GURLS_EXPORT void geqp3( int *m, int *n, float *A, int *lda, int *jpvt, float *tau, float *work, int *lwork, int *info) { sgeqp3_(m, n, A, lda, jpvt, tau, work, lwork, info); }
/* Subroutine */ int sgelsy_(integer *m, integer *n, integer *nrhs, real *a, integer *lda, real *b, integer *ldb, integer *jpvt, real *rcond, integer *rank, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; real r__1, r__2; /* Local variables */ integer i__, j; real c1, c2, s1, s2; integer nb, mn, nb1, nb2, nb3, nb4; real anrm, bnrm, smin, smax; integer iascl, ibscl, ismin, ismax; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); real wsize; extern /* Subroutine */ int strsm_(char *, char *, char *, char *, integer *, integer *, real *, real *, integer *, real *, integer * ), slaic1_(integer *, integer *, real *, real *, real *, real *, real *, real *, real *), sgeqp3_( integer *, integer *, real *, integer *, integer *, real *, real * , integer *, integer *), slabad_(real *, real *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); integer lwkmin; real sminpr, smaxpr, smlnum; integer lwkopt; logical lquery; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *), sormrz_(char *, char *, integer *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *), stzrzf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGELSY computes the minimum-norm solution to a real linear least */ /* squares problem: */ /* minimize || A * X - B || */ /* using a complete orthogonal factorization of A. A is an M-by-N */ /* matrix which may be rank-deficient. */ /* Several right hand side vectors b and solution vectors x can be */ /* handled in a single call; they are stored as the columns of the */ /* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */ /* matrix X. */ /* The routine first computes a QR factorization with column pivoting: */ /* A * P = Q * [ R11 R12 ] */ /* [ 0 R22 ] */ /* with R11 defined as the largest leading submatrix whose estimated */ /* condition number is less than 1/RCOND. The order of R11, RANK, */ /* is the effective rank of A. */ /* Then, R22 is considered to be negligible, and R12 is annihilated */ /* by orthogonal transformations from the right, arriving at the */ /* complete orthogonal factorization: */ /* A * P = Q * [ T11 0 ] * Z */ /* [ 0 0 ] */ /* The minimum-norm solution is then */ /* X = P * Z' [ inv(T11)*Q1'*B ] */ /* [ 0 ] */ /* where Q1 consists of the first RANK columns of Q. */ /* This routine is basically identical to the original xGELSX except */ /* three differences: */ /* o The call to the subroutine xGEQPF has been substituted by the */ /* the call to the subroutine xGEQP3. This subroutine is a Blas-3 */ /* version of the QR factorization with column pivoting. */ /* o Matrix B (the right hand side) is updated with Blas-3. */ /* o The permutation of matrix B (the right hand side) is faster and */ /* more simple. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of */ /* columns of matrices B and X. NRHS >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, A has been overwritten by details of its */ /* complete orthogonal factorization. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* B (input/output) REAL array, dimension (LDB,NRHS) */ /* On entry, the M-by-NRHS right hand side matrix B. */ /* On exit, the N-by-NRHS solution matrix X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,M,N). */ /* JPVT (input/output) INTEGER array, dimension (N) */ /* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */ /* to the front of AP, otherwise column i is a free column. */ /* On exit, if JPVT(i) = k, then the i-th column of AP */ /* was the k-th column of A. */ /* RCOND (input) REAL */ /* RCOND is used to determine the effective rank of A, which */ /* is defined as the order of the largest leading triangular */ /* submatrix R11 in the QR factorization with pivoting of A, */ /* whose estimated condition number < 1/RCOND. */ /* RANK (output) INTEGER */ /* The effective rank of A, i.e., the order of the submatrix */ /* R11. This is the same as the order of the submatrix T11 */ /* in the complete orthogonal factorization of A. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* The unblocked strategy requires that: */ /* LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ), */ /* where MN = min( M, N ). */ /* The block algorithm requires that: */ /* LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ), */ /* where NB is an upper bound on the blocksize returned */ /* by ILAENV for the routines SGEQP3, STZRZF, STZRQF, SORMQR, */ /* and SORMRZ. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: If INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ /* E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */ /* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --jpvt; --work; /* Function Body */ mn = min(*m,*n); ismin = mn + 1; ismax = (mn << 1) + 1; /* Test the input arguments. */ *info = 0; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*m); if (*ldb < max(i__1,*n)) { *info = -7; } } /* Figure out optimal block size */ if (*info == 0) { if (mn == 0 || *nrhs == 0) { lwkmin = 1; lwkopt = 1; } else { nb1 = ilaenv_(&c__1, "SGEQRF", " ", m, n, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "SGERQF", " ", m, n, &c_n1, &c_n1); nb3 = ilaenv_(&c__1, "SORMQR", " ", m, n, nrhs, &c_n1); nb4 = ilaenv_(&c__1, "SORMRQ", " ", m, n, nrhs, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2), i__1 = max(i__1,nb3); nb = max(i__1,nb4); /* Computing MAX */ i__1 = mn << 1, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = mn + *nrhs; lwkmin = mn + max(i__1,i__2); /* Computing MAX */ i__1 = lwkmin, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = max( i__1,i__2), i__2 = (mn << 1) + nb * *nrhs; lwkopt = max(i__1,i__2); } work[1] = (real) lwkopt; if (*lwork < lwkmin && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("SGELSY", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (mn == 0 || *nrhs == 0) { *rank = 0; return 0; } /* Get machine parameters */ smlnum = slamch_("S") / slamch_("P"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Scale A, B if max entries outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]); iascl = 0; if (anrm > 0.f && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info); iascl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM */ slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info); iascl = 2; } else if (anrm == 0.f) { /* Matrix all zero. Return zero solution. */ i__1 = max(*m,*n); slaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb); *rank = 0; goto L70; } bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]); ibscl = 0; if (bnrm > 0.f && bnrm < smlnum) { /* Scale matrix norm up to SMLNUM */ slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, info); ibscl = 1; } else if (bnrm > bignum) { /* Scale matrix norm down to BIGNUM */ slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, info); ibscl = 2; } /* Compute QR factorization with column pivoting of A: */ /* A * P = Q * R */ i__1 = *lwork - mn; sgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1, info); wsize = mn + work[mn + 1]; /* workspace: MN+2*N+NB*(N+1). */ /* Details of Householder rotations stored in WORK(1:MN). */ /* Determine RANK using incremental condition estimation */ work[ismin] = 1.f; work[ismax] = 1.f; smax = (r__1 = a[a_dim1 + 1], dabs(r__1)); smin = smax; if ((r__1 = a[a_dim1 + 1], dabs(r__1)) == 0.f) { *rank = 0; i__1 = max(*m,*n); slaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb); goto L70; } else { *rank = 1; } L10: if (*rank < mn) { i__ = *rank + 1; slaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[ i__ + i__ * a_dim1], &sminpr, &s1, &c1); slaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[ i__ + i__ * a_dim1], &smaxpr, &s2, &c2); if (smaxpr * *rcond <= sminpr) { i__1 = *rank; for (i__ = 1; i__ <= i__1; ++i__) { work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1]; work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1]; /* L20: */ } work[ismin + *rank] = c1; work[ismax + *rank] = c2; smin = sminpr; smax = smaxpr; ++(*rank); goto L10; } } /* workspace: 3*MN. */ /* Logically partition R = [ R11 R12 ] */ /* [ 0 R22 ] */ /* where R11 = R(1:RANK,1:RANK) */ /* [R11,R12] = [ T11, 0 ] * Y */ if (*rank < *n) { i__1 = *lwork - (mn << 1); stzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) + 1], &i__1, info); } /* workspace: 2*MN. */ /* Details of Householder rotations stored in WORK(MN+1:2*MN) */ /* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */ i__1 = *lwork - (mn << 1); sormqr_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], & b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info); /* Computing MAX */ r__1 = wsize, r__2 = (mn << 1) + work[(mn << 1) + 1]; wsize = dmax(r__1,r__2); /* workspace: 2*MN+NB*NRHS. */ /* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */ strsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b54, & a[a_offset], lda, &b[b_offset], ldb); i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = *rank + 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = 0.f; /* L30: */ } /* L40: */ } /* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */ if (*rank < *n) { i__1 = *n - *rank; i__2 = *lwork - (mn << 1); sormrz_("Left", "Transpose", n, nrhs, rank, &i__1, &a[a_offset], lda, &work[mn + 1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__2, info); } /* workspace: 2*MN+NRHS. */ /* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[jpvt[i__]] = b[i__ + j * b_dim1]; /* L50: */ } scopy_(n, &work[1], &c__1, &b[j * b_dim1 + 1], &c__1); /* L60: */ } /* workspace: N. */ /* Undo scaling */ if (iascl == 1) { slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, info); slascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], lda, info); } else if (iascl == 2) { slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, info); slascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], lda, info); } if (ibscl == 1) { slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } else if (ibscl == 2) { slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } L70: work[1] = (real) lwkopt; return 0; /* End of SGELSY */ } /* sgelsy_ */