Пример #1
0
void Spatial::look_at_from_pos(const Vector3 &p_pos, const Vector3 &p_target, const Vector3 &p_up_normal) {

	Transform lookat;
	lookat.origin = p_pos;
	lookat = lookat.looking_at(p_target, p_up_normal);
	set_global_transform(lookat);
}
Пример #2
0
void Camera::look_at(const Vector3& p_target, const Vector3& p_up_normal) {

	Transform lookat;
	lookat.origin=get_global_transform().origin;
	lookat=lookat.looking_at(p_target,p_up_normal);
	set_global_transform(lookat);
}
Пример #3
0
void Spatial::global_rotate(const Vector3 &p_normal, float p_radians) {

	Matrix3 rotation(p_normal, p_radians);
	Transform t = get_global_transform();
	t.basis = rotation * t.basis;
	set_global_transform(t);
}
Пример #4
0
void InterpolatedCamera::_notification(int p_what) {

	switch(p_what) {
		case NOTIFICATION_ENTER_SCENE: {

			if (get_scene()->is_editor_hint() && enabled)
				set_fixed_process(false);

		} break;
		case NOTIFICATION_PROCESS: {

			if (!enabled)
				break;
			if (has_node(target)) {

				Spatial *node = get_node(target)->cast_to<Spatial>();
				if (!node)
					break;

				float delta = speed*get_process_delta_time();
				Transform target_xform = node->get_global_transform();
				Transform local_transform = get_transform();
				local_transform = local_transform.interpolate_with(target_xform,delta);
				set_global_transform(local_transform);

				if (node->cast_to<Camera>()) {
					Camera *cam = node->cast_to<Camera>();
					if (cam->get_projection()==get_projection())  {

						float new_near = Math::lerp(get_znear(),cam->get_znear(),delta);
						float new_far = Math::lerp(get_zfar(),cam->get_zfar(),delta);

						if (cam->get_projection()==PROJECTION_ORTHOGONAL) {

							float size = Math::lerp(get_size(),cam->get_size(),delta);
							set_orthogonal(size,new_near,new_far);
						} else {

							float fov = Math::lerp(get_fov(),cam->get_fov(),delta);
							set_perspective(fov,new_near,new_far);
						}
					}
				}


			}

		} break;
	}
}
Пример #5
0
void Spatial::look_at(const Vector3 &p_target, const Vector3 &p_up_normal) {

	Transform lookat;
	lookat.origin = get_global_transform().origin;
	if (lookat.origin == p_target) {
		ERR_EXPLAIN("Node origin and target are in the same position, look_at() failed");
		ERR_FAIL();
	}

	if (p_up_normal.cross(p_target - lookat.origin) == Vector3()) {
		ERR_EXPLAIN("Up vector and direction between node origin and target are aligned, look_at() failed");
		ERR_FAIL();
	}
	lookat = lookat.looking_at(p_target, p_up_normal);
	set_global_transform(lookat);
}
Пример #6
0
void StaticBody::_state_notify(Object *p_object) {

	if (!pre_xform)
		return;

	PhysicsDirectBodyState *p2d = (PhysicsDirectBodyState*)p_object;
	setting=true;

	Transform new_xform = p2d->get_transform();
	*pre_xform=new_xform;
	set_ignore_transform_notification(true);
	set_global_transform(new_xform);
	set_ignore_transform_notification(false);

	setting=false;


}
Пример #7
0
void StaticBody2D::_update_xform() {

	if (!pre_xform || !pending)
		return;

	setting=true;


	Matrix32 new_xform = get_global_transform(); //obtain the new one

	set_block_transform_notify(true);
	Physics2DServer::get_singleton()->body_set_state(get_rid(),Physics2DServer::BODY_STATE_TRANSFORM,*pre_xform); //then simulate motion!
	set_global_transform(*pre_xform); //but restore state to previous one in both visual and physics
	set_block_transform_notify(false);

	Physics2DServer::get_singleton()->body_static_simulate_motion(get_rid(),new_xform); //then simulate motion!

	setting=false;
	pending=false;

}
Пример #8
0
Vector3 KinematicBody::move(const Vector3& p_motion) {

	//give me back regular physics engine logic
	//this is madness
	//and most people using this function will think
	//what it does is simpler than using physics
	//this took about a week to get right..
	//but is it right? who knows at this point..


	colliding=false;
	ERR_FAIL_COND_V(!is_inside_scene(),Vector3());
	PhysicsDirectSpaceState *dss = PhysicsServer::get_singleton()->space_get_direct_state(get_world()->get_space());
	ERR_FAIL_COND_V(!dss,Vector3());
	const int max_shapes=32;
	Vector3 sr[max_shapes*2];
	int res_shapes;

	Set<RID> exclude;
	exclude.insert(get_rid());


	//recover first
	int recover_attempts=4;

	bool collided=false;
	uint32_t mask=0;
	if (collide_static)
		mask|=PhysicsDirectSpaceState::TYPE_MASK_STATIC_BODY;
	if (collide_kinematic)
		mask|=PhysicsDirectSpaceState::TYPE_MASK_KINEMATIC_BODY;
	if (collide_rigid)
		mask|=PhysicsDirectSpaceState::TYPE_MASK_RIGID_BODY;
	if (collide_character)
		mask|=PhysicsDirectSpaceState::TYPE_MASK_CHARACTER_BODY;

//	print_line("motion: "+p_motion+" margin: "+rtos(margin));

	//print_line("margin: "+rtos(margin));

	float m = margin;
	//m=0.001;

	do {

		//motion recover
		for(int i=0;i<get_shape_count();i++) {


			if (dss->collide_shape(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i),m,sr,max_shapes,res_shapes,exclude,get_layer_mask(),mask)) {
				collided=true;
			}

		}



		if (!collided)
			break;

		//print_line("have to recover");
		Vector3 recover_motion;
		bool all_outside=true;
		for(int j=0;j<8;j++) {
			for(int i=0;i<res_shapes;i++) {

				Vector3 a = sr[i*2+0];
				Vector3 b = sr[i*2+1];
				//print_line(String()+a+" -> "+b);
#if 0
				float d = a.distance_to(b);

				//if (d<margin)
				///	continue;
	   ///
	   ///
				recover_motion+=(b-a)*0.2;
#else
				float dist = a.distance_to(b);
				if (dist>CMP_EPSILON) {
					Vector3 norm = (b-a).normalized();
					if (dist>margin*0.5)
						all_outside=false;
					float adv = norm.dot(recover_motion);
					//print_line(itos(i)+" dist: "+rtos(dist)+" adv: "+rtos(adv));
					recover_motion+=norm*MAX(dist-adv,0)*0.4;
				}
#endif

			}
		}


		if (recover_motion==Vector3()) {
			collided=false;
			break;
		}

		//print_line("**** RECOVER: "+recover_motion);

		Transform gt = get_global_transform();
		gt.origin+=recover_motion;
		set_global_transform(gt);

		recover_attempts--;

		if (all_outside)
			break;

	} while (recover_attempts);


	//move second
	float safe = 1.0;
	float unsafe = 1.0;
	int best_shape=-1;

	PhysicsDirectSpaceState::ShapeRestInfo rest;

	//print_line("pos: "+get_global_transform().origin);
	//print_line("motion: "+p_motion);


	for(int i=0;i<get_shape_count();i++) {



		float lsafe,lunsafe;
		PhysicsDirectSpaceState::ShapeRestInfo lrest;
		bool valid = dss->cast_motion(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i), p_motion,0, lsafe,lunsafe,exclude,get_layer_mask(),mask,&lrest);
		//print_line("shape: "+itos(i)+" travel:"+rtos(ltravel));
		if (!valid) {
			safe=0;
			unsafe=0;
			best_shape=i; //sadly it's the best
			//print_line("initial stuck");

			break;
		}
		if (lsafe==1.0) {
			//print_line("initial free");
			continue;
		}
		if (lsafe < safe) {

			//print_line("initial at "+rtos(lsafe));
			safe=lsafe;
			safe=MAX(0,lsafe-0.01);
			unsafe=lunsafe;
			best_shape=i;
			rest=lrest;
		}
	}


	//print_line("best shape: "+itos(best_shape)+" motion "+p_motion);

	if (safe>=1) {
		//not collided
		colliding=false;
	} else {

		colliding=true;

		if (true || (safe==0 && unsafe==0)) { //use it always because it's more precise than GJK
			//no advance, use rest info from collision
			Transform ugt = get_global_transform();
			ugt.origin+=p_motion*unsafe;

			PhysicsDirectSpaceState::ShapeRestInfo rest_info;
			bool c2 = dss->rest_info(get_shape(best_shape)->get_rid(), ugt*get_shape_transform(best_shape), m,&rest,exclude,get_layer_mask(),mask);
			if (!c2) {
				//should not happen, but floating point precision is so weird..
				colliding=false;
			}

		//	print_line("Rest Travel: "+rest.normal);

		}

		if (colliding) {

			collision=rest.point;
			normal=rest.normal;
			collider=rest.collider_id;
			collider_vel=rest.linear_velocity;
		}
	}

	Vector3 motion=p_motion*safe;
	//if (colliding)
	//	motion+=normal*0.001;
	Transform gt = get_global_transform();
	gt.origin+=motion;
	set_global_transform(gt);

	return p_motion-motion;

}
Пример #9
0
void RigidBody::_direct_state_changed(Object *p_state) {

	//eh.. f**k
#ifdef DEBUG_ENABLED

	state=p_state->cast_to<PhysicsDirectBodyState>();
#else
	state=(PhysicsDirectBodyState*)p_state; //trust it
#endif

	if (contact_monitor) {

		//untag all
		int rc=0;
		for( Map<ObjectID,BodyState>::Element *E=contact_monitor->body_map.front();E;E=E->next()) {

			for(int i=0;i<E->get().shapes.size();i++) {

				E->get().shapes[i].tagged=false;
				rc++;
			}
		}

		_RigidBodyInOut *toadd=(_RigidBodyInOut*)alloca(state->get_contact_count()*sizeof(_RigidBodyInOut));
		int toadd_count=0;//state->get_contact_count();
		RigidBody_RemoveAction *toremove=(RigidBody_RemoveAction*)alloca(rc*sizeof(RigidBody_RemoveAction));
		int toremove_count=0;

		//put the ones to add

		for(int i=0;i<state->get_contact_count();i++) {

			ObjectID obj = state->get_contact_collider_id(i);
			int local_shape = state->get_contact_local_shape(i);
			int shape = state->get_contact_collider_shape(i);
			toadd[i].local_shape=local_shape;
			toadd[i].id=obj;
			toadd[i].shape=shape;

			bool found=false;

			Map<ObjectID,BodyState>::Element *E=contact_monitor->body_map.find(obj);
			if (!E) {
				toadd_count++;
				continue;
			}

			ShapePair sp( shape,local_shape );
			int idx = E->get().shapes.find(sp);
			if (idx==-1) {

				toadd_count++;
				continue;
			}

			E->get().shapes[idx].tagged=true;
		}

		//put the ones to remove

		for( Map<ObjectID,BodyState>::Element *E=contact_monitor->body_map.front();E;E=E->next()) {

			for(int i=0;i<E->get().shapes.size();i++) {

				if (!E->get().shapes[i].tagged) {

					toremove[toremove_count].body_id=E->key();
					toremove[toremove_count].pair=E->get().shapes[i];
					toremove_count++;
				}
			}
		}


		//process remotions

		for(int i=0;i<toremove_count;i++) {

			_body_inout(0,toremove[i].body_id,toremove[i].pair.body_shape,toremove[i].pair.local_shape);
		}

		//process aditions

		for(int i=0;i<toadd_count;i++) {

			_body_inout(1,toadd[i].id,toadd[i].shape,toadd[i].local_shape);
		}

	}

	set_ignore_transform_notification(true);
	set_global_transform(state->get_transform());
	linear_velocity=state->get_linear_velocity();
	angular_velocity=state->get_angular_velocity();
	sleeping=state->is_sleeping();
	if (get_script_instance())
		get_script_instance()->call("_integrate_forces",state);
	set_ignore_transform_notification(false);

	state=NULL;
}
Пример #10
0
Vector2 KinematicBody2D::move(const Vector2& p_motion) {

	//give me back regular physics engine logic
	//this is madness
	//and most people using this function will think
	//what it does is simpler than using physics
	//this took about a week to get right..
	//but is it right? who knows at this point..


	colliding=false;
	ERR_FAIL_COND_V(!is_inside_scene(),Vector2());
	Physics2DDirectSpaceState *dss = Physics2DServer::get_singleton()->space_get_direct_state(get_world_2d()->get_space());
	ERR_FAIL_COND_V(!dss,Vector2());
	const int max_shapes=32;
	Vector2 sr[max_shapes*2];
	int res_shapes;

	Set<RID> exclude;
	exclude.insert(get_rid());


	//recover first
	int recover_attempts=4;

	bool collided=false;
	uint32_t mask=0;
	if (collide_static)
		mask|=Physics2DDirectSpaceState::TYPE_MASK_STATIC_BODY;
	if (collide_kinematic)
		mask|=Physics2DDirectSpaceState::TYPE_MASK_KINEMATIC_BODY;
	if (collide_rigid)
		mask|=Physics2DDirectSpaceState::TYPE_MASK_RIGID_BODY;
	if (collide_character)
		mask|=Physics2DDirectSpaceState::TYPE_MASK_CHARACTER_BODY;

//	print_line("motion: "+p_motion+" margin: "+rtos(margin));

	//print_line("margin: "+rtos(margin));
	do {

		//fill exclude list..
		for(int i=0;i<get_shape_count();i++) {


			if (dss->collide_shape(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i),Vector2(),margin,sr,max_shapes,res_shapes,exclude,0,mask))
				collided=true;

		}

		if (!collided)
			break;

		Vector2 recover_motion;

		for(int i=0;i<res_shapes;i++) {

			Vector2 a = sr[i*2+0];
			Vector2 b = sr[i*2+1];

			float d = a.distance_to(b);

			//if (d<margin)
			///	continue;
			recover_motion+=(b-a)*0.2;
		}

		if (recover_motion==Vector2()) {
			collided=false;
			break;
		}

		Matrix32 gt = get_global_transform();
		gt.elements[2]+=recover_motion;
		set_global_transform(gt);

		recover_attempts--;

	} while (recover_attempts);


	//move second
	float safe = 1.0;
	float unsafe = 1.0;
	int best_shape=-1;

	for(int i=0;i<get_shape_count();i++) {


		float lsafe,lunsafe;
		bool valid = dss->cast_motion(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i), p_motion, 0,lsafe,lunsafe,exclude,0,mask);
		//print_line("shape: "+itos(i)+" travel:"+rtos(ltravel));
		if (!valid) {
			safe=0;
			unsafe=0;
			best_shape=i; //sadly it's the best
			break;
		}
		if (lsafe==1.0) {
			continue;
		}
		if (lsafe < safe) {

			safe=lsafe;
			unsafe=lunsafe;
			best_shape=i;
		}
	}


	//print_line("best shape: "+itos(best_shape)+" motion "+p_motion);

	if (safe>=1) {
		//not collided
		colliding=false;
	} else {

		//it collided, let's get the rest info in unsafe advance
		Matrix32 ugt = get_global_transform();
		ugt.elements[2]+=p_motion*unsafe;
		Physics2DDirectSpaceState::ShapeRestInfo rest_info;
		bool c2 = dss->rest_info(get_shape(best_shape)->get_rid(), ugt*get_shape_transform(best_shape), Vector2(), margin,&rest_info,exclude,0,mask);
		if (!c2) {
			//should not happen, but floating point precision is so weird..
			colliding=false;
		} else {

			//print_line("Travel: "+rtos(travel));
			colliding=true;
			collision=rest_info.point;
			normal=rest_info.normal;
			collider=rest_info.collider_id;
			collider_vel=rest_info.linear_velocity;
		}

	}

	Vector2 motion=p_motion*safe;
	Matrix32 gt = get_global_transform();
	gt.elements[2]+=motion;
	set_global_transform(gt);

	return p_motion-motion;

}
Пример #11
0
bool Space2DSW::test_body_motion(Body2DSW *p_body,const Vector2&p_motion,float p_margin,Physics2DServer::MotionResult *r_result) {

    //give me back regular physics engine logic
    //this is madness
    //and most people using this function will think
    //what it does is simpler than using physics
    //this took about a week to get right..
    //but is it right? who knows at this point..

    Rect2 body_aabb;

    for(int i=0; i<p_body->get_shape_count(); i++) {

        if (i==0)
            body_aabb=p_body->get_shape_aabb(i);
        else
            body_aabb=body_aabb.merge(p_body->get_shape_aabb(i));
    }

    body_aabb=body_aabb.grow(p_margin);


    Matrix32 body_transform = p_body->get_transform();

    {
        //STEP 1, FREE BODY IF STUCK

        const int max_results = 32;
        int recover_attempts=4;
        Vector2 sr[max_results*2];

        do {

            Physics2DServerSW::CollCbkData cbk;
            cbk.max=max_results;
            cbk.amount=0;
            cbk.ptr=sr;


            CollisionSolver2DSW::CallbackResult cbkres=NULL;

            Physics2DServerSW::CollCbkData *cbkptr=NULL;
            cbkptr=&cbk;
            cbkres=Physics2DServerSW::_shape_col_cbk;

            bool collided=false;

            int amount = _cull_aabb_for_body(p_body,body_aabb);

            for(int j=0; j<p_body->get_shape_count(); j++) {
                if (p_body->is_shape_set_as_trigger(j))
                    continue;

                Matrix32 body_shape_xform = body_transform * p_body->get_shape_transform(j);
                Shape2DSW *body_shape = p_body->get_shape(j);
                for(int i=0; i<amount; i++) {

                    const CollisionObject2DSW *col_obj=intersection_query_results[i];
                    int shape_idx=intersection_query_subindex_results[i];

                    if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {

                        const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);

                        Vector2 cdir = body->get_one_way_collision_direction();
                        //if (cdir!=Vector2() && p_motion.dot(cdir)<0)
                        //	continue;

                        cbk.valid_dir=cdir;
                        cbk.valid_depth=body->get_one_way_collision_max_depth();
                    } else {
                        cbk.valid_dir=Vector2();
                        cbk.valid_depth=0;
                    }

                    if (CollisionSolver2DSW::solve(body_shape,body_shape_xform,Vector2(),col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),Vector2(),cbkres,cbkptr,NULL,p_margin)) {
                        collided=cbk.amount>0;
                    }
                }
            }


            if (!collided)
                break;

            Vector2 recover_motion;

            for(int i=0; i<cbk.amount; i++) {

                Vector2 a = sr[i*2+0];
                Vector2 b = sr[i*2+1];

                //	float d = a.distance_to(b);

                //if (d<margin)
                ///	continue;
                recover_motion+=(b-a)*0.4;
            }

            if (recover_motion==Vector2()) {
                collided=false;
                break;
            }

            body_transform.elements[2]+=recover_motion;
            body_aabb.pos+=recover_motion;

            recover_attempts--;

        } while (recover_attempts);
    }



    float safe = 1.0;
    float unsafe = 1.0;
    int best_shape=-1;

    {
        // STEP 2 ATTEMPT MOTION

        Rect2 motion_aabb=body_aabb;
        motion_aabb.pos+=p_motion;
        motion_aabb=motion_aabb.merge(body_aabb);

        int amount = _cull_aabb_for_body(p_body,motion_aabb);

        for(int j=0; j<p_body->get_shape_count(); j++) {

            if (p_body->is_shape_set_as_trigger(j))
                continue;

            Matrix32 body_shape_xform = body_transform * p_body->get_shape_transform(j);
            Shape2DSW *body_shape = p_body->get_shape(j);

            bool stuck=false;

            float best_safe=1;
            float best_unsafe=1;

            for(int i=0; i<amount; i++) {

                const CollisionObject2DSW *col_obj=intersection_query_results[i];
                int shape_idx=intersection_query_subindex_results[i];


                Matrix32 col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
                //test initial overlap, does it collide if going all the way?
                if (!CollisionSolver2DSW::solve(body_shape,body_shape_xform,p_motion,col_obj->get_shape(shape_idx),col_obj_xform,Vector2() ,NULL,NULL,NULL,0)) {
                    continue;
                }


                //test initial overlap
                if (CollisionSolver2DSW::solve(body_shape,body_shape_xform,Vector2(),col_obj->get_shape(shape_idx),col_obj_xform,Vector2() ,NULL,NULL,NULL,0)) {

                    if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
                        //if one way collision direction ignore initial overlap
                        const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
                        if (body->get_one_way_collision_direction()!=Vector2()) {
                            continue;
                        }
                    }

                    stuck=true;
                    break;
                }


                //just do kinematic solving
                float low=0;
                float hi=1;
                Vector2 mnormal=p_motion.normalized();

                for(int i=0; i<8; i++) { //steps should be customizable..

                    //Matrix32 xfa = p_xform;
                    float ofs = (low+hi)*0.5;

                    Vector2 sep=mnormal; //important optimization for this to work fast enough
                    bool collided = CollisionSolver2DSW::solve(body_shape,body_shape_xform,p_motion*ofs,col_obj->get_shape(shape_idx),col_obj_xform,Vector2(),NULL,NULL,&sep,0);

                    if (collided) {

                        hi=ofs;
                    } else {

                        low=ofs;
                    }
                }

                if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {

                    const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
                    if (body->get_one_way_collision_direction()!=Vector2()) {

                        Vector2 cd[2];
                        Physics2DServerSW::CollCbkData cbk;
                        cbk.max=1;
                        cbk.amount=0;
                        cbk.ptr=cd;
                        cbk.valid_dir=body->get_one_way_collision_direction();
                        cbk.valid_depth=body->get_one_way_collision_max_depth();

                        Vector2 sep=mnormal; //important optimization for this to work fast enough
                        bool collided = CollisionSolver2DSW::solve(body_shape,body_shape_xform,p_motion*(hi+contact_max_allowed_penetration),col_obj->get_shape(shape_idx),col_obj_xform,Vector2(),Physics2DServerSW::_shape_col_cbk,&cbk,&sep,0);
                        if (!collided || cbk.amount==0) {
                            continue;
                        }

                    }
                }


                if (low<best_safe) {
                    best_safe=low;
                    best_unsafe=hi;
                }
            }

            if (stuck) {

                safe=0;
                unsafe=0;
                best_shape=j; //sadly it's the best
                break;
            }
            if (best_safe==1.0) {
                continue;
            }
            if (best_safe < safe) {

                safe=best_safe;
                unsafe=best_unsafe;
                best_shape=j;
            }
        }
    }

    bool collided=false;
    if (safe>=1) {
        //not collided
        collided=false;
        if (r_result) {

            r_result->motion=p_motion+(body_transform.elements[2]-p_body->get_transform().elements[2]);
            r_result->remainder=Vector2();
        }

    } else {

        //it collided, let's get the rest info in unsafe advance
        Matrix32 ugt = body_transform;
        ugt.elements[2]+=p_motion*unsafe;

        _RestCallbackData2D rcd;
        rcd.best_len=0;
        rcd.best_object=NULL;
        rcd.best_shape=0;

        Matrix32 body_shape_xform = ugt * p_body->get_shape_transform(best_shape);
        Shape2DSW *body_shape = p_body->get_shape(best_shape);

        body_aabb.pos+=p_motion*unsafe;

        int amount = _cull_aabb_for_body(p_body,body_aabb);


        for(int i=0; i<amount; i++) {


            const CollisionObject2DSW *col_obj=intersection_query_results[i];
            int shape_idx=intersection_query_subindex_results[i];

            if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {

                const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
                rcd.valid_dir=body->get_one_way_collision_direction();
                rcd.valid_depth=body->get_one_way_collision_max_depth();
            } else {
                rcd.valid_dir=Vector2();
                rcd.valid_depth=0;
            }


            rcd.object=col_obj;
            rcd.shape=shape_idx;
            bool sc = CollisionSolver2DSW::solve(body_shape,body_shape_xform,Vector2(),col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),Vector2() ,_rest_cbk_result,&rcd,NULL,p_margin);
            if (!sc)
                continue;

        }

        if (rcd.best_len!=0) {

            if (r_result) {
                r_result->collider=rcd.best_object->get_self();
                r_result->collider_id=rcd.best_object->get_instance_id();
                r_result->collider_shape=rcd.best_shape;
                r_result->collision_normal=rcd.best_normal;
                r_result->collision_point=rcd.best_contact;
                r_result->collider_metadata=rcd.best_object->get_shape_metadata(rcd.best_shape);

                const Body2DSW *body = static_cast<const Body2DSW*>(rcd.best_object);
                Vector2 rel_vec = r_result->collision_point-body->get_transform().get_origin();
                r_result->collider_velocity = Vector2(-body->get_angular_velocity() * rel_vec.y, body->get_angular_velocity() * rel_vec.x) + body->get_linear_velocity();

                r_result->motion=safe*p_motion+(body_transform.elements[2]-p_body->get_transform().elements[2]);
                r_result->remainder=p_motion - safe * p_motion;
            }

            collided=true;
        } else {
            if (r_result) {

                r_result->motion=p_motion+(body_transform.elements[2]-p_body->get_transform().elements[2]);
                r_result->remainder=Vector2();
            }

            collided=false;

        }
    }

    return collided;


#if 0
    //give me back regular physics engine logic
    //this is madness
    //and most people using this function will think
    //what it does is simpler than using physics
    //this took about a week to get right..
    //but is it right? who knows at this point..


    colliding=false;
    ERR_FAIL_COND_V(!is_inside_tree(),Vector2());
    Physics2DDirectSpaceState *dss = Physics2DServer::get_singleton()->space_get_direct_state(get_world_2d()->get_space());
    ERR_FAIL_COND_V(!dss,Vector2());
    const int max_shapes=32;
    Vector2 sr[max_shapes*2];
    int res_shapes;

    Set<RID> exclude;
    exclude.insert(get_rid());


    //recover first
    int recover_attempts=4;

    bool collided=false;
    uint32_t mask=0;
    if (collide_static)
        mask|=Physics2DDirectSpaceState::TYPE_MASK_STATIC_BODY;
    if (collide_kinematic)
        mask|=Physics2DDirectSpaceState::TYPE_MASK_KINEMATIC_BODY;
    if (collide_rigid)
        mask|=Physics2DDirectSpaceState::TYPE_MASK_RIGID_BODY;
    if (collide_character)
        mask|=Physics2DDirectSpaceState::TYPE_MASK_CHARACTER_BODY;

//	print_line("motion: "+p_motion+" margin: "+rtos(margin));

    //print_line("margin: "+rtos(margin));
    do {

        //motion recover
        for(int i=0; i<get_shape_count(); i++) {

            if (is_shape_set_as_trigger(i))
                continue;
            if (dss->collide_shape(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i),Vector2(),margin,sr,max_shapes,res_shapes,exclude,get_layer_mask(),mask))
                collided=true;

        }

        if (!collided)
            break;

        Vector2 recover_motion;

        for(int i=0; i<res_shapes; i++) {

            Vector2 a = sr[i*2+0];
            Vector2 b = sr[i*2+1];

            float d = a.distance_to(b);

            //if (d<margin)
            ///	continue;
            recover_motion+=(b-a)*0.4;
        }

        if (recover_motion==Vector2()) {
            collided=false;
            break;
        }

        Matrix32 gt = get_global_transform();
        gt.elements[2]+=recover_motion;
        set_global_transform(gt);

        recover_attempts--;

    } while (recover_attempts);


    //move second
    float safe = 1.0;
    float unsafe = 1.0;
    int best_shape=-1;

    for(int i=0; i<get_shape_count(); i++) {

        if (is_shape_set_as_trigger(i))
            continue;

        float lsafe,lunsafe;
        bool valid = dss->cast_motion(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i), p_motion, 0,lsafe,lunsafe,exclude,get_layer_mask(),mask);
        //print_line("shape: "+itos(i)+" travel:"+rtos(ltravel));
        if (!valid) {

            safe=0;
            unsafe=0;
            best_shape=i; //sadly it's the best
            break;
        }
        if (lsafe==1.0) {
            continue;
        }
        if (lsafe < safe) {

            safe=lsafe;
            unsafe=lunsafe;
            best_shape=i;
        }
    }


    //print_line("best shape: "+itos(best_shape)+" motion "+p_motion);

    if (safe>=1) {
        //not collided
        colliding=false;
    } else {

        //it collided, let's get the rest info in unsafe advance
        Matrix32 ugt = get_global_transform();
        ugt.elements[2]+=p_motion*unsafe;
        Physics2DDirectSpaceState::ShapeRestInfo rest_info;
        bool c2 = dss->rest_info(get_shape(best_shape)->get_rid(), ugt*get_shape_transform(best_shape), Vector2(), margin,&rest_info,exclude,get_layer_mask(),mask);
        if (!c2) {
            //should not happen, but floating point precision is so weird..

            colliding=false;
        } else {


            //print_line("Travel: "+rtos(travel));
            colliding=true;
            collision=rest_info.point;
            normal=rest_info.normal;
            collider=rest_info.collider_id;
            collider_vel=rest_info.linear_velocity;
            collider_shape=rest_info.shape;
            collider_metadata=rest_info.metadata;
        }

    }

    Vector2 motion=p_motion*safe;
    Matrix32 gt = get_global_transform();
    gt.elements[2]+=motion;
    set_global_transform(gt);

    return p_motion-motion;

#endif
    return false;
}
Пример #12
0
void Spatial::global_translate(const Vector3 &p_offset) {
	Transform t = get_global_transform();
	t.origin += p_offset;
	set_global_transform(t);
}
Пример #13
0
void VehicleBody::_direct_state_changed(Object *p_state) {


	PhysicsDirectBodyState *s = p_state->cast_to<PhysicsDirectBodyState>();

	set_ignore_transform_notification(true);
	set_global_transform(s->get_transform());
	set_ignore_transform_notification(false);


	float step = s->get_step();

	for(int i=0;i<wheels.size();i++) {

		_update_wheel(i,s);
	}


	for(int i=0;i<wheels.size();i++) {

		_ray_cast(i,s);
		wheels[i]->set_transform(s->get_transform().inverse() * wheels[i]->m_worldTransform);
	}

	_update_suspension(s);

	for(int i=0;i<wheels.size();i++) {

		//apply suspension force
		VehicleWheel& wheel = *wheels[i];

		real_t suspensionForce = wheel.m_wheelsSuspensionForce;

		if (suspensionForce > wheel.m_maxSuspensionForce)
		{
			suspensionForce = wheel.m_maxSuspensionForce;
		}
		Vector3 impulse = wheel.m_raycastInfo.m_contactNormalWS * suspensionForce * step;
		Vector3 relpos = wheel.m_raycastInfo.m_contactPointWS - s->get_transform().origin;

		s->apply_impulse(relpos,impulse);
		//getRigidBody()->applyImpulse(impulse, relpos);

	}


	_update_friction(s);


	for (int i=0;i<wheels.size();i++)
	{
		VehicleWheel& wheel = *wheels[i];
		Vector3 relpos = wheel.m_raycastInfo.m_hardPointWS - s->get_transform().origin;
		Vector3 vel  = s->get_linear_velocity() + (s->get_angular_velocity()).cross(relpos);// * mPos);

		if (wheel.m_raycastInfo.m_isInContact)
		{
			const Transform&	chassisWorldTransform = s->get_transform();

			Vector3 fwd (
				chassisWorldTransform.basis[0][Vector3::AXIS_Z],
				chassisWorldTransform.basis[1][Vector3::AXIS_Z],
				chassisWorldTransform.basis[2][Vector3::AXIS_Z]);

			real_t proj = fwd.dot(wheel.m_raycastInfo.m_contactNormalWS);
			fwd -= wheel.m_raycastInfo.m_contactNormalWS * proj;

			real_t proj2 = fwd.dot(vel);

			wheel.m_deltaRotation = (proj2 * step) / (wheel.m_wheelRadius);
			wheel.m_rotation += wheel.m_deltaRotation;

		} else
		{
			wheel.m_rotation += wheel.m_deltaRotation;
		}

		wheel.m_deltaRotation *= real_t(0.99);//damping of rotation when not in contact

	}
	linear_velocity = s->get_linear_velocity();
}
Пример #14
0
void Spatial::global_scale(const Vector3 &p_scale) {

	Transform t = get_global_transform();
	t.basis.scale(p_scale);
	set_global_transform(t);
}
Пример #15
0
void Spatial::global_rotate(const Vector3 &p_axis, float p_angle) {

	Transform t = get_global_transform();
	t.basis.rotate(p_axis, p_angle);
	set_global_transform(t);
}