Пример #1
0
Файл: clone.c Проект: nrTQgc/ldc
/******************************************
 * Build __xopCmp for TypeInfo_Struct
 *      static bool __xopCmp(ref const S p, ref const S q)
 *      {
 *          return p.opCmp(q);
 *      }
 *
 * This is called by TypeInfo.compare(p1, p2). If the struct does not support
 * const objects comparison, it will throw "not implemented" Error in runtime.
 */
FuncDeclaration *buildXopCmp(StructDeclaration *sd, Scope *sc)
{
    //printf("StructDeclaration::buildXopCmp() %s\n", toChars());
    if (Dsymbol *cmp = search_function(sd, Id::cmp))
    {
        if (FuncDeclaration *fd = cmp->isFuncDeclaration())
        {
            TypeFunction *tfcmpptr;
            {
                Scope scx;

                /* const int opCmp(ref const S s);
                 */
                Parameters *parameters = new Parameters;
                parameters->push(new Parameter(STCref | STCconst, sd->type, NULL, NULL));
                tfcmpptr = new TypeFunction(parameters, Type::tint32, 0, LINKd);
                tfcmpptr->mod = MODconst;
                tfcmpptr = (TypeFunction *)tfcmpptr->semantic(Loc(), &scx);
            }
            fd = fd->overloadExactMatch(tfcmpptr);
            if (fd)
                return fd;
        }
    }
    else
    {
#if 0   // FIXME: doesn't work for recursive alias this
        /* Check opCmp member exists.
         * Consider 'alias this', but except opDispatch.
         */
        Expression *e = new DsymbolExp(sd->loc, sd);
        e = new DotIdExp(sd->loc, e, Id::cmp);
        Scope *sc2 = sc->push();
        e = e->trySemantic(sc2);
        sc2->pop();
        if (e)
        {
            Dsymbol *s = NULL;
            switch (e->op)
            {
                case TOKoverloadset:    s = ((OverExp *)e)->vars;       break;
                case TOKimport:         s = ((ScopeExp *)e)->sds;       break;
                case TOKvar:            s = ((VarExp *)e)->var;         break;
                default:                break;
            }
            if (!s || s->ident != Id::cmp)
                e = NULL;   // there's no valid member 'opCmp'
        }
        if (!e)
            return NULL;    // bitwise comparison would work
        /* Essentially, a struct which does not define opCmp is not comparable.
         * At this time, typeid(S).compare might be correct that throwing "not implement" Error.
         * But implementing it would break existing code, such as:
         *
         * struct S { int value; }  // no opCmp
         * int[S] aa;   // Currently AA key uses bitwise comparison
         *              // (It's default behavior of TypeInfo_Strust.compare).
         *
         * Not sure we should fix this inconsistency, so just keep current behavior.
         */
#else
        return NULL;
#endif
    }

    if (!sd->xerrcmp)
    {
        // object._xopCmp
        Identifier *id = Identifier::idPool("_xopCmp");
        Expression *e = new IdentifierExp(sd->loc, Id::empty);
        e = new DotIdExp(sd->loc, e, Id::object);
        e = new DotIdExp(sd->loc, e, id);
        e = e->semantic(sc);
        Dsymbol *s = getDsymbol(e);
        assert(s);
        sd->xerrcmp = s->isFuncDeclaration();
    }

    Loc declLoc = Loc();    // loc is unnecessary so __xopCmp is never called directly
    Loc loc = Loc();        // loc is unnecessary so errors are gagged

    Parameters *parameters = new Parameters;
    parameters->push(new Parameter(STCref | STCconst, sd->type, Id::p, NULL));
    parameters->push(new Parameter(STCref | STCconst, sd->type, Id::q, NULL));
    TypeFunction *tf = new TypeFunction(parameters, Type::tint32, 0, LINKd);

    Identifier *id = Id::xopCmp;
    FuncDeclaration *fop = new FuncDeclaration(declLoc, Loc(), id, STCstatic, tf);

    Expression *e1 = new IdentifierExp(loc, Id::p);
    Expression *e2 = new IdentifierExp(loc, Id::q);
    Expression *e = new CallExp(loc, new DotIdExp(loc, e2, Id::cmp), e1);

    fop->fbody = new ReturnStatement(loc, e);

    unsigned errors = global.startGagging();    // Do not report errors
    Scope *sc2 = sc->push();
    sc2->stc = 0;
    sc2->linkage = LINKd;

    fop->semantic(sc2);
    fop->semantic2(sc2);

    sc2->pop();
    if (global.endGagging(errors))    // if errors happened
        fop = sd->xerrcmp;

    return fop;
}
Пример #2
0
/*********************************
 * Operator overloading for op=
 */
Expression *BinAssignExp::op_overload(Scope *sc)
{
    //printf("BinAssignExp::op_overload() (%s)\n", toChars());

#if DMDV2
    if (e1->op == TOKarray)
    {
        ArrayExp *ae = (ArrayExp *)e1;
        ae->e1 = ae->e1->semantic(sc);
        ae->e1 = resolveProperties(sc, ae->e1);

        AggregateDeclaration *ad = isAggregate(ae->e1->type);
        if (ad)
        {
            /* Rewrite a[args]+=e2 as:
             *  a.opIndexOpAssign!("+")(e2, args);
             */
            Dsymbol *fd = search_function(ad, Id::opIndexOpAssign);
            if (fd)
            {
                ae = resolveOpDollar(sc, ae);
                Expressions *a = (Expressions *)ae->arguments->copy();
                a->insert(0, e2);

                Objects *tiargs = opToArg(sc, op);
                Expression *e = new DotTemplateInstanceExp(loc, ae->e1, fd->ident, tiargs);
                e = new CallExp(loc, e, a);
                e = e->semantic(sc);
                return e;
            }

            // Didn't find it. Forward to aliasthis
            if (ad->aliasthis && ae->e1->type != att1)
            {
                /* Rewrite a[arguments] op= e2 as:
                 *      a.aliasthis[arguments] op= e2
                 */
                Expression *e1 = ae->copy();
                ((ArrayExp *)e1)->e1 = new DotIdExp(loc, ae->e1, ad->aliasthis->ident);
                BinExp *be = (BinExp *)copy();
                if (!be->att1 && ae->e1->type->checkAliasThisRec())
                    be->att1 = ae->e1->type;
                be->e1 = e1;
                if (Expression *e = be->trySemantic(sc))
                    return e;
            }
            att1 = NULL;
        }
    }
    else if (e1->op == TOKslice)
    {
        SliceExp *se = (SliceExp *)e1;
        se->e1 = se->e1->semantic(sc);
        se->e1 = resolveProperties(sc, se->e1);

        AggregateDeclaration *ad = isAggregate(se->e1->type);
        if (ad)
        {
            /* Rewrite a[lwr..upr]+=e2 as:
             *  a.opSliceOpAssign!("+")(e2, lwr, upr);
             */
            Dsymbol *fd = search_function(ad, Id::opSliceOpAssign);
            if (fd)
            {
                se = resolveOpDollar(sc, se);
                Expressions *a = new Expressions();
                a->push(e2);
                assert(!se->lwr || se->upr);
                if (se->lwr)
                {   a->push(se->lwr);
                    a->push(se->upr);
                }

                Objects *tiargs = opToArg(sc, op);
                Expression *e = new DotTemplateInstanceExp(loc, se->e1, fd->ident, tiargs);
                e = new CallExp(loc, e, a);
                e = e->semantic(sc);
                return e;
            }

            // Didn't find it. Forward to aliasthis
            if (ad->aliasthis && se->e1->type != att1)
            {
                /* Rewrite a[lwr..upr] op= e2 as:
                 *      a.aliasthis[lwr..upr] op= e2
                 */
                Expression *e1 = se->copy();
                ((SliceExp *)e1)->e1 = new DotIdExp(loc, se->e1, ad->aliasthis->ident);
                BinExp *be = (BinExp *)copy();
                if (!be->att1 && se->e1->type->checkAliasThisRec())
                    be->att1 = se->e1->type;
                be->e1 = e1;
                if (Expression *e = be->trySemantic(sc))
                    return e;
            }
            att1 = NULL;
        }
    }
#endif

    BinExp::semantic(sc);
    e1 = resolveProperties(sc, e1);
    e2 = resolveProperties(sc, e2);

    // Don't attempt 'alias this' if an error occured
    if (e1->type->ty == Terror || e2->type->ty == Terror)
        return new ErrorExp();

    Identifier *id = opId();

    Expressions args2;

    AggregateDeclaration *ad1 = isAggregate(e1->type);

    Dsymbol *s = NULL;

#if 1 // the old D1 scheme
    if (ad1 && id)
    {
        s = search_function(ad1, id);
    }
#endif

    Objects *tiargs = NULL;
#if DMDV2
    if (!s)
    {   /* Try the new D2 scheme, opOpAssign
         */
        if (ad1)
        {
            s = search_function(ad1, Id::opOpAssign);
            if (s && !s->isTemplateDeclaration())
            {   error("%s.opOpAssign isn't a template", e1->toChars());
                return new ErrorExp();
            }
        }

        // Set tiargs, the template argument list, which will be the operator string
        if (s)
        {
            id = Id::opOpAssign;
            tiargs = opToArg(sc, op);
        }
    }
#endif

    if (s)
    {
        /* Try:
         *      a.opOpAssign(b)
         */

        args2.setDim(1);
        args2[0] = e2;

        Match m;
        memset(&m, 0, sizeof(m));
        m.last = MATCHnomatch;

        if (s)
        {
            FuncDeclaration *fd = s->isFuncDeclaration();
            if (fd)
            {
                overloadResolveX(&m, fd, NULL, &args2);
            }
            else
            {   TemplateDeclaration *td = s->isTemplateDeclaration();
                templateResolve(&m, td, loc, sc, tiargs, e1, &args2);
            }
        }

        if (m.count > 1)
        {
            // Error, ambiguous
            error("overloads %s and %s both match argument list for %s",
                    m.lastf->type->toChars(),
                    m.nextf->type->toChars(),
                    m.lastf->toChars());
        }
        else if (m.last == MATCHnomatch)
        {
            m.lastf = m.anyf;
            if (tiargs)
                goto L1;
        }

        // Rewrite (e1 op e2) as e1.opOpAssign(e2)
        return build_overload(loc, sc, e1, e2, m.lastf ? m.lastf : s);
    }

L1:

#if DMDV2
    // Try alias this on first operand
    if (ad1 && ad1->aliasthis)
    {
        /* Rewrite (e1 op e2) as:
         *      (e1.aliasthis op e2)
         */
        if (att1 && this->e1->type == att1)
            return NULL;
        //printf("att %s e1 = %s\n", Token::toChars(op), this->e1->type->toChars());
        Expression *e1 = new DotIdExp(loc, this->e1, ad1->aliasthis->ident);
        BinExp *be = (BinExp *)copy();
        if (!be->att1 && this->e1->type->checkAliasThisRec())
            be->att1 = this->e1->type;
        be->e1 = e1;
        return be->trySemantic(sc);
    }

    // Try alias this on second operand
    AggregateDeclaration *ad2 = isAggregate(e2->type);
    if (ad2 && ad2->aliasthis)
    {
        /* Rewrite (e1 op e2) as:
         *      (e1 op e2.aliasthis)
         */
        if (att2 && this->e2->type == att2)
            return NULL;
        //printf("att %s e2 = %s\n", Token::toChars(op), this->e2->type->toChars());
        Expression *e2 = new DotIdExp(loc, this->e2, ad2->aliasthis->ident);
        BinExp *be = (BinExp *)copy();
        if (!be->att2 && this->e2->type->checkAliasThisRec())
            be->att2 = this->e2->type;
        be->e2 = e2;
        return be->trySemantic(sc);
    }
#endif
    return NULL;
}
Пример #3
0
Файл: clone.c Проект: nrTQgc/ldc
/******************************************
 * Build __xopEquals for TypeInfo_Struct
 *      static bool __xopEquals(ref const S p, ref const S q)
 *      {
 *          return p == q;
 *      }
 *
 * This is called by TypeInfo.equals(p1, p2). If the struct does not support
 * const objects comparison, it will throw "not implemented" Error in runtime.
 */
FuncDeclaration *buildXopEquals(StructDeclaration *sd, Scope *sc)
{
    if (!needOpEquals(sd))
        return NULL;        // bitwise comparison would work

    //printf("StructDeclaration::buildXopEquals() %s\n", sd->toChars());
    if (Dsymbol *eq = search_function(sd, Id::eq))
    {
        if (FuncDeclaration *fd = eq->isFuncDeclaration())
        {
            TypeFunction *tfeqptr;
            {
                Scope scx;

                /* const bool opEquals(ref const S s);
                 */
                Parameters *parameters = new Parameters;
                parameters->push(new Parameter(STCref | STCconst, sd->type, NULL, NULL));
                tfeqptr = new TypeFunction(parameters, Type::tbool, 0, LINKd);
                tfeqptr->mod = MODconst;
                tfeqptr = (TypeFunction *)tfeqptr->semantic(Loc(), &scx);
            }
            fd = fd->overloadExactMatch(tfeqptr);
            if (fd)
                return fd;
        }
    }

    if (!sd->xerreq)
    {
        // object._xopEquals
        Identifier *id = Identifier::idPool("_xopEquals");
        Expression *e = new IdentifierExp(sd->loc, Id::empty);
        e = new DotIdExp(sd->loc, e, Id::object);
        e = new DotIdExp(sd->loc, e, id);
        e = e->semantic(sc);
        Dsymbol *s = getDsymbol(e);
        assert(s);
        sd->xerreq = s->isFuncDeclaration();
    }

    Loc declLoc = Loc();    // loc is unnecessary so __xopEquals is never called directly
    Loc loc = Loc();        // loc is unnecessary so errors are gagged

    Parameters *parameters = new Parameters;
    parameters->push(new Parameter(STCref | STCconst, sd->type, Id::p, NULL));
    parameters->push(new Parameter(STCref | STCconst, sd->type, Id::q, NULL));
    TypeFunction *tf = new TypeFunction(parameters, Type::tbool, 0, LINKd);

    Identifier *id = Id::xopEquals;
    FuncDeclaration *fop = new FuncDeclaration(declLoc, Loc(), id, STCstatic, tf);

    Expression *e1 = new IdentifierExp(loc, Id::p);
    Expression *e2 = new IdentifierExp(loc, Id::q);
    Expression *e = new EqualExp(TOKequal, loc, e1, e2);

    fop->fbody = new ReturnStatement(loc, e);

    unsigned errors = global.startGagging();    // Do not report errors
    Scope *sc2 = sc->push();
    sc2->stc = 0;
    sc2->linkage = LINKd;

    fop->semantic(sc2);
    fop->semantic2(sc2);

    sc2->pop();
    if (global.endGagging(errors))    // if errors happened
        fop = sd->xerreq;

    return fop;
}
Пример #4
0
void VarDeclaration::semantic(Scope *sc)
{
#if 0
    printf("VarDeclaration::semantic('%s', parent = '%s')\n", toChars(), sc->parent->toChars());
    printf(" type = %s\n", type ? type->toChars() : "null");
    printf(" stc = x%x\n", sc->stc);
    printf(" storage_class = x%x\n", storage_class);
    printf("linkage = %d\n", sc->linkage);
    //if (strcmp(toChars(), "mul") == 0) halt();
#endif

    storage_class |= sc->stc;
    if (storage_class & STCextern && init)
        error("extern symbols cannot have initializers");

    /* If auto type inference, do the inference
     */
    int inferred = 0;
    if (!type)
    {   inuse++;
        type = init->inferType(sc);
        inuse--;
        inferred = 1;

        /* This is a kludge to support the existing syntax for RAII
         * declarations.
         */
        storage_class &= ~STCauto;
        originalType = type;
    }
    else
    {   if (!originalType)
            originalType = type;
        type = type->semantic(loc, sc);
    }
    //printf(" semantic type = %s\n", type ? type->toChars() : "null");

    type->checkDeprecated(loc, sc);
    linkage = sc->linkage;
    this->parent = sc->parent;
    //printf("this = %p, parent = %p, '%s'\n", this, parent, parent->toChars());
    protection = sc->protection;
    //printf("sc->stc = %x\n", sc->stc);
    //printf("storage_class = x%x\n", storage_class);

#if DMDV2
    if (storage_class & STCgshared && global.params.safe && !sc->module->safe)
    {
        error("__gshared not allowed in safe mode; use shared");
    }
#endif

    Dsymbol *parent = toParent();
    FuncDeclaration *fd = parent->isFuncDeclaration();

    Type *tb = type->toBasetype();
    if (tb->ty == Tvoid && !(storage_class & STClazy))
    {   error("voids have no value");
        type = Type::terror;
        tb = type;
    }
    if (tb->ty == Tfunction)
    {   error("cannot be declared to be a function");
        type = Type::terror;
        tb = type;
    }
    if (tb->ty == Tstruct)
    {   TypeStruct *ts = (TypeStruct *)tb;

        if (!ts->sym->members)
        {
            error("no definition of struct %s", ts->toChars());
        }
    }

    if (tb->ty == Ttuple)
    {   /* Instead, declare variables for each of the tuple elements
         * and add those.
         */
        TypeTuple *tt = (TypeTuple *)tb;
        size_t nelems = Parameter::dim(tt->arguments);
        Objects *exps = new Objects();
        exps->setDim(nelems);
        Expression *ie = init ? init->toExpression() : NULL;

        for (size_t i = 0; i < nelems; i++)
        {   Parameter *arg = Parameter::getNth(tt->arguments, i);

            OutBuffer buf;
            buf.printf("_%s_field_%zu", ident->toChars(), i);
            buf.writeByte(0);
            const char *name = (const char *)buf.extractData();
            Identifier *id = Lexer::idPool(name);

            Expression *einit = ie;
            if (ie && ie->op == TOKtuple)
            {   einit = (Expression *)((TupleExp *)ie)->exps->data[i];
            }
            Initializer *ti = init;
            if (einit)
            {   ti = new ExpInitializer(einit->loc, einit);
            }

            VarDeclaration *v = new VarDeclaration(loc, arg->type, id, ti);
            //printf("declaring field %s of type %s\n", v->toChars(), v->type->toChars());
            v->semantic(sc);

            if (sc->scopesym)
            {   //printf("adding %s to %s\n", v->toChars(), sc->scopesym->toChars());
                if (sc->scopesym->members)
                    sc->scopesym->members->push(v);
            }

            Expression *e = new DsymbolExp(loc, v);
            exps->data[i] = e;
        }
        TupleDeclaration *v2 = new TupleDeclaration(loc, ident, exps);
        v2->isexp = 1;
        aliassym = v2;
        return;
    }

    if (storage_class & STCconst && !init && !fd)
        // Initialize by constructor only
        storage_class = (storage_class & ~STCconst) | STCctorinit;

    if (isConst())
    {
    }
    else if (isStatic())
    {
    }
    else if (isSynchronized())
    {
        error("variable %s cannot be synchronized", toChars());
    }
    else if (isOverride())
    {
        error("override cannot be applied to variable");
    }
    else if (isAbstract())
    {
        error("abstract cannot be applied to variable");
    }
    else if (storage_class & STCtemplateparameter)
    {
    }
    else if (storage_class & STCctfe)
    {
    }
    else
    {
        AggregateDeclaration *aad = sc->anonAgg;
        if (!aad)
            aad = parent->isAggregateDeclaration();
        if (aad)
        {
#if DMDV2
            assert(!(storage_class & (STCextern | STCstatic | STCtls | STCgshared)));

            if (storage_class & (STCconst | STCimmutable) && init)
            {
                if (!type->toBasetype()->isTypeBasic())
                    storage_class |= STCstatic;
            }
            else
#endif
                aad->addField(sc, this);
        }

        InterfaceDeclaration *id = parent->isInterfaceDeclaration();
        if (id)
        {
            error("field not allowed in interface");
        }

        /* Templates cannot add fields to aggregates
         */
        TemplateInstance *ti = parent->isTemplateInstance();
        if (ti)
        {
            // Take care of nested templates
            while (1)
            {
                TemplateInstance *ti2 = ti->tempdecl->parent->isTemplateInstance();
                if (!ti2)
                    break;
                ti = ti2;
            }

            // If it's a member template
            AggregateDeclaration *ad = ti->tempdecl->isMember();
            if (ad && storage_class != STCundefined)
            {
                error("cannot use template to add field to aggregate '%s'", ad->toChars());
            }
        }
    }

#if DMDV2
    if ((storage_class & (STCref | STCparameter | STCforeach)) == STCref &&
        ident != Id::This)
    {
        error("only parameters or foreach declarations can be ref");
    }
#endif

    if (type->isauto() && !noauto)
    {
        if (storage_class & (STCfield | STCout | STCref | STCstatic) || !fd)
        {
            error("globals, statics, fields, ref and out parameters cannot be auto");
        }

        if (!(storage_class & (STCauto | STCscope)))
        {
            if (!(storage_class & STCparameter) && ident != Id::withSym)
                error("reference to scope class must be scope");
        }
    }

    enum TOK op = TOKconstruct;
    if (!init && !sc->inunion && !isStatic() && !isConst() && fd &&
        !(storage_class & (STCfield | STCin | STCforeach)) &&
        type->size() != 0)
    {
        // Provide a default initializer
        //printf("Providing default initializer for '%s'\n", toChars());
        if (type->ty == Tstruct &&
            ((TypeStruct *)type)->sym->zeroInit == 1)
        {   /* If a struct is all zeros, as a special case
             * set it's initializer to the integer 0.
             * In AssignExp::toElem(), we check for this and issue
             * a memset() to initialize the struct.
             * Must do same check in interpreter.
             */
            Expression *e = new IntegerExp(loc, 0, Type::tint32);
            Expression *e1;
            e1 = new VarExp(loc, this);
            e = new AssignExp(loc, e1, e);
            e->op = TOKconstruct;
            e->type = e1->type;         // don't type check this, it would fail
            init = new ExpInitializer(loc, e);
            return;
        }
        else if (type->ty == Ttypedef)
        {   TypeTypedef *td = (TypeTypedef *)type;
            if (td->sym->init)
            {   init = td->sym->init;
                ExpInitializer *ie = init->isExpInitializer();
                if (ie)
                    // Make copy so we can modify it
                    init = new ExpInitializer(ie->loc, ie->exp);
            }
            else
                init = getExpInitializer();
        }
        else
        {
            init = getExpInitializer();
        }
        // Default initializer is always a blit
        op = TOKblit;
    }

    if (init)
    {
        sc = sc->push();
        sc->stc &= ~(STC_TYPECTOR | STCpure | STCnothrow | STCref);

        ArrayInitializer *ai = init->isArrayInitializer();
        if (ai && tb->ty == Taarray)
        {
            init = ai->toAssocArrayInitializer();
        }

        StructInitializer *si = init->isStructInitializer();
        ExpInitializer *ei = init->isExpInitializer();

        // See if initializer is a NewExp that can be allocated on the stack
        if (ei && isScope() && ei->exp->op == TOKnew)
        {   NewExp *ne = (NewExp *)ei->exp;
            if (!(ne->newargs && ne->newargs->dim))
            {   ne->onstack = 1;
                onstack = 1;
                if (type->isBaseOf(ne->newtype->semantic(loc, sc), NULL))
                    onstack = 2;
            }
        }

        // If inside function, there is no semantic3() call
        if (sc->func)
        {
            // If local variable, use AssignExp to handle all the various
            // possibilities.
            if (fd && !isStatic() && !isConst() && !init->isVoidInitializer())
            {
                //printf("fd = '%s', var = '%s'\n", fd->toChars(), toChars());
                if (!ei)
                {
                    Expression *e = init->toExpression();
                    if (!e)
                    {
                        init = init->semantic(sc, type);
                        e = init->toExpression();
                        if (!e)
                        {   error("is not a static and cannot have static initializer");
                            return;
                        }
                    }
                    ei = new ExpInitializer(init->loc, e);
                    init = ei;
                }

                Expression *e1 = new VarExp(loc, this);

                Type *t = type->toBasetype();
                if (t->ty == Tsarray && !(storage_class & (STCref | STCout)))
                {
                    ei->exp = ei->exp->semantic(sc);
                    if (!ei->exp->implicitConvTo(type))
                    {
                        int dim = ((TypeSArray *)t)->dim->toInteger();
                        // If multidimensional static array, treat as one large array
                        while (1)
                        {
                            t = t->nextOf()->toBasetype();
                            if (t->ty != Tsarray)
                                break;
                            dim *= ((TypeSArray *)t)->dim->toInteger();
                            e1->type = new TypeSArray(t->nextOf(), new IntegerExp(0, dim, Type::tindex));
                        }
                    }
                    e1 = new SliceExp(loc, e1, NULL, NULL);
                }
                else if (t->ty == Tstruct)
                {
                    ei->exp = ei->exp->semantic(sc);
                    ei->exp = resolveProperties(sc, ei->exp);
                    StructDeclaration *sd = ((TypeStruct *)t)->sym;
#if DMDV2
                    /* Look to see if initializer is a call to the constructor
                     */
                    if (sd->ctor &&             // there are constructors
                        ei->exp->type->ty == Tstruct && // rvalue is the same struct
                        ((TypeStruct *)ei->exp->type)->sym == sd &&
                        ei->exp->op == TOKstar)
                    {
                        /* Look for form of constructor call which is:
                         *    *__ctmp.ctor(arguments...)
                         */
                        PtrExp *pe = (PtrExp *)ei->exp;
                        if (pe->e1->op == TOKcall)
                        {   CallExp *ce = (CallExp *)pe->e1;
                            if (ce->e1->op == TOKdotvar)
                            {   DotVarExp *dve = (DotVarExp *)ce->e1;
                                if (dve->var->isCtorDeclaration())
                                {   /* It's a constructor call, currently constructing
                                     * a temporary __ctmp.
                                     */
                                    /* Before calling the constructor, initialize
                                     * variable with a bit copy of the default
                                     * initializer
                                     */
                                    Expression *e = new AssignExp(loc, new VarExp(loc, this), t->defaultInit(loc));
                                    e->op = TOKblit;
                                    e->type = t;
                                    ei->exp = new CommaExp(loc, e, ei->exp);

                                    /* Replace __ctmp being constructed with e1
                                     */
                                    dve->e1 = e1;
                                    return;
                                }
                            }
                        }
                    }
#endif
                    if (!ei->exp->implicitConvTo(type))
                    {
                        /* Look for opCall
                         * See bugzilla 2702 for more discussion
                         */
                        Type *ti = ei->exp->type->toBasetype();
                        // Don't cast away invariant or mutability in initializer
                        if (search_function(sd, Id::call) &&
                            /* Initializing with the same type is done differently
                             */
                            !(ti->ty == Tstruct && t->toDsymbol(sc) == ti->toDsymbol(sc)))
                        {   // Rewrite as e1.call(arguments)
                            Expression * eCall = new DotIdExp(loc, e1, Id::call);
                            ei->exp = new CallExp(loc, eCall, ei->exp);
                        }
                    }
                }
                ei->exp = new AssignExp(loc, e1, ei->exp);
                ei->exp->op = TOKconstruct;
                canassign++;
                ei->exp = ei->exp->semantic(sc);
                canassign--;
                ei->exp->optimize(WANTvalue);
            }
            else
            {
                init = init->semantic(sc, type);
                if (fd && isConst() && !isStatic())
                {   // Make it static
                    storage_class |= STCstatic;
                }
            }
        }
        else if (isConst() || isFinal() ||
                 parent->isAggregateDeclaration())
        {
            /* Because we may need the results of a const declaration in a
             * subsequent type, such as an array dimension, before semantic2()
             * gets ordinarily run, try to run semantic2() now.
             * Ignore failure.
             */

            if (!global.errors && !inferred)
            {
                unsigned errors = global.errors;
                global.gag++;
                //printf("+gag\n");
                Expression *e;
                Initializer *i2 = init;
                inuse++;
                if (ei)
                {
                    e = ei->exp->syntaxCopy();
                    e = e->semantic(sc);
                    e = e->implicitCastTo(sc, type);
                }
                else if (si || ai)
                {   i2 = init->syntaxCopy();
                    i2 = i2->semantic(sc, type);
                }
                inuse--;
                global.gag--;
                //printf("-gag\n");
                if (errors != global.errors)    // if errors happened
                {
                    if (global.gag == 0)
                        global.errors = errors; // act as if nothing happened
#if DMDV2
                    /* Save scope for later use, to try again
                     */
                    scope = new Scope(*sc);
                    scope->setNoFree();
#endif
                }
                else if (ei)
                {
                    e = e->optimize(WANTvalue | WANTinterpret);
                    if (e->op == TOKint64 || e->op == TOKstring || e->op == TOKfloat64)
                    {
                        ei->exp = e;            // no errors, keep result
                    }
#if DMDV2
                    else
                    {
                        /* Save scope for later use, to try again
                         */
                        scope = new Scope(*sc);
                        scope->setNoFree();
                    }
#endif
                }
                else
                    init = i2;          // no errors, keep result
            }
        }
        sc = sc->pop();
    }
}
Пример #5
0
int ForeachStatement::inferAggregate(Scope *sc, Dsymbol *&sapply)
{
    Identifier *idapply = (op == TOKforeach) ? Id::apply : Id::applyReverse;
#if DMDV2
    Identifier *idfront = (op == TOKforeach) ? Id::Ffront : Id::Fback;
    int sliced = 0;
#endif
    Type *tab;
    Type *att = NULL;
    Expression *org_aggr = aggr;
    AggregateDeclaration *ad;

    while (1)
    {
        aggr = aggr->semantic(sc);
        aggr = resolveProperties(sc, aggr);
        aggr = aggr->optimize(WANTvalue);
        if (!aggr->type)
            goto Lerr;

        tab = aggr->type->toBasetype();
        if (att == tab)
        {   aggr = org_aggr;
            goto Lerr;
        }
        switch (tab->ty)
        {
            case Tarray:
            case Tsarray:
            case Ttuple:
            case Taarray:
                break;

            case Tclass:
                ad = ((TypeClass *)tab)->sym;
                goto Laggr;

            case Tstruct:
                ad = ((TypeStruct *)tab)->sym;
                goto Laggr;

            Laggr:
#if DMDV2
                if (!sliced)
                {
                    sapply = search_function(ad, idapply);
                    if (sapply)
                    {   // opApply aggregate
                        break;
                    }

                    Dsymbol *s = search_function(ad, Id::slice);
                    if (s)
                    {   Expression *rinit = new SliceExp(aggr->loc, aggr, NULL, NULL);
                        rinit = rinit->trySemantic(sc);
                        if (rinit)                  // if application of [] succeeded
                        {   aggr = rinit;
                            sliced = 1;
                            continue;
                        }
                    }
                }

                if (Dsymbol *shead = ad->search(Loc(), idfront, 0))
                {   // range aggregate
                    break;
                }

                if (ad->aliasthis)
                {
                    if (!att && tab->checkAliasThisRec())
                        att = tab;
                    aggr = new DotIdExp(aggr->loc, aggr, ad->aliasthis->ident);
                    continue;
                }
#else
                sapply = search_function(ad, idapply);
                if (sapply)
                {   // opApply aggregate
                    break;
                }
#endif
                goto Lerr;

            case Tdelegate:
                if (aggr->op == TOKdelegate)
                {   DelegateExp *de = (DelegateExp *)aggr;
                    sapply = de->func->isFuncDeclaration();
                }
                break;

            case Terror:
                break;

            default:
                goto Lerr;
        }
        break;
    }
    return 1;

Lerr:
    return 0;
}
Пример #6
0
Expression *UnaExp::op_overload(Scope *sc)
{
    //printf("UnaExp::op_overload() (%s)\n", toChars());

#if DMDV2
    if (e1->op == TOKarray)
    {
        ArrayExp *ae = (ArrayExp *)e1;
        ae->e1 = ae->e1->semantic(sc);
        ae->e1 = resolveProperties(sc, ae->e1);

        AggregateDeclaration *ad = isAggregate(ae->e1->type);
        if (ad)
        {
            /* Rewrite as:
             *  a.opIndexUnary!("+")(args);
             */
            Dsymbol *fd = search_function(ad, Id::opIndexUnary);
            if (fd)
            {
                Objects *targsi = opToArg(sc, op);
                Expression *e = new DotTemplateInstanceExp(loc, ae->e1, fd->ident, targsi);
                e = new CallExp(loc, e, ae->arguments);
                e = e->semantic(sc);
                return e;
            }

            // Didn't find it. Forward to aliasthis
            if (ad->aliasthis)
            {
                /* Rewrite op(a[arguments]) as:
                 *      op(a.aliasthis[arguments])
                 */
                Expression *e1 = ae->copy();
                ((ArrayExp *)e1)->e1 = new DotIdExp(loc, ae->e1, ad->aliasthis->ident);
                Expression *e = copy();
                ((UnaExp *)e)->e1 = e1;
                e = e->trySemantic(sc);
                return e;
            }
        }
    }
    else if (e1->op == TOKslice)
    {
        SliceExp *se = (SliceExp *)e1;
        se->e1 = se->e1->semantic(sc);
        se->e1 = resolveProperties(sc, se->e1);

        AggregateDeclaration *ad = isAggregate(se->e1->type);
        if (ad)
        {
            /* Rewrite as:
             *  a.opSliceUnary!("+")(lwr, upr);
             */
            Dsymbol *fd = search_function(ad, Id::opSliceUnary);
            if (fd)
            {
                Expressions *a = new Expressions();
                if (se->lwr)
                {   a->push(se->lwr);
                    a->push(se->upr);
                }

                Objects *targsi = opToArg(sc, op);
                Expression *e = new DotTemplateInstanceExp(loc, se->e1, fd->ident, targsi);
                e = new CallExp(loc, e, a);
                e = e->semantic(sc);
                return e;
            }

            // Didn't find it. Forward to aliasthis
            if (ad->aliasthis)
            {
                /* Rewrite op(a[lwr..upr]) as:
                 *      op(a.aliasthis[lwr..upr])
                 */
                Expression *e1 = se->copy();
                ((SliceExp *)e1)->e1 = new DotIdExp(loc, se->e1, ad->aliasthis->ident);
                Expression *e = copy();
                ((UnaExp *)e)->e1 = e1;
                e = e->trySemantic(sc);
                return e;
            }
        }
    }
#endif

    e1 = e1->semantic(sc);
    e1 = resolveProperties(sc, e1);

    AggregateDeclaration *ad = isAggregate(e1->type);
    if (ad)
    {
        Dsymbol *fd = NULL;
#if 1 // Old way, kept for compatibility with D1
        if (op != TOKpreplusplus && op != TOKpreminusminus)
        {   fd = search_function(ad, opId());
            if (fd)
            {
                if (op == TOKarray)
                {
                    /* Rewrite op e1[arguments] as:
                     *    e1.fd(arguments)
                     */
                    Expression *e = new DotIdExp(loc, e1, fd->ident);
                    ArrayExp *ae = (ArrayExp *)this;
                    e = new CallExp(loc, e, ae->arguments);
                    e = e->semantic(sc);
                    return e;
                }
                else
                {
                    // Rewrite +e1 as e1.add()
                    return build_overload(loc, sc, e1, NULL, fd);
                }
            }
        }
#endif

#if DMDV2
        /* Rewrite as:
         *      e1.opUnary!("+")();
         */
        fd = search_function(ad, Id::opUnary);
        if (fd)
        {
            Objects *targsi = opToArg(sc, op);
            Expression *e = new DotTemplateInstanceExp(loc, e1, fd->ident, targsi);
            e = new CallExp(loc, e);
            e = e->semantic(sc);
            return e;
        }

        // Didn't find it. Forward to aliasthis
        if (ad->aliasthis)
        {
            /* Rewrite op(e1) as:
             *  op(e1.aliasthis)
             */
            Expression *e1 = new DotIdExp(loc, this->e1, ad->aliasthis->ident);
            Expression *e = copy();
            ((UnaExp *)e)->e1 = e1;
            e = e->trySemantic(sc);
            return e;
        }
#endif
    }
    return NULL;
}
Пример #7
0
/******************************************
 * Common code for overloading of EqualExp and CmpExp
 */
Expression *BinExp::compare_overload(Scope *sc, Identifier *id)
{
    //printf("BinExp::compare_overload(id = %s) %s\n", id->toChars(), toChars());

    AggregateDeclaration *ad1 = isAggregate(e1->type);
    AggregateDeclaration *ad2 = isAggregate(e2->type);

    Dsymbol *s = NULL;
    Dsymbol *s_r = NULL;

    if (ad1)
    {
        s = search_function(ad1, id);
    }
    if (ad2)
    {
        s_r = search_function(ad2, id);
        if (s == s_r)
            s_r = NULL;
    }

    Objects *targsi = NULL;

    if (s || s_r)
    {
        /* Try:
         *      a.opEquals(b)
         *      b.opEquals(a)
         * and see which is better.
         */

        Expressions args1;
        Expressions args2;

        args1.setDim(1);
        args1.tdata()[0] = e1;
        args2.setDim(1);
        args2.tdata()[0] = e2;

        Match m;
        memset(&m, 0, sizeof(m));
        m.last = MATCHnomatch;

        if (0 && s && s_r)
        {
            printf("s  : %s\n", s->toPrettyChars());
            printf("s_r: %s\n", s_r->toPrettyChars());
        }

        if (s)
        {
            FuncDeclaration *fd = s->isFuncDeclaration();
            if (fd)
            {
                overloadResolveX(&m, fd, NULL, &args2, sc->module);
            }
            else
            {   TemplateDeclaration *td = s->isTemplateDeclaration();
                templateResolve(&m, td, sc, loc, targsi, NULL, &args2);
            }
        }

        FuncDeclaration *lastf = m.lastf;
        int count = m.count;

        if (s_r)
        {
            FuncDeclaration *fd = s_r->isFuncDeclaration();
            if (fd)
            {
                overloadResolveX(&m, fd, NULL, &args1, sc->module);
            }
            else
            {   TemplateDeclaration *td = s_r->isTemplateDeclaration();
                templateResolve(&m, td, sc, loc, targsi, NULL, &args1);
            }
        }

        if (m.count > 1)
        {
            /* The following if says "not ambiguous" if there's one match
             * from s and one from s_r, in which case we pick s.
             * This doesn't follow the spec, but is a workaround for the case
             * where opEquals was generated from templates and we cannot figure
             * out if both s and s_r came from the same declaration or not.
             * The test case is:
             *   import std.typecons;
             *   void main() {
             *    assert(tuple("has a", 2u) == tuple("has a", 1));
             *   }
             */
            if (!(m.lastf == lastf && m.count == 2 && count == 1))
            {
                // Error, ambiguous
                error("overloads %s and %s both match argument list for %s",
                    m.lastf->type->toChars(),
                    m.nextf->type->toChars(),
                    m.lastf->toChars());
            }
        }
        else if (m.last == MATCHnomatch)
        {
            m.lastf = m.anyf;
        }

        Expression *e;
        if (lastf && m.lastf == lastf || !s_r && m.last == MATCHnomatch)
            // Rewrite (e1 op e2) as e1.opfunc(e2)
            e = build_overload(loc, sc, e1, e2, m.lastf ? m.lastf : s);
        else
        {   // Rewrite (e1 op e2) as e2.opfunc_r(e1)
            e = build_overload(loc, sc, e2, e1, m.lastf ? m.lastf : s_r);

            // When reversing operands of comparison operators,
            // need to reverse the sense of the op
            switch (op)
            {
                case TOKlt:     op = TOKgt;     break;
                case TOKgt:     op = TOKlt;     break;
                case TOKle:     op = TOKge;     break;
                case TOKge:     op = TOKle;     break;

                // Floating point compares
                case TOKule:    op = TOKuge;     break;
                case TOKul:     op = TOKug;      break;
                case TOKuge:    op = TOKule;     break;
                case TOKug:     op = TOKul;      break;

                // The rest are symmetric
                default:
                    break;
            }
        }

        return e;
    }

    // Try alias this on first operand
    if (ad1 && ad1->aliasthis)
    {
        /* Rewrite (e1 op e2) as:
         *      (e1.aliasthis op e2)
         */
        Expression *e1 = new DotIdExp(loc, this->e1, ad1->aliasthis->ident);
        Expression *e = copy();
        ((BinExp *)e)->e1 = e1;
        e = e->trySemantic(sc);
        return e;
    }

    // Try alias this on second operand
    if (ad2 && ad2->aliasthis)
    {
        /* Rewrite (e1 op e2) as:
         *      (e1 op e2.aliasthis)
         */
        Expression *e2 = new DotIdExp(loc, this->e2, ad2->aliasthis->ident);
        Expression *e = copy();
        ((BinExp *)e)->e2 = e2;
        e = e->trySemantic(sc);
        return e;
    }

    return NULL;
}
Пример #8
0
FuncDeclaration *StructDeclaration::buildXopEquals(Scope *sc)
{
    if (!search_function(this, Id::eq))
        return NULL;

    /* static bool__xopEquals(in void* p, in void* q) {
     *     return ( *cast(const S*)(p) ).opEquals( *cast(const S*)(q) );
     * }
     */

    Parameters *parameters = new Parameters;
    parameters->push(new Parameter(STCin, Type::tvoidptr, Id::p, NULL));
    parameters->push(new Parameter(STCin, Type::tvoidptr, Id::q, NULL));
    TypeFunction *tf = new TypeFunction(parameters, Type::tbool, 0, LINKd);
    tf = (TypeFunction *)tf->semantic(loc, sc);

    Identifier *id = Lexer::idPool("__xopEquals");
    FuncDeclaration *fop = new FuncDeclaration(loc, 0, id, STCstatic, tf);

    Expression *e = new CallExp(0,
        new DotIdExp(0,
            new PtrExp(0, new CastExp(0,
                new IdentifierExp(0, Id::p), type->pointerTo()->constOf())),
            Id::eq),
        new PtrExp(0, new CastExp(0,
            new IdentifierExp(0, Id::q), type->pointerTo()->constOf())));

    fop->fbody = new ReturnStatement(loc, e);

    size_t index = members->dim;
    members->push(fop);

    sc = sc->push();
    sc->stc = 0;
    sc->linkage = LINKd;

    unsigned errors = global.startGagging();
    fop->semantic(sc);
    if (errors == global.gaggedErrors)
    {   fop->semantic2(sc);
        if (errors == global.gaggedErrors)
        {   fop->semantic3(sc);
            if (errors == global.gaggedErrors)
                fop->addMember(sc, this, 1);
        }
    }
    if (global.endGagging(errors))    // if errors happened
    {
        members->remove(index);

        if (!xerreq)
        {
            Expression *e = new IdentifierExp(loc, Id::empty);
            e = new DotIdExp(loc, e, Id::object);
            e = new DotIdExp(loc, e, Lexer::idPool("_xopEquals"));
            e = e->semantic(sc);
            Dsymbol *s = getDsymbol(e);
            FuncDeclaration *fd = s->isFuncDeclaration();

            xerreq = fd;
        }
        fop = xerreq;
    }

    sc->pop();

    return fop;
}
Пример #9
0
FuncDeclaration *StructDeclaration::buildOpAssign(Scope *sc)
{
    if (FuncDeclaration *f = hasIdentityOpAssign(sc))
    {
        hasIdentityAssign = 1;
        return f;
    }
    // Even if non-identity opAssign is defined, built-in identity opAssign
    // will be defined.

    if (!needOpAssign())
        return NULL;

    //printf("StructDeclaration::buildOpAssign() %s\n", toChars());
    StorageClass stc = STCsafe | STCnothrow | STCpure;
    Loc declLoc = this->loc;
    Loc loc = Loc();    // internal code should have no loc to prevent coverage

    if (dtor || postblit)
    {
        if (dtor)
            stc = mergeFuncAttrs(stc, dtor->storage_class);
    }
    else
    {
        for (size_t i = 0; i < fields.dim; i++)
        {
            Dsymbol *s = fields[i];
            VarDeclaration *v = s->isVarDeclaration();
            assert(v && v->isField());
            if (v->storage_class & STCref)
                continue;
            Type *tv = v->type->toBasetype();
            while (tv->ty == Tsarray)
            {   TypeSArray *ta = (TypeSArray *)tv;
                tv = tv->nextOf()->toBasetype();
            }
            if (tv->ty == Tstruct)
            {   TypeStruct *ts = (TypeStruct *)tv;
                StructDeclaration *sd = ts->sym;
                if (FuncDeclaration *f = sd->hasIdentityOpAssign(sc))
                    stc = mergeFuncAttrs(stc, f->storage_class);
            }
        }
    }

    Parameters *fparams = new Parameters;
    fparams->push(new Parameter(STCnodtor, type, Id::p, NULL));
    Type *tf = new TypeFunction(fparams, handle, 0, LINKd, stc | STCref);

    FuncDeclaration *fop = new FuncDeclaration(declLoc, Loc(), Id::assign, stc, tf);

    Expression *e = NULL;
    if (stc & STCdisable)
    {
    }
    else if (dtor || postblit)
    {
        /* Do swap this and rhs
         *    tmp = this; this = s; tmp.dtor();
         */
        //printf("\tswap copy\n");
        Identifier *idtmp = Lexer::uniqueId("__tmp");
        VarDeclaration *tmp;
        AssignExp *ec = NULL;
        if (dtor)
        {
            tmp = new VarDeclaration(loc, type, idtmp, new VoidInitializer(loc));
            tmp->noscope = 1;
            tmp->storage_class |= STCctfe;
            e = new DeclarationExp(loc, tmp);
            ec = new AssignExp(loc,
                new VarExp(loc, tmp),
                new ThisExp(loc)
                );
            ec->op = TOKblit;
            e = Expression::combine(e, ec);
        }
        ec = new AssignExp(loc,
                new ThisExp(loc),
                new IdentifierExp(loc, Id::p));
        ec->op = TOKblit;
        e = Expression::combine(e, ec);
        if (dtor)
        {
            /* Instead of running the destructor on s, run it
             * on tmp. This avoids needing to copy tmp back in to s.
             */
            Expression *ec2 = new DotVarExp(loc, new VarExp(loc, tmp), dtor, 0);
            ec2 = new CallExp(loc, ec2);
            e = Expression::combine(e, ec2);
        }
    }
    else
    {
        /* Do memberwise copy
         */
        //printf("\tmemberwise copy\n");
        for (size_t i = 0; i < fields.dim; i++)
        {
            Dsymbol *s = fields[i];
            VarDeclaration *v = s->isVarDeclaration();
            assert(v && v->isField());
            // this.v = s.v;
            AssignExp *ec = new AssignExp(loc,
                new DotVarExp(loc, new ThisExp(loc), v, 0),
                new DotVarExp(loc, new IdentifierExp(loc, Id::p), v, 0));
            e = Expression::combine(e, ec);
        }
    }
    if (e)
    {
        Statement *s1 = new ExpStatement(loc, e);

        /* Add:
         *   return this;
         */
        e = new ThisExp(loc);
        Statement *s2 = new ReturnStatement(loc, e);

        fop->fbody = new CompoundStatement(loc, s1, s2);
    }

    Dsymbol *s = fop;
#if 1   // workaround until fixing issue 1528
    Dsymbol *assign = search_function(this, Id::assign);
    if (assign && assign->isTemplateDeclaration())
    {
        // Wrap a template around the function declaration
        TemplateParameters *tpl = new TemplateParameters();
        Dsymbols *decldefs = new Dsymbols();
        decldefs->push(s);
        TemplateDeclaration *tempdecl =
            new TemplateDeclaration(assign->loc, fop->ident, tpl, NULL, decldefs, 0);
        s = tempdecl;
    }
#endif
    members->push(s);
    s->addMember(sc, this, 1);
    this->hasIdentityAssign = 1;        // temporary mark identity assignable

    unsigned errors = global.startGagging();    // Do not report errors, even if the
    unsigned oldspec = global.speculativeGag;   // template opAssign fbody makes it.
    global.speculativeGag = global.gag;
    Scope *sc2 = sc->push();
    sc2->stc = 0;
    sc2->linkage = LINKd;
    sc2->speculative = true;

    s->semantic(sc2);
    s->semantic2(sc2);
    s->semantic3(sc2);

    sc2->pop();
    global.speculativeGag = oldspec;
    if (global.endGagging(errors))    // if errors happened
    {   // Disable generated opAssign, because some members forbid identity assignment.
        fop->storage_class |= STCdisable;
        fop->fbody = NULL;  // remove fbody which contains the error
    }

    //printf("-StructDeclaration::buildOpAssign() %s %s, errors = %d\n", toChars(), s->kind(), (fop->storage_class & STCdisable) != 0);

    return fop;
}
Пример #10
0
void StructDeclaration::semantic(Scope *sc)
{
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", this, parent->toChars(), toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    assert(type);
    if (!members)               // if opaque declaration
    {
        return;
    }

    if (symtab)
    {   if (sizeok == SIZEOKdone || !scope)
        {   //printf("already completed\n");
            scope = NULL;
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {
        sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }
    unsigned dprogress_save = Module::dprogress;
    int errors = global.errors;

    parent = sc->parent;
    type = type->semantic(loc, sc);
    handle = type;
    protection = sc->protection;
    alignment = sc->structalign;
    storage_class |= sc->stc;
    if (sc->stc & STCdeprecated)
        isdeprecated = true;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
        error("structs, unions cannot be abstract");
    userAttributes = sc->userAttributes;

    if (sizeok == SIZEOKnone)            // if not already done the addMember step
    {
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
        }
    }

    sizeok = SIZEOKnone;
    sc2 = sc->push(this);
    sc2->stc &= STCsafe | STCtrusted | STCsystem;
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;
    sc2->structalign = STRUCTALIGN_DEFAULT;
    sc2->userAttributes = NULL;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        //printf("struct: setScope %s %s\n", s->kind(), s->toChars());
        s->setScope(sc2);
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];

        /* If this is the last member, see if we can finish setting the size.
         * This could be much better - finish setting the size after the last
         * field was processed. The problem is the chicken-and-egg determination
         * of when that is. See Bugzilla 7426 for more info.
         */
        if (i + 1 == members->dim)
        {
            if (sizeok == SIZEOKnone && s->isAliasDeclaration())
                finalizeSize(sc2);
        }

        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();
        s->semantic(sc2);
    }
    finalizeSize(sc2);

    if (sizeok == SIZEOKfwd)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        for (size_t i = 0; i < fields.dim; i++)
        {   Dsymbol *s = fields[i];
            VarDeclaration *vd = s->isVarDeclaration();
            if (vd)
                vd->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
//        structalign = 0;

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (size_t i = 0; i < fields.dim; i++)
    {
        Dsymbol *s = fields[i];
        VarDeclaration *vd = s->isVarDeclaration();
        if (vd && !vd->isDataseg())
        {
            if (vd->init)
            {
                // Should examine init to see if it is really all 0's
                zeroInit = 0;
                break;
            }
            else
            {
                if (!vd->type->isZeroInit(loc))
                {
                    zeroInit = 0;
                    break;
                }
            }
        }
    }

#if DMDV1
    /* This doesn't work for DMDV2 because (ref S) and (S) parameter
     * lists will overload the same.
     */
    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *  int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, handle, Id::p, NULL);

        arguments->push(arg);
        tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeqptr = (TypeFunction *)tfeqptr->semantic(Loc(), sc);
    }

    TypeFunction *tfeq;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, type, NULL, NULL);

        arguments->push(arg);
        tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeq = (TypeFunction *)tfeq->semantic(Loc(), sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
        Dsymbol *s = search_function(this, id);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
            if (!fd)
            {   fd = fdx->overloadExactMatch(tfeq);
                if (fd)
                {   // Create the thunk, fdptr
                    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
                    Expression *e = new IdentifierExp(loc, Id::p);
                    e = new PtrExp(loc, e);
                    Expressions *args = new Expressions();
                    args->push(e);
                    e = new IdentifierExp(loc, id);
                    e = new CallExp(loc, e, args);
                    fdptr->fbody = new ReturnStatement(loc, e);
                    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
                    assert(s);
                    s->members->push(fdptr);
                    fdptr->addMember(sc, s, 1);
                    fdptr->semantic(sc2);
                }
            }
        }

        id = Id::cmp;
    }
#endif
#if DMDV2
    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);

    buildOpAssign(sc2);
    buildOpEquals(sc2);

    xeq = buildXopEquals(sc2);
    xcmp = buildXopCmp(sc2);

    /* Even if the struct is merely imported and its semantic3 is not run,
     * the TypeInfo object would be speculatively stored in each object
     * files. To set correct function pointer, run semantic3 for xeq and xcmp.
     */
    //if ((xeq && xeq != xerreq || xcmp && xcmp != xerrcmp) && isImportedSym(this))
    //    Module::addDeferredSemantic3(this);
    /* Defer requesting semantic3 until TypeInfo generation is actually invoked.
     * See Type::getTypeInfo().
     */
#endif
    inv = buildInv(sc2);

    sc2->pop();

    /* Look for special member functions.
     */
#if DMDV2
    ctor = search(Loc(), Id::ctor, 0);
#endif
    aggNew =       (NewDeclaration *)search(Loc(), Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(Loc(), Id::classDelete,    0);

    TypeTuple *tup = type->toArgTypes();
    size_t dim = tup->arguments->dim;
    if (dim >= 1)
    {   assert(dim <= 2);
        arg1type = (*tup->arguments)[0]->type;
        if (dim == 2)
            arg2type = (*tup->arguments)[1]->type;
    }

    if (sc->func)
    {
        semantic2(sc);
        semantic3(sc);
    }

    if (global.errors != errors)
    {   // The type is no good.
        type = Type::terror;
    }

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }

#if 0
    if (type->ty == Tstruct && ((TypeStruct *)type)->sym != this)
    {
        printf("this = %p %s\n", this, this->toChars());
        printf("type = %d sym = %p\n", type->ty, ((TypeStruct *)type)->sym);
    }
#endif
    assert(type->ty != Tstruct || ((TypeStruct *)type)->sym == this);
}
Пример #11
0
FuncDeclaration *StructDeclaration::buildOpEquals(Scope *sc)
{
    Dsymbol *eq = search_function(this, Id::eq);
    if (eq)
    {
        for (size_t i = 0; i <= 1; i++)
        {
            Expression *e =
                i == 0 ? new NullExp(loc, type->constOf())  // dummy rvalue
                       : type->constOf()->defaultInit();    // dummy lvalue
            Expressions *arguments = new Expressions();
            arguments->push(e);

            // check identity opEquals exists
            FuncDeclaration *fd = eq->isFuncDeclaration();
            if (fd)
            {   fd = fd->overloadResolve(loc, e, arguments, 1);
                if (fd && !(fd->storage_class & STCdisable))
                    return fd;
            }

            TemplateDeclaration *td = eq->isTemplateDeclaration();
            if (td)
            {   fd = td->deduceFunctionTemplate(sc, loc, NULL, e, arguments, 1);
                if (fd && !(fd->storage_class & STCdisable))
                    return fd;
            }
        }
        return NULL;
    }

    if (!needOpEquals())
        return NULL;

    //printf("StructDeclaration::buildOpEquals() %s\n", toChars());

    Parameters *parameters = new Parameters;
    parameters->push(new Parameter(STCin, type, Id::p, NULL));
    TypeFunction *tf = new TypeFunction(parameters, Type::tbool, 0, LINKd);
    tf->mod = MODconst;
    tf = (TypeFunction *)tf->semantic(loc, sc);

    FuncDeclaration *fop = new FuncDeclaration(loc, 0, Id::eq, STCundefined, tf);

    Expression *e = NULL;
    /* Do memberwise compare
     */
    //printf("\tmemberwise compare\n");
    for (size_t i = 0; i < fields.dim; i++)
    {
        Dsymbol *s = fields[i];
        VarDeclaration *v = s->isVarDeclaration();
        assert(v && v->storage_class & STCfield);
        if (v->storage_class & STCref)
            assert(0);                  // what should we do with this?
        // this.v == s.v;
        EqualExp *ec = new EqualExp(TOKequal, loc,
            new DotVarExp(loc, new ThisExp(loc), v, 0),
            new DotVarExp(loc, new IdentifierExp(loc, Id::p), v, 0));
        if (e)
            e = new AndAndExp(loc, e, ec);
        else
            e = ec;
    }
    if (!e)
        e = new IntegerExp(loc, 1, Type::tbool);
    fop->fbody = new ReturnStatement(loc, e);

    members->push(fop);
    fop->addMember(sc, this, 1);

    sc = sc->push();
    sc->stc = 0;
    sc->linkage = LINKd;

    fop->semantic(sc);

    sc->pop();

    //printf("-StructDeclaration::buildOpEquals() %s\n", toChars());

    return fop;
}
Пример #12
0
void TypeInfoStructDeclaration::toDt(dt_t **pdt)
{
    //printf("TypeInfoStructDeclaration::toDt() '%s'\n", toChars());

    unsigned offset = Type::typeinfostruct->structsize;

    dtxoff(pdt, Type::typeinfostruct->toVtblSymbol(), 0, TYnptr); // vtbl for TypeInfo_Struct
    dtdword(pdt, 0);                        // monitor

    assert(tinfo->ty == Tstruct);

    TypeStruct *tc = (TypeStruct *)tinfo;
    StructDeclaration *sd = tc->sym;

    /* Put out:
     *  char[] name;
     *  void[] init;
     *  hash_t function(void*) xtoHash;
     *  int function(void*,void*) xopEquals;
     *  int function(void*,void*) xopCmp;
     *  char[] function(void*) xtoString;
     *  uint m_flags;
     *
     *  name[]
     */

    const char *name = sd->toPrettyChars();
    size_t namelen = strlen(name);
    dtdword(pdt, namelen);
    //dtabytes(pdt, TYnptr, 0, namelen + 1, name);
    dtxoff(pdt, toSymbol(), offset, TYnptr);
    offset += namelen + 1;

    // void[] init;
    dtdword(pdt, sd->structsize);       // init.length
    if (sd->zeroInit)
        dtdword(pdt, 0);                // NULL for 0 initialization
    else
        dtxoff(pdt, sd->toInitializer(), 0, TYnptr);    // init.ptr

    FuncDeclaration *fd;
    FuncDeclaration *fdx;
    TypeFunction *tf;
    Type *ta;
    Dsymbol *s;

    static TypeFunction *tftohash;
    static TypeFunction *tftostring;

    if (!tftohash)
    {
        Scope sc;

        tftohash = new TypeFunction(NULL, Type::thash_t, 0, LINKd);
        tftohash = (TypeFunction *)tftohash->semantic(0, &sc);

        tftostring = new TypeFunction(NULL, Type::tchar->arrayOf(), 0, LINKd);
        tftostring = (TypeFunction *)tftostring->semantic(0, &sc);
    }

    TypeFunction *tfeqptr;
    {
        Scope sc;
        Parameters *arguments = new Parameters;
#if STRUCTTHISREF
        // arg type is ref const T
        Parameter *arg = new Parameter(STCref, tc->constOf(), NULL, NULL);
#else
        // arg type is const T*
        Parameter *arg = new Parameter(STCin, tc->pointerTo(), NULL, NULL);
#endif

        arguments->push(arg);
        tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, &sc);
    }

#if 0
    TypeFunction *tfeq;
    {
        Scope sc;
        Array *arguments = new Array;
        Parameter *arg = new Parameter(In, tc, NULL, NULL);

        arguments->push(arg);
        tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeq = (TypeFunction *)tfeq->semantic(0, &sc);
    }
#endif

    s = search_function(sd, Id::tohash);
    fdx = s ? s->isFuncDeclaration() : NULL;
    if (fdx)
    {   fd = fdx->overloadExactMatch(tftohash);
        if (fd)
            dtxoff(pdt, fd->toSymbol(), 0, TYnptr);
        else
            //fdx->error("must be declared as extern (D) uint toHash()");
            dtdword(pdt, 0);
    }
    else
        dtdword(pdt, 0);

    s = search_function(sd, Id::eq);
    fdx = s ? s->isFuncDeclaration() : NULL;
    for (int i = 0; i < 2; i++)
    {
        if (fdx)
        {   fd = fdx->overloadExactMatch(tfeqptr);
            if (fd)
                dtxoff(pdt, fd->toSymbol(), 0, TYnptr);
            else
                //fdx->error("must be declared as extern (D) int %s(%s*)", fdx->toChars(), sd->toChars());
                dtdword(pdt, 0);
        }
        else
            //fdx->error("must be declared as extern (D) int %s(%s*)", fdx->toChars(), sd->toChars());
            dtdword(pdt, 0);

        s = search_function(sd, Id::cmp);
        fdx = s ? s->isFuncDeclaration() : NULL;
    }

    s = search_function(sd, Id::tostring);
    fdx = s ? s->isFuncDeclaration() : NULL;
    if (fdx)
    {   fd = fdx->overloadExactMatch(tftostring);
        if (fd)
            dtxoff(pdt, fd->toSymbol(), 0, TYnptr);
        else
            //fdx->error("must be declared as extern (D) char[] toString()");
            dtdword(pdt, 0);
    }
    else
        dtdword(pdt, 0);

    // uint m_flags;
    dtdword(pdt, tc->hasPointers());

#if DMDV2
    // xgetMembers
    FuncDeclaration *sgetmembers = sd->findGetMembers();
    if (sgetmembers)
        dtxoff(pdt, sgetmembers->toSymbol(), 0, TYnptr);
    else
        dtdword(pdt, 0);                        // xgetMembers

    // xdtor
    FuncDeclaration *sdtor = sd->dtor;
    if (sdtor)
        dtxoff(pdt, sdtor->toSymbol(), 0, TYnptr);
    else
        dtdword(pdt, 0);                        // xdtor

    // xpostblit
    FuncDeclaration *spostblit = sd->postblit;
    if (spostblit)
        dtxoff(pdt, spostblit->toSymbol(), 0, TYnptr);
    else
        dtdword(pdt, 0);                        // xpostblit
#endif
    // name[]
    dtnbytes(pdt, namelen + 1, name);
}
Пример #13
0
int ForeachStatement::inferApplyArgTypes(Scope *sc, Dsymbol *&sapply)
{
    if (!arguments || !arguments->dim)
        return 0;

    if (sapply)     // prefer opApply
    {
        for (size_t u = 0; u < arguments->dim; u++)
        {   Parameter *arg = arguments->tdata()[u];
            if (arg->type)
                arg->type = arg->type->semantic(loc, sc);
        }

        Expression *ethis;
        Type *tab = aggr->type->toBasetype();
        if (tab->ty == Tclass || tab->ty == Tstruct)
            ethis = aggr;
        else
        {   assert(tab->ty == Tdelegate && aggr->op == TOKdelegate);
            ethis = ((DelegateExp *)aggr)->e1;
        }

        /* Look for like an
         *  int opApply(int delegate(ref Type [, ...]) dg);
         * overload
         */
        FuncDeclaration *fd = sapply->isFuncDeclaration();
        if (fd)
        {   sapply = inferApplyArgTypesX(ethis, fd, arguments);
        }
#if 0
        TemplateDeclaration *td = sapply->isTemplateDeclaration();
        if (td)
        {   inferApplyArgTypesZ(td, arguments);
        }
#endif
        return sapply ? 1 : 0;
    }

    /* Return if no arguments need types.
     */
    for (size_t u = 0; u < arguments->dim; u++)
    {   Parameter *arg = arguments->tdata()[u];
        if (!arg->type)
            break;
    }

    AggregateDeclaration *ad;

    Parameter *arg = arguments->tdata()[0];
    Type *taggr = aggr->type;
    assert(taggr);
    Type *tab = taggr->toBasetype();
    switch (tab->ty)
    {
        case Tarray:
        case Tsarray:
        case Ttuple:
            if (arguments->dim == 2)
            {
                if (!arg->type)
                    arg->type = Type::tsize_t;  // key type
                arg = arguments->tdata()[1];
            }
            if (!arg->type && tab->ty != Ttuple)
                arg->type = tab->nextOf();      // value type
            break;

        case Taarray:
        {   TypeAArray *taa = (TypeAArray *)tab;

            if (arguments->dim == 2)
            {
                if (!arg->type)
                    arg->type = taa->index;     // key type
                arg = arguments->tdata()[1];
            }
            if (!arg->type)
                arg->type = taa->next;          // value type
            break;
        }

        case Tclass:
            ad = ((TypeClass *)tab)->sym;
            goto Laggr;

        case Tstruct:
            ad = ((TypeStruct *)tab)->sym;
            goto Laggr;

        Laggr:
            if (arguments->dim == 1)
            {
                if (!arg->type)
                {
                    /* Look for a head() or rear() overload
                     */
                    Identifier *id = (op == TOKforeach) ? Id::Ffront : Id::Fback;
                    Dsymbol *s = search_function(ad, id);
                    FuncDeclaration *fd = s ? s->isFuncDeclaration() : NULL;
                    if (!fd)
                    {   if (s && s->isTemplateDeclaration())
                            break;
                        break;
                    }
                    // Resolve inout qualifier of front type
                    arg->type = fd->type->nextOf();
                    if (arg->type)
                        arg->type = arg->type->substWildTo(tab->mod);
                }
                break;
            }
            break;

        case Tdelegate:
        {
            if (!inferApplyArgTypesY((TypeFunction *)tab->nextOf(), arguments))
                return 0;
            break;
        }

        default:
            break;              // ignore error, caught later
    }
    return 1;
}
Пример #14
0
Dsymbol *ArrayScopeSymbol::search(Loc loc, Identifier *ident, int flags)
{
    //printf("ArrayScopeSymbol::search('%s', flags = %d)\n", ident->toChars(), flags);
    if (ident == Id::length || ident == Id::dollar)
    {   VarDeclaration **pvar;
        Expression *ce;

        if (ident == Id::length && !global.params.useDeprecated)
            error("using 'length' inside [ ] is deprecated, use '$' instead");

    L1:

        if (td)
        {   /* $ gives the number of elements in the tuple
             */
            VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL);
            Expression *e = new IntegerExp(0, td->objects->dim, Type::tsize_t);
            v->init = new ExpInitializer(0, e);
            v->storage_class |= STCstatic | STCconst;
            v->semantic(sc);
            return v;
        }

        if (type)
        {   /* $ gives the number of type entries in the type tuple
             */
            VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL);
            Expression *e = new IntegerExp(0, type->arguments->dim, Type::tsize_t);
            v->init = new ExpInitializer(0, e);
            v->storage_class |= STCstatic | STCconst;
            v->semantic(sc);
            return v;
        }

        if (exp->op == TOKindex)
        {   /* array[index] where index is some function of $
             */
            IndexExp *ie = (IndexExp *)exp;

            pvar = &ie->lengthVar;
            ce = ie->e1;
        }
        else if (exp->op == TOKslice)
        {   /* array[lwr .. upr] where lwr or upr is some function of $
             */
            SliceExp *se = (SliceExp *)exp;

            pvar = &se->lengthVar;
            ce = se->e1;
        }
        else if (exp->op == TOKarray)
        {   /* array[e0, e1, e2, e3] where e0, e1, e2 are some function of $
             * $ is a opDollar!(dim)() where dim is the dimension(0,1,2,...)
             */
            ArrayExp *ae = (ArrayExp *)exp;
            AggregateDeclaration *ad = NULL;

            Type *t = ae->e1->type->toBasetype();
            if (t->ty == Tclass)
            {
                ad = ((TypeClass *)t)->sym;
            }
            else if (t->ty == Tstruct)
            {
                ad = ((TypeStruct *)t)->sym;
            }
            assert(ad);

            Dsymbol *dsym = search_function(ad, Id::opDollar);
            if (!dsym)  // no dollar exists -- search in higher scope
                return NULL;
            VarDeclaration *v = ae->lengthVar;
            if (!v)
            {   // $ is lazily initialized. Create it now.
                TemplateDeclaration *td = dsym->isTemplateDeclaration();
                if (td)
                {   // Instantiate opDollar!(dim) with the index as a template argument
                    Objects *tdargs = new Objects();
                    tdargs->setDim(1);

                    Expression *x = new IntegerExp(0, ae->currentDimension, Type::tsize_t);
                    x = x->semantic(sc);
                    tdargs->data[0] = x;

                    //TemplateInstance *ti = new TemplateInstance(loc, td, tdargs);
                    //ti->semantic(sc);

                    DotTemplateInstanceExp *dte = new DotTemplateInstanceExp(loc, ae->e1, td->ident, tdargs);

                    v = new VarDeclaration(loc, NULL, Id::dollar, new ExpInitializer(0, dte));
                }
                else
                {   /* opDollar exists, but it's a function, not a template.
                     * This is acceptable ONLY for single-dimension indexing.
                     * Note that it's impossible to have both template & function opDollar,
                     * because both take no arguments.
                     */
                    if (ae->arguments->dim != 1) {
                        ae->error("%s only defines opDollar for one dimension", ad->toChars());
                        return NULL;
                    }
                    FuncDeclaration *fd = dsym->isFuncDeclaration();
                    assert(fd);
                    Expression * x = new DotVarExp(loc, ae->e1, fd);

                    v = new VarDeclaration(loc, NULL, Id::dollar, new ExpInitializer(0, x));
                }
                v->semantic(sc);
                ae->lengthVar = v;
            }
            return v;
        }
        else
            /* Didn't find $, look in enclosing scope(s).
             */
            return NULL;

        /* If we are indexing into an array that is really a type
         * tuple, rewrite this as an index into a type tuple and
         * try again.
         */
        if (ce->op == TOKtype)
        {
            Type *t = ((TypeExp *)ce)->type;
            if (t->ty == Ttuple)
            {   type = (TypeTuple *)t;
                goto L1;
            }
        }

        /* *pvar is lazily initialized, so if we refer to $
         * multiple times, it gets set only once.
         */
        if (!*pvar)             // if not already initialized
        {   /* Create variable v and set it to the value of $
             */
            VarDeclaration *v = new VarDeclaration(loc, Type::tsize_t, Id::dollar, NULL);
            if (ce->op == TOKtuple)
            {   /* It is for an expression tuple, so the
                 * length will be a const.
                 */
                Expression *e = new IntegerExp(0, ((TupleExp *)ce)->exps->dim, Type::tsize_t);
                v->init = new ExpInitializer(0, e);
                v->storage_class |= STCstatic | STCconst;
            }
            else
            {   /* For arrays, $ will either be a compile-time constant
                 * (in which case its value in set during constant-folding),
                 * or a variable (in which case an expression is created in
                 * toir.c).
                 */
                VoidInitializer *e = new VoidInitializer(0);
                e->type = Type::tsize_t;
                v->init = e;
                v->storage_class |= STCctfe; // it's never a true static variable
            }
            *pvar = v;
        }
        (*pvar)->semantic(sc);
        return (*pvar);
    }
    return NULL;
}
Пример #15
0
void ClassDeclaration::semantic(Scope *sc)
{
    //printf("ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", toChars(), type, sizeok, this);
    //printf("\tparent = %p, '%s'\n", sc->parent, sc->parent ? sc->parent->toChars() : "");
    //printf("sc->stc = %x\n", sc->stc);

    //{ static int n;  if (++n == 20) *(char*)0=0; }

    if (!ident)         // if anonymous class
    {   const char *id = "__anonclass";

        ident = Identifier::generateId(id);
    }

    if (!sc)
        sc = scope;
    if (!parent && sc->parent && !sc->parent->isModule())
        parent = sc->parent;

    type = type->semantic(loc, sc);
    handle = type;

    if (!members)                       // if forward reference
    {   //printf("\tclass '%s' is forward referenced\n", toChars());
        return;
    }
    if (symtab)
    {   if (sizeok == SIZEOKdone || !scope)
        {   //printf("\tsemantic for '%s' is already completed\n", toChars());
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }
    unsigned dprogress_save = Module::dprogress;
    int errors = global.gaggedErrors;

    if (sc->stc & STCdeprecated)
    {
        isdeprecated = true;
    }
    userAttributes = sc->userAttributes;

    if (sc->linkage == LINKcpp)
        error("cannot create C++ classes");

    // Expand any tuples in baseclasses[]
    for (size_t i = 0; i < baseclasses->dim; )
    {   BaseClass *b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);
        Type *tb = b->type->toBasetype();

        if (tb->ty == Ttuple)
        {   TypeTuple *tup = (TypeTuple *)tb;
            enum PROT protection = b->protection;
            baseclasses->remove(i);
            size_t dim = Parameter::dim(tup->arguments);
            for (size_t j = 0; j < dim; j++)
            {   Parameter *arg = Parameter::getNth(tup->arguments, j);
                b = new BaseClass(arg->type, protection);
                baseclasses->insert(i + j, b);
            }
        }
        else
            i++;
    }

    // See if there's a base class as first in baseclasses[]
    if (baseclasses->dim)
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = (*baseclasses)[0];
        //b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty != Tclass)
        {   if (b->type != Type::terror)
                error("base type must be class or interface, not %s", b->type->toChars());
            baseclasses->remove(0);
        }
        else
        {
            tc = (TypeClass *)(tb);

            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = true;

                    tc->checkDeprecated(loc, sc);
                }
            }

            if (tc->sym->isInterfaceDeclaration())
                ;
            else
            {
                for (ClassDeclaration *cdb = tc->sym; cdb; cdb = cdb->baseClass)
                {
                    if (cdb == this)
                    {
                        error("circular inheritance");
                        baseclasses->remove(0);
                        goto L7;
                    }
                }
                if (!tc->sym->symtab || tc->sym->sizeok == SIZEOKnone)
                {   // Try to resolve forward reference
                    if (/*sc->mustsemantic &&*/ tc->sym->scope)
                        tc->sym->semantic(NULL);
                }
                if (!tc->sym->symtab || tc->sym->scope || tc->sym->sizeok == SIZEOKnone)
                {
                    //printf("%s: forward reference of base class %s\n", toChars(), tc->sym->toChars());
                    //error("forward reference of base class %s", baseClass->toChars());
                    // Forward reference of base class, try again later
                    //printf("\ttry later, forward reference of base class %s\n", tc->sym->toChars());
                    scope = scx ? scx : new Scope(*sc);
                    scope->setNoFree();
                    if (tc->sym->scope)
                        tc->sym->scope->module->addDeferredSemantic(tc->sym);
                    scope->module->addDeferredSemantic(this);
                    return;
                }
                else
                {   baseClass = tc->sym;
                    b->base = baseClass;
                }
             L7: ;
            }
        }
    }

    // Treat the remaining entries in baseclasses as interfaces
    // Check for errors, handle forward references
    for (size_t i = (baseClass ? 1 : 0); i < baseclasses->dim; )
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty == Tclass)
            tc = (TypeClass *)tb;
        else
            tc = NULL;
        if (!tc || !tc->sym->isInterfaceDeclaration())
        {   if (b->type != Type::terror)
                error("base type must be interface, not %s", b->type->toChars());
            baseclasses->remove(i);
            continue;
        }
        else
        {
            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = true;

                    tc->checkDeprecated(loc, sc);
                }
            }

            // Check for duplicate interfaces
            for (size_t j = (baseClass ? 1 : 0); j < i; j++)
            {
                BaseClass *b2 = (*baseclasses)[j];
                if (b2->base == tc->sym)
                    error("inherits from duplicate interface %s", b2->base->toChars());
            }

            if (!tc->sym->symtab)
            {   // Try to resolve forward reference
                if (/*sc->mustsemantic &&*/ tc->sym->scope)
                    tc->sym->semantic(NULL);
            }

            b->base = tc->sym;
            if (!b->base->symtab || b->base->scope)
            {
                //error("forward reference of base class %s", baseClass->toChars());
                // Forward reference of base, try again later
                //printf("\ttry later, forward reference of base %s\n", baseClass->toChars());
                scope = scx ? scx : new Scope(*sc);
                scope->setNoFree();
                if (tc->sym->scope)
                    tc->sym->scope->module->addDeferredSemantic(tc->sym);
                scope->module->addDeferredSemantic(this);
                return;
            }
        }
        i++;
    }


    // If no base class, and this is not an Object, use Object as base class
    if (!baseClass && ident != Id::Object)
    {
        if (!object)
        {
            error("missing or corrupt object.d");
            fatal();
        }

        Type *t = object->type;
        t = t->semantic(loc, sc)->toBasetype();
        assert(t->ty == Tclass);
        TypeClass *tc = (TypeClass *)t;

        BaseClass *b = new BaseClass(tc, PROTpublic);
        baseclasses->shift(b);

        baseClass = tc->sym;
        assert(!baseClass->isInterfaceDeclaration());
        b->base = baseClass;
    }

    interfaces_dim = baseclasses->dim;
    interfaces = baseclasses->tdata();


    if (baseClass)
    {
        if (baseClass->storage_class & STCfinal)
            error("cannot inherit from final class %s", baseClass->toChars());

        interfaces_dim--;
        interfaces++;

        // Copy vtbl[] from base class
        vtbl.setDim(baseClass->vtbl.dim);
        memcpy(vtbl.tdata(), baseClass->vtbl.tdata(), sizeof(void *) * vtbl.dim);

        // Inherit properties from base class
        com = baseClass->isCOMclass();
        isscope = baseClass->isscope;
        vthis = baseClass->vthis;
        storage_class |= baseClass->storage_class & STC_TYPECTOR;
    }
    else
    {
        // No base class, so this is the root of the class hierarchy
        vtbl.setDim(0);
        vtbl.push(this);                // leave room for classinfo as first member
    }

    protection = sc->protection;
    storage_class |= sc->stc;

    if (sizeok == SIZEOKnone)
    {
        interfaceSemantic(sc);

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            s->addMember(sc, this, 1);
        }

        /* If this is a nested class, add the hidden 'this'
         * member which is a pointer to the enclosing scope.
         */
        if (vthis)              // if inheriting from nested class
        {   // Use the base class's 'this' member
            isnested = true;
            if (storage_class & STCstatic)
                error("static class cannot inherit from nested class %s", baseClass->toChars());
            if (toParent2() != baseClass->toParent2() &&
                (!toParent2() ||
                 !baseClass->toParent2()->getType() ||
                 !baseClass->toParent2()->getType()->isBaseOf(toParent2()->getType(), NULL)))
            {
                if (toParent2())
                {
                    error("is nested within %s, but super class %s is nested within %s",
                        toParent2()->toChars(),
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                else
                {
                    error("is not nested, but super class %s is nested within %s",
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                isnested = false;
            }
        }
        else if (!(storage_class & STCstatic))
        {   Dsymbol *s = toParent2();
            if (s)
            {
                AggregateDeclaration *ad = s->isClassDeclaration();
                FuncDeclaration *fd = s->isFuncDeclaration();


                if (ad || fd)
                {   isnested = true;
                    Type *t;
                    if (ad)
                        t = ad->handle;
                    else if (fd)
                    {   AggregateDeclaration *ad2 = fd->isMember2();
                        if (ad2)
                            t = ad2->handle;
                        else
                        {
                            t = Type::tvoidptr;
                        }
                    }
                    else
                        assert(0);
                    if (t->ty == Tstruct)       // ref to struct
                        t = Type::tvoidptr;
                    assert(!vthis);
                    vthis = new ThisDeclaration(loc, t);
                    members->push(vthis);
                }
            }
        }
    }

    if (storage_class & STCauto)
        error("storage class 'auto' is invalid when declaring a class, did you mean to use 'scope'?");
    if (storage_class & STCscope)
        isscope = 1;
    if (storage_class & STCabstract)
        isabstract = 1;

    sc = sc->push(this);
    //sc->stc &= ~(STCfinal | STCauto | STCscope | STCstatic | STCabstract | STCdeprecated | STC_TYPECTOR | STCtls | STCgshared);
    //sc->stc |= storage_class & STC_TYPECTOR;
    sc->stc &= STCsafe | STCtrusted | STCsystem;
    sc->parent = this;
    sc->inunion = 0;

    if (isCOMclass())
    {
#if IN_LLVM
        if (global.params.targetTriple.isOSWindows())
#else
        if (global.params.isWindows)
#endif
            sc->linkage = LINKwindows;
        else
            /* This enables us to use COM objects under Linux and
             * work with things like XPCOM
             */
            sc->linkage = LINKc;
    }
    sc->protection = PROTpublic;
    sc->explicitProtection = 0;
    sc->structalign = STRUCTALIGN_DEFAULT;
    if (baseClass)
    {   sc->offset = baseClass->structsize;
        alignsize = baseClass->alignsize;
//      if (isnested)
//          sc->offset += PTRSIZE;      // room for uplevel context pointer
    }
    else
    {   sc->offset = PTRSIZE * 2;       // allow room for __vptr and __monitor
        alignsize = PTRSIZE;
    }
    sc->userAttributes = NULL;
    structsize = sc->offset;
    Scope scsave = *sc;
    size_t members_dim = members->dim;
    sizeok = SIZEOKnone;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (*members)[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() ||
            (s->isAggregateDeclaration() && s->ident) ||
            s->isTemplateMixin() ||
            s->isAttribDeclaration() ||
            s->isAliasDeclaration())
        {
            //printf("[%d] setScope %s %s, sc = %p\n", i, s->kind(), s->toChars(), sc);
            s->setScope(sc);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (*members)[i];
        s->semantic(sc);
    }

    // Set the offsets of the fields and determine the size of the class

    unsigned offset = structsize;
    bool isunion = isUnionDeclaration() != NULL;
    for (size_t i = 0; i < members->dim; i++)
    {   Dsymbol *s = (*members)[i];
        s->setFieldOffset(this, &offset, false);
    }
    sc->offset = structsize;

    if (global.gag && global.gaggedErrors != errors)
    {   // The type is no good, yet the error messages were gagged.
        type = Type::terror;
    }

    if (sizeok == SIZEOKfwd)            // failed due to forward references
    {   // semantic() failed due to forward references
        // Unwind what we did, and defer it for later

        for (size_t i = 0; i < fields.dim; i++)
        {   Dsymbol *s = fields[i];
            VarDeclaration *vd = s->isVarDeclaration();
            if (vd)
                vd->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
//        structalign = 0;

        sc = sc->pop();

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;

        //printf("\tsemantic('%s') failed due to forward references\n", toChars());
        return;
    }

    //printf("\tsemantic('%s') successful\n", toChars());

    //members->print();

    /* Look for special member functions.
     * They must be in this class, not in a base class.
     */
    ctor = search(0, Id::ctor, 0);
#if DMDV1
    if (ctor && (ctor->toParent() != this || !ctor->isCtorDeclaration()))
        ctor = NULL;
#else
    if (ctor && (ctor->toParent() != this || !(ctor->isCtorDeclaration() || ctor->isTemplateDeclaration())))
        ctor = NULL;    // search() looks through ancestor classes
#endif

//    dtor = (DtorDeclaration *)search(Id::dtor, 0);
//    if (dtor && dtor->toParent() != this)
//      dtor = NULL;

//    inv = (InvariantDeclaration *)search(Id::classInvariant, 0);
//    if (inv && inv->toParent() != this)
//      inv = NULL;

    // Can be in base class
    aggNew    = (NewDeclaration *)search(0, Id::classNew, 0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete, 0);

    // If this class has no constructor, but base class does, create
    // a constructor:
    //    this() { }
    if (!ctor && baseClass && baseClass->ctor)
    {
        //printf("Creating default this(){} for class %s\n", toChars());
        Type *tf = new TypeFunction(NULL, NULL, 0, LINKd, 0);
        CtorDeclaration *ctor = new CtorDeclaration(loc, 0, 0, tf);
        ctor->isImplicit = true;
        ctor->fbody = new CompoundStatement(0, new Statements());
        members->push(ctor);
        ctor->addMember(sc, this, 1);
        *sc = scsave;   // why? What about sc->nofree?
        ctor->semantic(sc);
        this->ctor = ctor;
        defaultCtor = ctor;
    }

#if 0
    if (baseClass)
    {   if (!aggDelete)
            aggDelete = baseClass->aggDelete;
        if (!aggNew)
            aggNew = baseClass->aggNew;
    }
#endif

    // Allocate instance of each new interface
    sc->offset = structsize;
    for (size_t i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (*vtblInterfaces)[i];
        unsigned thissize = PTRSIZE;

        alignmember(STRUCTALIGN_DEFAULT, thissize, &sc->offset);
        assert(b->offset == 0);
        b->offset = sc->offset;

        // Take care of single inheritance offsets
        while (b->baseInterfaces_dim)
        {
            b = &b->baseInterfaces[0];
            b->offset = sc->offset;
        }

        sc->offset += thissize;
        if (alignsize < thissize)
            alignsize = thissize;
    }
    structsize = sc->offset;
#if IN_LLVM
    if (sc->structalign == STRUCTALIGN_DEFAULT)
        structsize = (structsize + alignsize - 1) & ~(alignsize - 1);
    else
        structsize = (structsize + sc->structalign - 1) & ~(sc->structalign - 1);
#endif

    sizeok = SIZEOKdone;
    Module::dprogress++;

    dtor = buildDtor(sc);
    if (Dsymbol *assign = search_function(this, Id::assign))
    {
        if (FuncDeclaration *f = hasIdentityOpAssign(sc, assign))
        {
            if (!(f->storage_class & STCdisable))
                error("identity assignment operator overload is illegal");
        }
    }
    sc->pop();

#if 0 // Do not call until toObjfile() because of forward references
    // Fill in base class vtbl[]s
    for (i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (*vtblInterfaces)[i];

        //b->fillVtbl(this, &b->vtbl, 1);
    }
#endif
    //printf("-ClassDeclaration::semantic(%s), type = %p\n", toChars(), type);

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }
}
Пример #16
0
void StructDeclaration::semantic(Scope *sc)
{
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, '%s', sizeok = %d)\n", this, toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    assert(type);
    if (!members)                       // if forward reference
        return;

    if (symtab)
    {   if (sizeok == 1 || !scope)
        {   //printf("already completed\n");
            scope = NULL;
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    unsigned dprogress_save = Module::dprogress;
#ifdef IN_GCC
    methods.setDim(0);
#endif

    parent = sc->parent;
    type = type->semantic(loc, sc);
#if STRUCTTHISREF
    handle = type;
#else
    handle = type->pointerTo();
#endif
    structalign = sc->structalign;
    protection = sc->protection;
    if (sc->stc & STCdeprecated)
        isdeprecated = 1;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
        error("structs, unions cannot be abstract");
#if DMDV2
    if (storage_class & STCimmutable)
        type = type->invariantOf();
    else if (storage_class & STCconst)
        type = type->constOf();
#endif
#if IN_GCC
    if (attributes)
        attributes->append(sc->attributes);
    else
        attributes = sc->attributes;
#endif

    if (sizeok == 0)            // if not already done the addMember step
    {
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (Dsymbol *)members->data[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
        }
    }

    sizeok = 0;
    sc2 = sc->push(this);
    sc2->stc = 0;
#if IN_GCC
    sc2->attributes = NULL;
#endif
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;

    size_t members_dim = members->dim;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc2);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {
        Dsymbol *s = (Dsymbol *)members->data[i];
        s->semantic(sc2);
#if 0
        if (sizeok == 2)
        {   //printf("forward reference\n");
            break;
        }
#endif
    }

#if DMDV1
    /* This doesn't work for DMDV2 because (ref S) and (S) parameter
     * lists will overload the same.
     */
    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *  int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, handle, Id::p, NULL);

        arguments->push(arg);
        tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc);
    }

    TypeFunction *tfeq;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, type, NULL, NULL);

        arguments->push(arg);
        tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeq = (TypeFunction *)tfeq->semantic(0, sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
        Dsymbol *s = search_function(this, id);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
            if (!fd)
            {   fd = fdx->overloadExactMatch(tfeq);
                if (fd)
                {   // Create the thunk, fdptr
                    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
                    Expression *e = new IdentifierExp(loc, Id::p);
                    e = new PtrExp(loc, e);
                    Expressions *args = new Expressions();
                    args->push(e);
                    e = new IdentifierExp(loc, id);
                    e = new CallExp(loc, e, args);
                    fdptr->fbody = new ReturnStatement(loc, e);
                    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
                    assert(s);
                    s->members->push(fdptr);
                    fdptr->addMember(sc, s, 1);
                    fdptr->semantic(sc2);
                }
            }
        }

        id = Id::cmp;
    }
#endif
#if DMDV2
    /* Try to find the opEquals function. Build it if necessary.
     */
    TypeFunction *tfeqptr;
    {   // bool opEquals(const T*) const;
        Parameters *parameters = new Parameters;
#if STRUCTTHISREF
        // bool opEquals(ref const T) const;
        Parameter *param = new Parameter(STCref, type->constOf(), NULL, NULL);
#else
        // bool opEquals(const T*) const;
        Parameter *param = new Parameter(STCin, type->pointerTo(), NULL, NULL);
#endif

        parameters->push(param);
        tfeqptr = new TypeFunction(parameters, Type::tbool, 0, LINKd);
        tfeqptr->mod = MODconst;
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc2);

        Dsymbol *s = search_function(this, Id::eq);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {
            eq = fdx->overloadExactMatch(tfeqptr);
            if (!eq)
                fdx->error("type signature should be %s not %s", tfeqptr->toChars(), fdx->type->toChars());
        }

        TemplateDeclaration *td = s ? s->isTemplateDeclaration() : NULL;
        // BUG: should also check that td is a function template, not just a template

        if (!eq && !td)
            eq = buildOpEquals(sc2);
    }

    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);
    buildOpAssign(sc2);
#endif

    sc2->pop();

    if (sizeok == 2)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
        structalign = 0;

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    // 0 sized struct's are set to 1 byte
    if (structsize == 0)
    {
        structsize = 1;
        alignsize = 1;
    }

    // Round struct size up to next alignsize boundary.
    // This will ensure that arrays of structs will get their internals
    // aligned properly.
    structsize = (structsize + alignsize - 1) & ~(alignsize - 1);

    sizeok = 1;
    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (size_t i = 0; i < fields.dim; i++)
    {
        Dsymbol *s = (Dsymbol *)fields.data[i];
        VarDeclaration *vd = s->isVarDeclaration();
        if (vd && !vd->isDataseg())
        {
            if (vd->init)
            {
                // Should examine init to see if it is really all 0's
                zeroInit = 0;
                break;
            }
            else
            {
                if (!vd->type->isZeroInit(loc))
                {
                    zeroInit = 0;
                    break;
                }
            }
        }
    }

    /* Look for special member functions.
     */
#if DMDV2
    ctor = search(0, Id::ctor, 0);
#endif
    inv =    (InvariantDeclaration *)search(0, Id::classInvariant, 0);
    aggNew =       (NewDeclaration *)search(0, Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete,    0);

    if (sc->func)
    {
        semantic2(sc);
        semantic3(sc);
    }
}
Пример #17
0
void inferApplyArgTypes(enum TOK op, Parameters *arguments, Expression *aggr, Module* from)
{
    if (!arguments || !arguments->dim)
        return;

    /* Return if no arguments need types.
     */
    for (size_t u = 0; 1; u++)
    {   if (u == arguments->dim)
            return;
        Parameter *arg = arguments->tdata()[u];
        if (!arg->type)
            break;
    }

    Dsymbol *s;
    AggregateDeclaration *ad;

    Parameter *arg = arguments->tdata()[0];
    Type *taggr = aggr->type;
    if (!taggr)
        return;
    Type *tab = taggr->toBasetype();
    switch (tab->ty)
    {
        case Tarray:
        case Tsarray:
        case Ttuple:
            if (arguments->dim == 2)
            {
                if (!arg->type)
                    arg->type = Type::tsize_t;  // key type
                arg = arguments->tdata()[1];
            }
            if (!arg->type && tab->ty != Ttuple)
                arg->type = tab->nextOf();      // value type
            break;

        case Taarray:
        {   TypeAArray *taa = (TypeAArray *)tab;

            if (arguments->dim == 2)
            {
                if (!arg->type)
                    arg->type = taa->index;     // key type
                arg = arguments->tdata()[1];
            }
            if (!arg->type)
                arg->type = taa->next;          // value type
            break;
        }

        case Tclass:
            ad = ((TypeClass *)tab)->sym;
            goto Laggr;

        case Tstruct:
            ad = ((TypeStruct *)tab)->sym;
            goto Laggr;

        Laggr:
            s = search_function(ad,
                        (op == TOKforeach_reverse) ? Id::applyReverse
                                                   : Id::apply);
            if (s)
                goto Lapply;                    // prefer opApply

            if (arguments->dim == 1)
            {
                if (!arg->type)
                {
                    /* Look for a head() or rear() overload
                     */
                    Identifier *id = (op == TOKforeach) ? Id::Fhead : Id::Ftoe;
                    Dsymbol *s = search_function(ad, id);
                    FuncDeclaration *fd = s ? s->isFuncDeclaration() : NULL;
                    if (!fd)
                    {   if (s && s->isTemplateDeclaration())
                            break;
                        goto Lapply;
                    }
                    arg->type = fd->type->nextOf();
                }
                break;
            }

        Lapply:
        {   /* Look for an
             *  int opApply(int delegate(ref Type [, ...]) dg);
             * overload
             */
            if (s)
            {
                FuncDeclaration *fd = s->isFuncDeclaration();
                if (fd)
		{   inferApplyArgTypesX(from, fd, arguments);
                    break;
                }
#if 0
                TemplateDeclaration *td = s->isTemplateDeclaration();
                if (td)
                {   inferApplyArgTypesZ(td, arguments);
                    break;
                }
#endif
            }
            break;
        }

        case Tdelegate:
        {
            if (0 && aggr->op == TOKdelegate)
            {   DelegateExp *de = (DelegateExp *)aggr;

                FuncDeclaration *fd = de->func->isFuncDeclaration();
                if (fd)
		    inferApplyArgTypesX(from, fd, arguments);
            }
            else
            {
                inferApplyArgTypesY((TypeFunction *)tab->nextOf(), arguments);
            }
            break;
        }

        default:
            break;              // ignore error, caught later
    }
}
Пример #18
0
void TypeInfoStructDeclaration::toDt(dt_t **pdt)
{
    //printf("TypeInfoStructDeclaration::toDt() '%s'\n", toChars());

    unsigned offset = Type::typeinfostruct->structsize;

    dtxoff(pdt, Type::typeinfostruct->toVtblSymbol(), 0, TYnptr); // vtbl for TypeInfo_Struct
    dtsize_t(pdt, 0);                        // monitor

    assert(tinfo->ty == Tstruct);

    TypeStruct *tc = (TypeStruct *)tinfo;
    StructDeclaration *sd = tc->sym;

    /* Put out:
     *  char[] name;
     *  void[] init;
     *  hash_t function(in void*) xtoHash;
     *  bool function(in void*, in void*) xopEquals;
     *  int function(in void*, in void*) xopCmp;
     *  string function(const(void)*) xtoString;
     *  uint m_flags;
     *  xgetMembers;
     *  xdtor;
     *  xpostblit;
     *  uint m_align;
     *  version (X86_64)
     *      TypeInfo m_arg1;
     *      TypeInfo m_arg2;
     *
     *  name[]
     */

    const char *name = sd->toPrettyChars();
    size_t namelen = strlen(name);
    dtsize_t(pdt, namelen);
    //dtabytes(pdt, TYnptr, 0, namelen + 1, name);
    dtxoff(pdt, toSymbol(), offset, TYnptr);
    offset += namelen + 1;

    // void[] init;
    dtsize_t(pdt, sd->structsize);       // init.length
    if (sd->zeroInit)
        dtsize_t(pdt, 0);                // NULL for 0 initialization
    else
        dtxoff(pdt, sd->toInitializer(), 0, TYnptr);    // init.ptr

    FuncDeclaration *fd;
    FuncDeclaration *fdx;
    Dsymbol *s;

    static TypeFunction *tftohash;
    static TypeFunction *tftostring;

    if (!tftohash)
    {
        Scope sc;

        /* const hash_t toHash();
         */
        tftohash = new TypeFunction(NULL, Type::thash_t, 0, LINKd);
        tftohash->mod = MODconst;
        tftohash = (TypeFunction *)tftohash->semantic(0, &sc);

        tftostring = new TypeFunction(NULL, Type::tchar->invariantOf()->arrayOf(), 0, LINKd);
        tftostring = (TypeFunction *)tftostring->semantic(0, &sc);
    }

    TypeFunction *tfcmpptr;
    {
        Scope sc;

        /* const int opCmp(ref const KeyType s);
         */
        Parameters *arguments = new Parameters;
#if STRUCTTHISREF
        // arg type is ref const T
        Parameter *arg = new Parameter(STCref, tc->constOf(), NULL, NULL);
#else
        // arg type is const T*
        Parameter *arg = new Parameter(STCin, tc->pointerTo(), NULL, NULL);
#endif

        arguments->push(arg);
        tfcmpptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfcmpptr->mod = MODconst;
        tfcmpptr = (TypeFunction *)tfcmpptr->semantic(0, &sc);
    }

    s = search_function(sd, Id::tohash);
    fdx = s ? s->isFuncDeclaration() : NULL;
    if (fdx)
    {   fd = fdx->overloadExactMatch(tftohash);
        if (fd)
        {
            dtxoff(pdt, fd->toSymbol(), 0, TYnptr);
            TypeFunction *tf = (TypeFunction *)fd->type;
            assert(tf->ty == Tfunction);
            if (global.params.warnings)
            {
                /* I'm a little unsure this is the right way to do it. Perhaps a better
                 * way would to automatically add these attributes to any struct member
                 * function with the name "toHash".
                 * So I'm leaving this here as an experiment for the moment.
                 */
                if (!tf->isnothrow || tf->trust == TRUSTsystem /*|| tf->purity == PUREimpure*/)
                {   warning(fd->loc, "toHash() must be declared as extern (D) uint toHash() const nothrow @safe, not %s", tf->toChars());
                    if (global.params.warnings == 1)
                        global.errors++;
                }
            }
        }
        else
        {
            //fdx->error("must be declared as extern (D) uint toHash()");
            dtsize_t(pdt, 0);
        }
    }
    else
        dtsize_t(pdt, 0);

    if (sd->xeq)
        dtxoff(pdt, sd->xeq->toSymbol(), 0, TYnptr);
    else
        dtsize_t(pdt, 0);

    s = search_function(sd, Id::cmp);
    fdx = s ? s->isFuncDeclaration() : NULL;
    if (fdx)
    {
        //printf("test1 %s, %s, %s\n", fdx->toChars(), fdx->type->toChars(), tfeqptr->toChars());
        fd = fdx->overloadExactMatch(tfcmpptr);
        if (fd)
        {   dtxoff(pdt, fd->toSymbol(), 0, TYnptr);
            //printf("test2\n");
        }
        else
            //fdx->error("must be declared as extern (D) int %s(%s*)", fdx->toChars(), sd->toChars());
            dtsize_t(pdt, 0);
    }
    else
        dtsize_t(pdt, 0);

    s = search_function(sd, Id::tostring);
    fdx = s ? s->isFuncDeclaration() : NULL;
    if (fdx)
    {   fd = fdx->overloadExactMatch(tftostring);
        if (fd)
            dtxoff(pdt, fd->toSymbol(), 0, TYnptr);
        else
            //fdx->error("must be declared as extern (D) char[] toString()");
            dtsize_t(pdt, 0);
    }
    else
        dtsize_t(pdt, 0);

    // uint m_flags;
    dtsize_t(pdt, tc->hasPointers());

#if DMDV2
    // xgetMembers
    FuncDeclaration *sgetmembers = sd->findGetMembers();
    if (sgetmembers)
        dtxoff(pdt, sgetmembers->toSymbol(), 0, TYnptr);
    else
        dtsize_t(pdt, 0);                        // xgetMembers

    // xdtor
    FuncDeclaration *sdtor = sd->dtor;
    if (sdtor)
        dtxoff(pdt, sdtor->toSymbol(), 0, TYnptr);
    else
        dtsize_t(pdt, 0);                        // xdtor

    // xpostblit
    FuncDeclaration *spostblit = sd->postblit;
    if (spostblit && !(spostblit->storage_class & STCdisable))
        dtxoff(pdt, spostblit->toSymbol(), 0, TYnptr);
    else
        dtsize_t(pdt, 0);                        // xpostblit
#endif

    // uint m_align;
    dtsize_t(pdt, tc->alignsize());

    if (global.params.is64bit)
    {
        TypeTuple *tup = tc->toArgTypes();
        assert(tup->arguments->dim <= 2);
        for (size_t i = 0; i < 2; i++)
        {
            if (i < tup->arguments->dim)
            {
                Type *targ = (tup->arguments->tdata()[i])->type;
                targ = targ->merge();
                targ->getTypeInfo(NULL);
                dtxoff(pdt, targ->vtinfo->toSymbol(), 0, TYnptr);       // m_argi
            }
            else
                dtsize_t(pdt, 0);                    // m_argi
        }
    }

    // name[]
    dtnbytes(pdt, namelen + 1, name);
}
Пример #19
0
Expression *BinExp::op_overload(Scope *sc)
{
    //printf("BinExp::op_overload() (%s)\n", toChars());

    Identifier *id = opId();
    Identifier *id_r = opId_r();

    Expressions args1;
    Expressions args2;
    int argsset = 0;

    AggregateDeclaration *ad1 = isAggregate(e1->type);
    AggregateDeclaration *ad2 = isAggregate(e2->type);

    Dsymbol *s = NULL;
    Dsymbol *s_r = NULL;

#if 1 // the old D1 scheme
    if (ad1 && id)
    {
        s = search_function(ad1, id);
    }
    if (ad2 && id_r)
    {
        s_r = search_function(ad2, id_r);
    }
#endif

    Objects *targsi = NULL;
#if DMDV2
    if (op == TOKplusplus || op == TOKminusminus)
    {   // Bug4099 fix
        if (ad1 && search_function(ad1, Id::opUnary))
            return NULL;
    }
    if (!s && !s_r && op != TOKequal && op != TOKnotequal && op != TOKassign &&
        op != TOKplusplus && op != TOKminusminus)
    {
        /* Try the new D2 scheme, opBinary and opBinaryRight
         */
        if (ad1)
            s = search_function(ad1, Id::opBinary);
        if (ad2)
            s_r = search_function(ad2, Id::opBinaryRight);

        // Set targsi, the template argument list, which will be the operator string
        if (s || s_r)
        {
            id = Id::opBinary;
            id_r = Id::opBinaryRight;
            targsi = opToArg(sc, op);
        }
    }
#endif

    if (s || s_r)
    {
        /* Try:
         *      a.opfunc(b)
         *      b.opfunc_r(a)
         * and see which is better.
         */

        args1.setDim(1);
        args1.tdata()[0] = e1;
        args2.setDim(1);
        args2.tdata()[0] = e2;
        argsset = 1;

        Match m;
        memset(&m, 0, sizeof(m));
        m.last = MATCHnomatch;

        if (s)
        {
            FuncDeclaration *fd = s->isFuncDeclaration();
            if (fd)
            {
		overloadResolveX(&m, fd, NULL, &args2, sc->module);
            }
            else
            {   TemplateDeclaration *td = s->isTemplateDeclaration();
                templateResolve(&m, td, sc, loc, targsi, e1, &args2);
            }
        }

        FuncDeclaration *lastf = m.lastf;

        if (s_r)
        {
            FuncDeclaration *fd = s_r->isFuncDeclaration();
            if (fd)
            {
		overloadResolveX(&m, fd, NULL, &args1, sc->module);
            }
            else
            {   TemplateDeclaration *td = s_r->isTemplateDeclaration();
                templateResolve(&m, td, sc, loc, targsi, e2, &args1);
            }
        }

        if (m.count > 1)
        {
            // Error, ambiguous
            error("overloads %s and %s both match argument list for %s",
                    m.lastf->type->toChars(),
                    m.nextf->type->toChars(),
                    m.lastf->toChars());
        }
        else if (m.last == MATCHnomatch)
        {
            m.lastf = m.anyf;
            if (targsi)
                goto L1;
        }

        Expression *e;
        if (op == TOKplusplus || op == TOKminusminus)
            // Kludge because operator overloading regards e++ and e--
            // as unary, but it's implemented as a binary.
            // Rewrite (e1 ++ e2) as e1.postinc()
            // Rewrite (e1 -- e2) as e1.postdec()
            e = build_overload(loc, sc, e1, NULL, m.lastf ? m.lastf : s);
        else if (lastf && m.lastf == lastf || !s_r && m.last == MATCHnomatch)
            // Rewrite (e1 op e2) as e1.opfunc(e2)
            e = build_overload(loc, sc, e1, e2, m.lastf ? m.lastf : s);
        else
            // Rewrite (e1 op e2) as e2.opfunc_r(e1)
            e = build_overload(loc, sc, e2, e1, m.lastf ? m.lastf : s_r);
        return e;
    }

L1:
#if 1 // Retained for D1 compatibility
    if (isCommutative() && !targsi)
    {
        s = NULL;
        s_r = NULL;
        if (ad1 && id_r)
        {
            s_r = search_function(ad1, id_r);
        }
        if (ad2 && id)
        {
            s = search_function(ad2, id);
        }

        if (s || s_r)
        {
            /* Try:
             *  a.opfunc_r(b)
             *  b.opfunc(a)
             * and see which is better.
             */

            if (!argsset)
            {   args1.setDim(1);
                args1.tdata()[0] = e1;
                args2.setDim(1);
                args2.tdata()[0] = e2;
            }

            Match m;
            memset(&m, 0, sizeof(m));
            m.last = MATCHnomatch;

            if (s_r)
            {
                FuncDeclaration *fd = s_r->isFuncDeclaration();
                if (fd)
                {
		    overloadResolveX(&m, fd, NULL, &args2, sc->module);
                }
                else
                {   TemplateDeclaration *td = s_r->isTemplateDeclaration();
                    templateResolve(&m, td, sc, loc, targsi, e1, &args2);
                }
            }
            FuncDeclaration *lastf = m.lastf;

            if (s)
            {
                FuncDeclaration *fd = s->isFuncDeclaration();
                if (fd)
                {
		    overloadResolveX(&m, fd, NULL, &args1, sc->module);
                }
                else
                {   TemplateDeclaration *td = s->isTemplateDeclaration();
                    templateResolve(&m, td, sc, loc, targsi, e2, &args1);
                }
            }

            if (m.count > 1)
            {
                // Error, ambiguous
                error("overloads %s and %s both match argument list for %s",
                        m.lastf->type->toChars(),
                        m.nextf->type->toChars(),
                        m.lastf->toChars());
            }
            else if (m.last == MATCHnomatch)
            {
                m.lastf = m.anyf;
            }

            Expression *e;
            if (lastf && m.lastf == lastf || !s && m.last == MATCHnomatch)
                // Rewrite (e1 op e2) as e1.opfunc_r(e2)
                e = build_overload(loc, sc, e1, e2, m.lastf ? m.lastf : s_r);
            else
                // Rewrite (e1 op e2) as e2.opfunc(e1)
                e = build_overload(loc, sc, e2, e1, m.lastf ? m.lastf : s);

            // When reversing operands of comparison operators,
            // need to reverse the sense of the op
            switch (op)
            {
                case TOKlt:     op = TOKgt;     break;
                case TOKgt:     op = TOKlt;     break;
                case TOKle:     op = TOKge;     break;
                case TOKge:     op = TOKle;     break;

                // Floating point compares
                case TOKule:    op = TOKuge;     break;
                case TOKul:     op = TOKug;      break;
                case TOKuge:    op = TOKule;     break;
                case TOKug:     op = TOKul;      break;

                // These are symmetric
                case TOKunord:
                case TOKlg:
                case TOKleg:
                case TOKue:
                    break;
            }

            return e;
        }
    }
#endif

#if DMDV2
    // Try alias this on first operand
    if (ad1 && ad1->aliasthis &&
        !(op == TOKassign && ad2 && ad1 == ad2))   // See Bugzilla 2943
    {
        /* Rewrite (e1 op e2) as:
         *      (e1.aliasthis op e2)
         */
        Expression *e1 = new DotIdExp(loc, this->e1, ad1->aliasthis->ident);
        Expression *e = copy();
        ((BinExp *)e)->e1 = e1;
        e = e->trySemantic(sc);
        return e;
    }

    // Try alias this on second operand
    if (ad2 && ad2->aliasthis &&
        /* Bugzilla 2943: make sure that when we're copying the struct, we don't
         * just copy the alias this member
         */
        !(op == TOKassign && ad1 && ad1 == ad2))
    {
        /* Rewrite (e1 op e2) as:
         *      (e1 op e2.aliasthis)
         */
        Expression *e2 = new DotIdExp(loc, this->e2, ad2->aliasthis->ident);
        Expression *e = copy();
        ((BinExp *)e)->e2 = e2;
        e = e->trySemantic(sc);
        return e;
    }
#endif
    return NULL;
}
Пример #20
0
void StructDeclaration::semantic(Scope *sc)
{
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", this, parent->toChars(), toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    assert(type);
    if (!members)                       // if forward reference
        return;

    if (symtab)
    {   if (sizeok == SIZEOKdone || !scope)
        {   //printf("already completed\n");
            scope = NULL;
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    int errors = global.gaggedErrors;

    unsigned dprogress_save = Module::dprogress;

    parent = sc->parent;
    type = type->semantic(loc, sc);
#if STRUCTTHISREF
    handle = type;
#else
    handle = type->pointerTo();
#endif
    protection = sc->protection;
    alignment = sc->structalign;
    storage_class |= sc->stc;
    if (sc->stc & STCdeprecated)
        isdeprecated = true;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
        error("structs, unions cannot be abstract");
    userAttributes = sc->userAttributes;

    if (sizeok == SIZEOKnone)            // if not already done the addMember step
    {
        int hasfunctions = 0;
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
            if (s->isFuncDeclaration())
                hasfunctions = 1;
        }

        // If nested struct, add in hidden 'this' pointer to outer scope
        if (hasfunctions && !(storage_class & STCstatic))
        {   Dsymbol *s = toParent2();
            if (s)
            {
                AggregateDeclaration *ad = s->isAggregateDeclaration();
                FuncDeclaration *fd = s->isFuncDeclaration();

                TemplateInstance *ti;
                if (ad && (ti = ad->parent->isTemplateInstance()) != NULL && ti->isnested || fd)
                {   isnested = 1;
                    Type *t;
                    if (ad)
                        t = ad->handle;
                    else if (fd)
                    {   AggregateDeclaration *ad = fd->isMember2();
                        if (ad)
                            t = ad->handle;
                        else
                            t = Type::tvoidptr;
                    }
                    else
                        assert(0);
                    if (t->ty == Tstruct)
                        t = Type::tvoidptr;     // t should not be a ref type
                    assert(!vthis);
                    vthis = new ThisDeclaration(loc, t);
                    //vthis->storage_class |= STCref;
                    members->push(vthis);
                }
            }
        }
    }

    sizeok = SIZEOKnone;
    sc2 = sc->push(this);
    sc2->stc &= STCsafe | STCtrusted | STCsystem;
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;
    sc2->structalign = STRUCTALIGN_DEFAULT;
    sc2->userAttributes = NULL;

    size_t members_dim = members->dim;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (*members)[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        //if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("struct: setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc2);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {
        Dsymbol *s = (*members)[i];

        /* If this is the last member, see if we can finish setting the size.
         * This could be much better - finish setting the size after the last
         * field was processed. The problem is the chicken-and-egg determination
         * of when that is. See Bugzilla 7426 for more info.
         */
        if (i + 1 == members_dim)
        {
            if (sizeok == SIZEOKnone && s->isAliasDeclaration())
                finalizeSize(sc2);
        }
        // Ungag errors when not speculative
        unsigned oldgag = global.gag;
        if (global.isSpeculativeGagging() && !isSpeculative())
        {
            global.gag = 0;
        }
        s->semantic(sc2);
        global.gag = oldgag;
    }
    finalizeSize(sc2);

    if (sizeok == SIZEOKfwd)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        for (size_t i = 0; i < fields.dim; i++)
        {   Dsymbol *s = fields[i];
            VarDeclaration *vd = s->isVarDeclaration();
            if (vd)
                vd->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
//        structalign = 0;

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (size_t i = 0; i < fields.dim; i++)
    {
        Dsymbol *s = fields[i];
        VarDeclaration *vd = s->isVarDeclaration();
        if (vd && !vd->isDataseg())
        {
            if (vd->init)
            {
                // Should examine init to see if it is really all 0's
                zeroInit = 0;
                break;
            }
            else
            {
                if (!vd->type->isZeroInit(loc))
                {
                    zeroInit = 0;
                    break;
                }
            }
        }
    }

#if DMDV1
    /* This doesn't work for DMDV2 because (ref S) and (S) parameter
     * lists will overload the same.
     */
    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *  int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, handle, Id::p, NULL);

        arguments->push(arg);
        tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc);
    }

    TypeFunction *tfeq;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, type, NULL, NULL);

        arguments->push(arg);
        tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeq = (TypeFunction *)tfeq->semantic(0, sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
        Dsymbol *s = search_function(this, id);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
            if (!fd)
            {   fd = fdx->overloadExactMatch(tfeq);
                if (fd)
                {   // Create the thunk, fdptr
                    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
                    Expression *e = new IdentifierExp(loc, Id::p);
                    e = new PtrExp(loc, e);
                    Expressions *args = new Expressions();
                    args->push(e);
                    e = new IdentifierExp(loc, id);
                    e = new CallExp(loc, e, args);
                    fdptr->fbody = new ReturnStatement(loc, e);
                    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
                    assert(s);
                    s->members->push(fdptr);
                    fdptr->addMember(sc, s, 1);
                    fdptr->semantic(sc2);
                }
            }
        }

        id = Id::cmp;
    }
#endif
#if DMDV2
    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);

    hasIdentityAssign = (buildOpAssign(sc2) != NULL);
    hasIdentityEquals = (buildOpEquals(sc2) != NULL);

    xeq = buildXopEquals(sc2);
#endif

    sc2->pop();

    /* Look for special member functions.
     */
#if DMDV2
    ctor = search(0, Id::ctor, 0);
#endif
    inv =    (InvariantDeclaration *)search(0, Id::classInvariant, 0);
    aggNew =       (NewDeclaration *)search(0, Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete,    0);

    TypeTuple *tup = type->toArgTypes();
    size_t dim = tup->arguments->dim;
    if (dim >= 1)
    {   assert(dim <= 2);
        arg1type = (*tup->arguments)[0]->type;
        if (dim == 2)
            arg2type = (*tup->arguments)[1]->type;
    }

    if (sc->func)
    {
        semantic2(sc);
        semantic3(sc);
    }

    if (global.gag && global.gaggedErrors != errors)
    {   // The type is no good, yet the error messages were gagged.
        type = Type::terror;
    }

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }
}
Пример #21
0
/*********************************
 * Operator overloading for op=
 */
Expression *BinAssignExp::op_overload(Scope *sc)
{
    //printf("BinAssignExp::op_overload() (%s)\n", toChars());

#if DMDV2
    if (e1->op == TOKarray)
    {
        ArrayExp *ae = (ArrayExp *)e1;
        ae->e1 = ae->e1->semantic(sc);
        ae->e1 = resolveProperties(sc, ae->e1);

        AggregateDeclaration *ad = isAggregate(ae->e1->type);
        if (ad)
        {
            /* Rewrite a[args]+=e2 as:
             *  a.opIndexOpAssign!("+")(e2, args);
             */
            Dsymbol *fd = search_function(ad, Id::opIndexOpAssign);
            if (fd)
            {
                Expressions *a = new Expressions();
                a->push(e2);
                for (size_t i = 0; i < ae->arguments->dim; i++)
                    a->push(ae->arguments->tdata()[i]);

                Objects *targsi = opToArg(sc, op);
                Expression *e = new DotTemplateInstanceExp(loc, ae->e1, fd->ident, targsi);
                e = new CallExp(loc, e, a);
                e = e->semantic(sc);
                return e;
            }

            // Didn't find it. Forward to aliasthis
            if (ad->aliasthis)
            {
                /* Rewrite a[arguments] op= e2 as:
                 *      a.aliasthis[arguments] op= e2
                 */
                Expression *e1 = ae->copy();
                ((ArrayExp *)e1)->e1 = new DotIdExp(loc, ae->e1, ad->aliasthis->ident);
                Expression *e = copy();
                ((UnaExp *)e)->e1 = e1;
                e = e->trySemantic(sc);
                return e;
            }
        }
    }
    else if (e1->op == TOKslice)
    {
        SliceExp *se = (SliceExp *)e1;
        se->e1 = se->e1->semantic(sc);
        se->e1 = resolveProperties(sc, se->e1);

        AggregateDeclaration *ad = isAggregate(se->e1->type);
        if (ad)
        {
            /* Rewrite a[lwr..upr]+=e2 as:
             *  a.opSliceOpAssign!("+")(e2, lwr, upr);
             */
            Dsymbol *fd = search_function(ad, Id::opSliceOpAssign);
            if (fd)
            {
                Expressions *a = new Expressions();
                a->push(e2);
                if (se->lwr)
                {   a->push(se->lwr);
                    a->push(se->upr);
                }

                Objects *targsi = opToArg(sc, op);
                Expression *e = new DotTemplateInstanceExp(loc, se->e1, fd->ident, targsi);
                e = new CallExp(loc, e, a);
                e = e->semantic(sc);
                return e;
            }

            // Didn't find it. Forward to aliasthis
            if (ad->aliasthis)
            {
                /* Rewrite a[lwr..upr] op= e2 as:
                 *      a.aliasthis[lwr..upr] op= e2
                 */
                Expression *e1 = se->copy();
                ((SliceExp *)e1)->e1 = new DotIdExp(loc, se->e1, ad->aliasthis->ident);
                Expression *e = copy();
                ((UnaExp *)e)->e1 = e1;
                e = e->trySemantic(sc);
                return e;
            }
        }
    }
#endif

    BinExp::semantic(sc);
    e1 = resolveProperties(sc, e1);
    e2 = resolveProperties(sc, e2);

    Identifier *id = opId();

    Expressions args2;

    AggregateDeclaration *ad1 = isAggregate(e1->type);

    Dsymbol *s = NULL;

#if 1 // the old D1 scheme
    if (ad1 && id)
    {
        s = search_function(ad1, id);
    }
#endif

    Objects *targsi = NULL;
#if DMDV2
    if (!s)
    {   /* Try the new D2 scheme, opOpAssign
         */
        if (ad1)
            s = search_function(ad1, Id::opOpAssign);

        // Set targsi, the template argument list, which will be the operator string
        if (s)
        {
            id = Id::opOpAssign;
            targsi = opToArg(sc, op);
        }
    }
#endif

    if (s)
    {
        /* Try:
         *      a.opOpAssign(b)
         */

        args2.setDim(1);
        args2.tdata()[0] = e2;

        Match m;
        memset(&m, 0, sizeof(m));
        m.last = MATCHnomatch;

        if (s)
        {
            FuncDeclaration *fd = s->isFuncDeclaration();
            if (fd)
            {
                overloadResolveX(&m, fd, NULL, &args2, sc->module);
            }
            else
            {   TemplateDeclaration *td = s->isTemplateDeclaration();
                templateResolve(&m, td, sc, loc, targsi, e1, &args2);
            }
        }

        if (m.count > 1)
        {
            // Error, ambiguous
            error("overloads %s and %s both match argument list for %s",
                    m.lastf->type->toChars(),
                    m.nextf->type->toChars(),
                    m.lastf->toChars());
        }
        else if (m.last == MATCHnomatch)
        {
            m.lastf = m.anyf;
            if (targsi)
                goto L1;
        }

        // Rewrite (e1 op e2) as e1.opOpAssign(e2)
        return build_overload(loc, sc, e1, e2, m.lastf ? m.lastf : s);
    }

L1:

#if DMDV2
    // Try alias this on first operand
    if (ad1 && ad1->aliasthis)
    {
        /* Rewrite (e1 op e2) as:
         *      (e1.aliasthis op e2)
         */
        Expression *e1 = new DotIdExp(loc, this->e1, ad1->aliasthis->ident);
        Expression *e = copy();
        ((BinExp *)e)->e1 = e1;
        e = e->trySemantic(sc);
        return e;
    }

    // Try alias this on second operand
    AggregateDeclaration *ad2 = isAggregate(e2->type);
    if (ad2 && ad2->aliasthis)
    {
        /* Rewrite (e1 op e2) as:
         *      (e1 op e2.aliasthis)
         */
        Expression *e2 = new DotIdExp(loc, this->e2, ad2->aliasthis->ident);
        Expression *e = copy();
        ((BinExp *)e)->e2 = e2;
        e = e->trySemantic(sc);
        return e;
    }
#endif
    return NULL;
}
Пример #22
0
void StructDeclaration::semantic(Scope *sc)
{   int i;
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    //static int count; if (++count == 20) *(char*)0=0;

    assert(type);
    if (!members)			// if forward reference
	return;

    if (symtab)
    {   if (!scope)
            return;             // semantic() already completed
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    parent = sc->parent;
    handle = type->pointerTo();
    structalign = sc->structalign;
    protection = sc->protection;
    storage_class |= sc->stc;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
	error("structs, unions cannot be abstract");
    if (storage_class & STCinvariant)
        type = type->invariantOf();
    else if (storage_class & STCconst)
        type = type->constOf();

    if (sizeok == 0)		// if not already done the addMember step
    {
	for (i = 0; i < members->dim; i++)
	{
	    Dsymbol *s = (Dsymbol *)members->data[i];
	    //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
	    s->addMember(sc, this, 1);
	}
    }

    sizeok = 0;
    sc2 = sc->push(this);
    sc2->stc &= storage_class & (STCconst | STCinvariant);
    sc2->parent = this;
    if (isUnionDeclaration())
	sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;

    int members_dim = members->dim;
    for (i = 0; i < members_dim; i++)
    {
	Dsymbol *s = (Dsymbol *)members->data[i];
	s->semantic(sc2);
	if (isUnionDeclaration())
	    sc2->offset = 0;
#if 0
	if (sizeok == 2)
	{   //printf("forward reference\n");
	    break;
	}
#endif
    }

    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *	int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
	Arguments *arguments = new Arguments;
	Argument *arg = new Argument(STCin, handle, Id::p, NULL);

	arguments->push(arg);
	tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
	tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc);
    }

    TypeFunction *tfeq;
    {
	Arguments *arguments = new Arguments;
	Argument *arg = new Argument(STCin, type, NULL, NULL);

	arguments->push(arg);
	tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
	tfeq = (TypeFunction *)tfeq->semantic(0, sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
	Dsymbol *s = search_function(this, id);
	FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
	if (fdx)
	{   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
	    if (!fd)
	    {	fd = fdx->overloadExactMatch(tfeq);
		if (fd)
		{   // Create the thunk, fdptr
		    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
		    Expression *e = new IdentifierExp(loc, Id::p);
		    e = new PtrExp(loc, e);
		    Expressions *args = new Expressions();
		    args->push(e);
		    e = new IdentifierExp(loc, id);
		    e = new CallExp(loc, e, args);
		    fdptr->fbody = new ReturnStatement(loc, e);
		    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
		    assert(s);
		    s->members->push(fdptr);
		    fdptr->addMember(sc, s, 1);
		    fdptr->semantic(sc2);
		}
	    }
	}

	id = Id::cmp;
    }

    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);
    buildOpAssign(sc2);

    sc2->pop();

    if (sizeok == 2)
    {	// semantic() failed because of forward references.
	// Unwind what we did, and defer it for later
	fields.setDim(0);
	structsize = 0;
	alignsize = 0;
	structalign = 0;

	scope = scx ? scx : new Scope(*sc);
	scope->setNoFree();
	scope->module->addDeferredSemantic(this);
	//printf("\tdeferring %s\n", toChars());
	return;
    }

    // 0 sized struct's are set to 1 byte
    if (structsize == 0)
    {
	structsize = 1;
	alignsize = 1;
    }

    // Round struct size up to next alignsize boundary.
    // This will ensure that arrays of structs will get their internals
    // aligned properly.
    structsize = (structsize + alignsize - 1) & ~(alignsize - 1);

    sizeok = 1;
    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (i = 0; i < fields.dim; i++)
    {
	Dsymbol *s = (Dsymbol *)fields.data[i];
	VarDeclaration *vd = s->isVarDeclaration();
	if (vd && !vd->isDataseg())
	{
	    if (vd->init)
	    {
		// Should examine init to see if it is really all 0's
		zeroInit = 0;
		break;
	    }
	    else
	    {
		if (!vd->type->isZeroInit())
		{
		    zeroInit = 0;
		    break;
		}
	    }
	}
    }

    /* Look for special member functions.
     */
    inv =    (InvariantDeclaration *)search(0, Id::classInvariant, 0);
    aggNew =       (NewDeclaration *)search(0, Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete,    0);

    if (sc->func)
    {
	semantic2(sc);
	semantic3(sc);
    }
}