events. */ ret = stm32_usbhost_initialize(); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to initialize USB host: %d\n", ret); return ret; } #endif #ifdef CONFIG_PWM /* Initialize PWM and register the PWM device. */ ret = stm32_pwm_setup(); if (ret < 0) { syslog(LOG_ERR, "ERROR: stm32_pwm_setup() failed: %d\n", ret); } #endif #ifdef CONFIG_ADC /* Initialize ADC and register the ADC driver. */ ret = stm32_adc_setup(); if (ret < 0) { syslog(LOG_ERR, "ERROR: stm32_adc_setup failed: %d\n", ret); } #endif #ifdef CONFIG_CAN /* Initialize CAN and register the CAN driver. */ ret = stm32_can_setup(); if (ret < 0) { syslog(LOG_ERR, "ERROR: stm32_can_setup failed: %d\n", ret); } #endif UNUSED(ret); return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { /* Ensure the power is on 1 ms before we drive the GPIO pins */ usleep(1000); if (OK == determin_hw_version(&hw_version, & hw_revision)) { switch (hw_version) { case HW_VER_FMUV2_STATE: break; case HW_VER_FMUV3_STATE: hw_type[1]++; hw_type[2] = '0'; /* Has CAN2 transceiver Remove pull up */ stm32_configgpio(GPIO_CAN2_RX); break; case HW_VER_FMUV2MINI_STATE: /* Detection for a Pixhack3 */ stm32_configgpio(HW_VER_PA8); up_udelay(10); bool isph3 = stm32_gpioread(HW_VER_PA8); stm32_configgpio(HW_VER_PA8_INIT); if (isph3) { /* Pixhack3 looks like a FMuV3 Cube */ hw_version = HW_VER_FMUV3_STATE; hw_type[1]++; hw_type[2] = '0'; message("\nPixhack V3 detected, forcing to fmu-v3"); } else { /* It is a mini */ hw_type[2] = 'M'; } break; default: /* questionable px4_fmu-v2 hardware, try forcing regular FMUv2 (not much else we can do) */ message("\nbad version detected, forcing to fmu-v2"); hw_version = HW_VER_FMUV2_STATE; break; } message("\nFMUv2 ver 0x%1X : Rev %x %s\n", hw_version, hw_revision, hw_type); } /* configure SPI interfaces */ stm32_spiinitialize(); px4_platform_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); if (board_hardfault_init(2, true) != 0) { led_on(LED_AMBER); } /* Configure SPI-based devices */ spi1 = stm32_spibus_initialize(PX4_SPI_BUS_SENSORS); if (!spi1) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_SENSORS); led_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); up_udelay(20); /* Get the SPI port for the FRAM */ spi2 = stm32_spibus_initialize(PX4_SPI_BUS_RAMTRON); if (!spi2) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_RAMTRON); led_on(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); spi4 = stm32_spibus_initialize(PX4_SPI_BUS_EXT); if (!spi4) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_EXT); led_on(LED_AMBER); return -ENODEV; } /* Default SPI4 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi4, 10000000); SPI_SETBITS(spi4, 8); SPI_SETMODE(spi4, SPIDEV_MODE3); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { led_on(LED_AMBER); message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { led_on(LED_AMBER); message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }
int board_app_initialize(uintptr_t arg) { #ifdef HAVE_RTC_DRIVER FAR struct rtc_lowerhalf_s *rtclower; #endif int ret; (void)ret; /* Configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif #ifdef HAVE_PROC /* Mount the proc filesystem */ syslog(LOG_INFO, "Mounting procfs to /proc\n"); ret = mount(NULL, CONFIG_NSH_PROC_MOUNTPOINT, "procfs", 0, NULL); if (ret < 0) { syslog(LOG_ERR, "ERROR: Failed to mount the PROC filesystem: %d (%d)\n", ret, errno); return ret; } #endif #ifdef HAVE_RTC_DRIVER /* Instantiate the STM32L4 lower-half RTC driver */ rtclower = stm32l4_rtc_lowerhalf(); if (!rtclower) { serr("ERROR: Failed to instantiate the RTC lower-half driver\n"); return -ENOMEM; } else { /* Bind the lower half driver and register the combined RTC driver * as /dev/rtc0 */ ret = rtc_initialize(0, rtclower); if (ret < 0) { serr("ERROR: Failed to bind/register the RTC driver: %d\n", ret); return ret; } } #endif #ifdef HAVE_MMCSD /* First, get an instance of the SDIO interface */ g_sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!g_sdio) { syslog(LOG_ERR, "ERROR: Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, g_sdio); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no * card detect GPIO. */ sdio_mediachange(g_sdio, true); syslog(LOG_INFO, "[boot] Initialized SDIO\n"); #endif #ifdef CONFIG_AJOYSTICK /* Initialize and register the joystick driver */ ret = board_ajoy_initialize(); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to register the joystick driver: %d\n", ret); return ret; } #endif return OK; }
int nsh_archinitialize(void) { #ifdef CONFIG_MMCSD int ret; #endif /* Configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN2); /* BATT_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN3); /* BATT_CURRENT_SENS */ stm32_configgpio(GPIO_ADC1_IN4); /* VDD_5V_SENS */ //stm32_configgpio(GPIO_ADC1_IN10); /* used by VBUS valid */ //stm32_configgpio(GPIO_ADC1_IN11); /* unused */ //stm32_configgpio(GPIO_ADC1_IN12); /* used by MPU6000 CS */ stm32_configgpio(GPIO_ADC1_IN13); /* FMU_AUX_ADC_1 */ stm32_configgpio(GPIO_ADC1_IN14); /* FMU_AUX_ADC_2 */ stm32_configgpio(GPIO_ADC1_IN15); /* PRESSURE_SENS */ /* Configure power supply control/sense pins */ stm32_configgpio(GPIO_VDD_5V_PERIPH_EN); stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN); stm32_configgpio(GPIO_VDD_BRICK_VALID); stm32_configgpio(GPIO_VDD_SERVO_VALID); stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC); stm32_configgpio(GPIO_VDD_5V_PERIPH_OC); /* Configure the DMA allocator */ dma_alloc_init(); /* Configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* Initial LED state */ led_off(LED_AMBER); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi1, PX4_SPIDEV_BARO, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); message("[boot] Initialized SPI port 1 (SENSORS)\n"); /* Get the SPI port for the FRAM */ spi2 = up_spiinitialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); message("[boot] Initialized SPI port 2 (RAMTRON FRAM)\n"); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no * card detect GPIO. */ sdio_mediachange(sdio, true); message("[boot] Initialized SDIO\n"); #endif return OK; }
int nsh_archinitialize(void) { #ifdef CONFIG_STM32_SPI1 FAR struct spi_dev_s *spi; FAR struct mtd_dev_s *mtd; #endif #ifdef NSH_HAVEMMCSD FAR struct sdio_dev_s *sdio; #endif #if defined(NSH_HAVEMMCSD) || defined(CONFIG_DJOYSTICK) int ret; #endif /* Configure SPI-based devices */ #ifdef CONFIG_STM32_SPI1 /* Get the SPI port */ syslog(LOG_INFO, "Initializing SPI port 1\n"); spi = up_spiinitialize(1); if (!spi) { syslog(LOG_ERR, "ERROR: Failed to initialize SPI port 0\n"); return -ENODEV; } syslog(LOG_INFO, "Successfully initialized SPI port 0\n"); /* Now bind the SPI interface to the M25P64/128 SPI FLASH driver */ syslog(LOG_INFO, "Bind SPI to the SPI flash driver\n"); mtd = m25p_initialize(spi); if (!mtd) { syslog(LOG_ERR, "ERROR: Failed to bind SPI port 0 to the SPI FLASH driver\n"); return -ENODEV; } syslog(LOG_INFO, "Successfully bound SPI port 0 to the SPI FLASH driver\n"); #warning "Now what are we going to do with this SPI FLASH driver?" #endif /* Create the SPI FLASH MTD instance */ /* The M25Pxx is not a give media to implement a file system.. * its block sizes are too large */ /* Mount the SDIO-based MMC/SD block driver */ #ifdef NSH_HAVEMMCSD /* First, get an instance of the SDIO interface */ syslog(LOG_INFO, "Initializing SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { syslog(LOG_ERR, "ERROR: Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ syslog(LOG_INFO, "Bind SDIO to the MMC/SD driver, minor=%d\n", CONFIG_NSH_MMCSDMINOR); ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } syslog(LOG_INFO, "Successfully bound SDIO to the MMC/SD driver\n"); /* Then let's guess and say that there is a card in the slot. I need to check to * see if the STM3210E-EVAL board supports a GPIO to detect if there is a card in * the slot. */ sdio_mediachange(sdio, true); #endif #ifdef CONFIG_DJOYSTICK /* Initialize and register the joystick driver */ ret = stm32_djoy_initialization(); if (ret != OK) { syslog(LOG_ERR, "ERROR: Failed to register the joystick driver: %d\n", ret); return ret; } syslog(LOG_INFO, "Successfully registered the joystick driver\n"); #endif return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); #if defined(CONFIG_STM32_BBSRAM) /* NB. the use of the console requires the hrt running * to poll the DMA */ /* Using Battery Backed Up SRAM */ int filesizes[CONFIG_STM32_BBSRAM_FILES + 1] = BSRAM_FILE_SIZES; stm32_bbsraminitialize(BBSRAM_PATH, filesizes); #if defined(CONFIG_STM32_SAVE_CRASHDUMP) /* Panic Logging in Battery Backed Up Files */ /* * In an ideal world, if a fault happens in flight the * system save it to BBSRAM will then reboot. Upon * rebooting, the system will log the fault to disk, recover * the flight state and continue to fly. But if there is * a fault on the bench or in the air that prohibit the recovery * or committing the log to disk, the things are too broken to * fly. So the question is: * * Did we have a hard fault and not make it far enough * through the boot sequence to commit the fault data to * the SD card? */ /* Do we have an uncommitted hard fault in BBSRAM? * - this will be reset after a successful commit to SD */ int hadCrash = hardfault_check_status("boot"); if (hadCrash == OK) { message("[boot] There is a hard fault logged. Hold down the SPACE BAR," \ " while booting to halt the system!\n"); /* Yes. So add one to the boot count - this will be reset after a successful * commit to SD */ int reboots = hardfault_increment_reboot("boot", false); /* Also end the misery for a user that holds for a key down on the console */ int bytesWaiting; ioctl(fileno(stdin), FIONREAD, (unsigned long)((uintptr_t) &bytesWaiting)); if (reboots > 2 || bytesWaiting != 0) { /* Since we can not commit the fault dump to disk. Display it * to the console. */ hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); message("[boot] There were %d reboots with Hard fault that were not committed to disk - System halted %s\n", reboots, (bytesWaiting == 0 ? "" : " Due to Key Press\n")); /* For those of you with a debugger set a break point on up_assert and * then set dbgContinue = 1 and go. */ /* Clear any key press that got us here */ static volatile bool dbgContinue = false; int c = '>'; while (!dbgContinue) { switch (c) { case EOF: case '\n': case '\r': case ' ': continue; default: putchar(c); putchar('\n'); switch (c) { case 'D': case 'd': hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); break; case 'C': case 'c': hardfault_rearm("boot"); hardfault_increment_reboot("boot", true); break; case 'B': case 'b': dbgContinue = true; break; default: break; } // Inner Switch message("\nEnter B - Continue booting\n" \ "Enter C - Clear the fault log\n" \ "Enter D - Dump fault log\n\n?>"); fflush(stdout); if (!dbgContinue) { c = getchar(); } break; } // outer switch } // for } // inner if } // outer if #endif // CONFIG_STM32_SAVE_CRASHDUMP #endif // CONFIG_STM32_BBSRAM /* initial LED state */ drv_led_start(); led_off(LED_RED); led_off(LED_GREEN); led_off(LED_BLUE); /* Configure SPI-based devices */ spi1 = stm32_spibus_initialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); board_autoled_on(LED_RED); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_HMC, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); /* Get the SPI port for the FRAM */ spi2 = stm32_spibus_initialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\n"); board_autoled_on(LED_RED); return -ENODEV; } /* Default SPI2 to 12MHz and de-assert the known chip selects. * MS5611 has max SPI clock speed of 20MHz */ // XXX start with 10.4 MHz and go up to 20 once validated SPI_SETFREQUENCY(spi2, 20 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); SPI_SELECT(spi2, PX4_SPIDEV_BARO, false); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { /* configure ADC pins */ /* configure power supply control/sense pins */ #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); param_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* initial LED state */ drv_led_start(); led_on(LED_AMBER); led_off(LED_AMBER); /* Configure SPI-based devices */ spi0 = px4_spibus_initialize(PX4_SPI_BUS_SENSORS); if (!spi0) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_SENSORS); board_autoled_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi0, 10000000); SPI_SETBITS(spi0, 8); SPI_SETMODE(spi0, SPIDEV_MODE3); SPI_SELECT(spi0, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi0, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi0, PX4_SPIDEV_BARO, false); SPI_SELECT(spi0, PX4_SPIDEV_MPU, false); up_udelay(20); #if defined(CONFIG_SAMV7_SPI1_MASTER) spi1 = px4_spibus_initialize(PX4_SPI_BUS_MEMORY); /* Default SPI4 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_EXT0, false); SPI_SELECT(spi1, PX4_SPIDEV_EXT1, false); #endif #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }