/* Subroutine */ int schklq_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nxval, integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, real *af, real *aq, real *al, real *ac, real *b, real *x, real *xact, real *tau, real *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, K=\002,i" "5,\002, NB=\002,i4,\002, NX=\002,i5,\002, type \002,i2,\002, tes" "t(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; /* Local variables */ integer i__, k, m, n, nb, ik, im, in, kl, nk, ku, nt, nx, lda, inb, mode, imat, info; char path[3]; integer kval[4]; char dist[1], type__[1]; integer nrun; integer nfail, iseed[4]; real anorm; integer minmn; integer nerrs, lwork; real cndnum; real result[8]; /* Fortran I/O blocks */ static cilist io___33 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SCHKLQ tests SGELQF, SORGLQ and SORMLQ. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB and NX contained in the */ /* vectors NBVAL and NXVAL. The blocking parameters are used */ /* in pairs (NB,NX). */ /* NBVAL (input) INTEGER array, dimension (NNB) */ /* The values of the blocksize NB. */ /* NXVAL (input) INTEGER array, dimension (NNB) */ /* The values of the crossover point NX. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for M or N, used in dimensioning */ /* the work arrays. */ /* A (workspace) REAL array, dimension (NMAX*NMAX) */ /* AF (workspace) REAL array, dimension (NMAX*NMAX) */ /* AQ (workspace) REAL array, dimension (NMAX*NMAX) */ /* AL (workspace) REAL array, dimension (NMAX*NMAX) */ /* AC (workspace) REAL array, dimension (NMAX*NMAX) */ /* B (workspace) REAL array, dimension (NMAX*NRHS) */ /* X (workspace) REAL array, dimension (NMAX*NRHS) */ /* XACT (workspace) REAL array, dimension (NMAX*NRHS) */ /* TAU (workspace) REAL array, dimension (NMAX) */ /* WORK (workspace) REAL array, dimension (NMAX*NMAX) */ /* RWORK (workspace) REAL array, dimension (NMAX) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --tau; --xact; --x; --b; --ac; --al; --aq; --af; --a; --nxval; --nbval; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "LQ", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { serrlq_(path, nout); } infoc_1.infot = 0; xlaenv_(&c__2, &c__2); lda = *nmax; lwork = *nmax * max(*nmax,*nrhs); /* Do for each value of M in MVAL. */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; /* Do for each value of N in NVAL. */ i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; minmn = min(m,n); for (imat = 1; imat <= 8; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L50; } /* Set up parameters with SLATB4 and generate a test matrix */ /* with SLATMS. */ slatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6); slatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, & work[1], &info); /* Check error code from SLATMS. */ if (info != 0) { alaerh_(path, "SLATMS", &info, &c__0, " ", &m, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L50; } /* Set some values for K: the first value must be MINMN, */ /* corresponding to the call of SLQT01; other values are */ /* used in the calls of SLQT02, and must not exceed MINMN. */ kval[0] = minmn; kval[1] = 0; kval[2] = 1; kval[3] = minmn / 2; if (minmn == 0) { nk = 1; } else if (minmn == 1) { nk = 2; } else if (minmn <= 3) { nk = 3; } else { nk = 4; } /* Do for each value of K in KVAL */ i__3 = nk; for (ik = 1; ik <= i__3; ++ik) { k = kval[ik - 1]; /* Do for each pair of values (NB,NX) in NBVAL and NXVAL. */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); for (i__ = 1; i__ <= 8; ++i__) { result[i__ - 1] = 0.f; } nt = 2; if (ik == 1) { /* Test SGELQF */ slqt01_(&m, &n, &a[1], &af[1], &aq[1], &al[1], & lda, &tau[1], &work[1], &lwork, &rwork[1], result); if (! sgennd_(&m, &n, &af[1], &lda)) { result[7] = *thresh * 2; } ++nt; } else if (m <= n) { /* Test SORGLQ, using factorization */ /* returned by SLQT01 */ slqt02_(&m, &n, &k, &a[1], &af[1], &aq[1], &al[1], &lda, &tau[1], &work[1], &lwork, &rwork[ 1], result); } if (m >= k) { /* Test SORMLQ, using factorization returned */ /* by SLQT01 */ slqt03_(&m, &n, &k, &af[1], &ac[1], &al[1], &aq[1] , &lda, &tau[1], &work[1], &lwork, &rwork[ 1], &result[2]); nt += 4; /* If M>=N and K=N, call SGELQS to solve a system */ /* with NRHS right hand sides and compute the */ /* residual. */ if (k == m && inb == 1) { /* Generate a solution and set the right */ /* hand side. */ s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, (ftnlen)6); slarhs_(path, "New", "Full", "No transpose", & m, &n, &c__0, &c__0, nrhs, &a[1], & lda, &xact[1], &lda, &b[1], &lda, iseed, &info); slacpy_("Full", &m, nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "SGELQS", (ftnlen)32, (ftnlen)6); sgelqs_(&m, &n, nrhs, &af[1], &lda, &tau[1], & x[1], &lda, &work[1], &lwork, &info); /* Check error code from SGELQS. */ if (info != 0) { alaerh_(path, "SGELQS", &info, &c__0, " ", &m, &n, nrhs, &c_n1, &nb, & imat, &nfail, &nerrs, nout); } sget02_("No transpose", &m, &n, nrhs, &a[1], & lda, &x[1], &lda, &b[1], &lda, &rwork[ 1], &result[6]); ++nt; } } /* Print information about the tests that did not */ /* pass the threshold. */ for (i__ = 1; i__ <= 8; ++i__) { if (result[i__ - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___33.ciunit = *nout; s_wsfe(&io___33); do_fio(&c__1, (char *)&m, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nx, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[i__ - 1], ( ftnlen)sizeof(real)); e_wsfe(); ++nfail; } /* L20: */ } nrun += nt; /* L30: */ } /* L40: */ } L50: ; } /* L60: */ } /* L70: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of SCHKLQ */ } /* schklq_ */
/* Subroutine */ int sdrvge_(logical *dotype, integer *nn, integer *nval, integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, real *afac, real *asav, real *b, real *bsav, real *x, real *xact, real *s, real *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; static char facts[1*3] = "F" "N" "E"; static char equeds[1*4] = "N" "R" "C" "B"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, N =\002,i5,\002, type \002,i2," "\002, test(\002,i2,\002) =\002,g12.5)"; static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002," "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i2," "\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002," "a1,\002', N=\002,i5,\002, type \002,i2,\002, test(\002,i1,\002)" "=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; real r__1; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i__, k, n, k1, nb, in, kl, ku, nt, lda; char fact[1]; integer ioff, mode; real amax; char path[3]; integer imat, info; char dist[1], type__[1]; integer nrun, ifact, nfail, iseed[4], nfact; extern logical lsame_(char *, char *); char equed[1]; integer nbmin; real rcond, roldc; extern /* Subroutine */ int sget01_(integer *, integer *, real *, integer *, real *, integer *, integer *, real *, real *); integer nimat; real roldi; extern doublereal sget06_(real *, real *); extern /* Subroutine */ int sget02_(char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, real * , real *); real anorm; integer itran; extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer *, real *, integer *, real *, real *); logical equil; real roldo; extern /* Subroutine */ int sget07_(char *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer * , real *, real *, real *); char trans[1]; integer izero, nerrs; extern /* Subroutine */ int sgesv_(integer *, integer *, real *, integer * , integer *, real *, integer *, integer *); integer lwork; logical zerot; char xtype[1]; extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), aladhd_(integer *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); logical prefac; real colcnd; extern doublereal slamch_(char *); real rcondc; extern doublereal slange_(char *, integer *, integer *, real *, integer *, real *); logical nofact; integer iequed; extern /* Subroutine */ int slaqge_(integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, char *); real rcondi; extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer *, integer *); real cndnum, anormi, rcondo, ainvnm; extern /* Subroutine */ int sgeequ_(integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *); logical trfcon; real anormo, rowcnd; extern /* Subroutine */ int sgetrf_(integer *, integer *, real *, integer *, integer *, integer *), sgetri_(integer *, real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, integer *, integer *); extern doublereal slantr_(char *, char *, char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, real *, real *, integer *), slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, real *, integer *, real *, integer * ), xlaenv_(integer *, integer *); real result[7]; extern /* Subroutine */ int sgesvx_(char *, char *, integer *, integer *, real *, integer *, real *, integer *, integer *, char *, real *, real *, real *, integer *, real *, integer *, real *, real *, real *, real *, integer *, integer *); real rpvgrw; extern /* Subroutine */ int serrvx_(char *, integer *); /* Fortran I/O blocks */ static cilist io___55 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___62 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___63 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___64 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___65 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___66 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___67 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___68 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SDRVGE tests the driver routines SGESV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) REAL array, dimension (NMAX*NMAX) */ /* AFAC (workspace) REAL array, dimension (NMAX*NMAX) */ /* ASAV (workspace) REAL array, dimension (NMAX*NMAX) */ /* B (workspace) REAL array, dimension (NMAX*NRHS) */ /* BSAV (workspace) REAL array, dimension (NMAX*NRHS) */ /* X (workspace) REAL array, dimension (NMAX*NRHS) */ /* XACT (workspace) REAL array, dimension (NMAX*NRHS) */ /* S (workspace) REAL array, dimension (2*NMAX) */ /* WORK (workspace) REAL array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) REAL array, dimension (2*NRHS+NMAX) */ /* IWORK (workspace) INTEGER array, dimension (2*NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { serrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 11; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L80; } /* Skip types 5, 6, or 7 if the matrix size is too small. */ zerot = imat >= 5 && imat <= 7; if (zerot && n < imat - 4) { goto L80; } /* Set up parameters with SLATB4 and generate a test matrix */ /* with SLATMS. */ slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cndnum, dist); rcondc = 1.f / cndnum; s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (ftnlen)6); slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, & anorm, &kl, &ku, "No packing", &a[1], &lda, &work[1], & info); /* Check error code from SLATMS. */ if (info != 0) { alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L80; } /* For types 5-7, zero one or more columns of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 5) { izero = 1; } else if (imat == 6) { izero = n; } else { izero = n / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 7) { i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff + i__] = 0.f; /* L20: */ } } else { i__3 = n - izero + 1; slaset_("Full", &n, &i__3, &c_b20, &c_b20, &a[ioff + 1], & lda); } } else { izero = 0; } /* Save a copy of the matrix A in ASAV. */ slacpy_("Full", &n, &n, &a[1], &lda, &asav[1], &lda); for (iequed = 1; iequed <= 4; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__3 = nfact; for (ifact = 1; ifact <= i__3; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L60; } rcondo = 0.f; rcondi = 0.f; } else if (! nofact) { /* Compute the condition number for comparison with */ /* the value returned by SGESVX (FACT = 'N' reuses */ /* the condition number from the previous iteration */ /* with FACT = 'F'). */ slacpy_("Full", &n, &n, &asav[1], &lda, &afac[1], & lda); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ sgeequ_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], &rowcnd, &colcnd, &amax, &info); if (info == 0 && n > 0) { if (lsame_(equed, "R")) { rowcnd = 0.f; colcnd = 1.f; } else if (lsame_(equed, "C")) { rowcnd = 1.f; colcnd = 0.f; } else if (lsame_(equed, "B")) { rowcnd = 0.f; colcnd = 0.f; } /* Equilibrate the matrix. */ slaqge_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], &rowcnd, &colcnd, &amax, equed); } } /* Save the condition number of the non-equilibrated */ /* system for use in SGET04. */ if (equil) { roldo = rcondo; roldi = rcondi; } /* Compute the 1-norm and infinity-norm of A. */ anormo = slange_("1", &n, &n, &afac[1], &lda, &rwork[ 1]); anormi = slange_("I", &n, &n, &afac[1], &lda, &rwork[ 1]); /* Factor the matrix A. */ sgetrf_(&n, &n, &afac[1], &lda, &iwork[1], &info); /* Form the inverse of A. */ slacpy_("Full", &n, &n, &afac[1], &lda, &a[1], &lda); lwork = *nmax * max(3,*nrhs); sgetri_(&n, &a[1], &lda, &iwork[1], &work[1], &lwork, &info); /* Compute the 1-norm condition number of A. */ ainvnm = slange_("1", &n, &n, &a[1], &lda, &rwork[1]); if (anormo <= 0.f || ainvnm <= 0.f) { rcondo = 1.f; } else { rcondo = 1.f / anormo / ainvnm; } /* Compute the infinity-norm condition number of A. */ ainvnm = slange_("I", &n, &n, &a[1], &lda, &rwork[1]); if (anormi <= 0.f || ainvnm <= 0.f) { rcondi = 1.f; } else { rcondi = 1.f / anormi / ainvnm; } } for (itran = 1; itran <= 3; ++itran) { /* Do for each value of TRANS. */ *(unsigned char *)trans = *(unsigned char *)&transs[ itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* Restore the matrix A. */ slacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)6, (ftnlen) 6); slarhs_(path, xtype, "Full", trans, &n, &n, &kl, &ku, nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); *(unsigned char *)xtype = 'C'; slacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda); if (nofact && itran == 1) { /* --- Test SGESV --- */ /* Compute the LU factorization of the matrix and */ /* solve the system. */ slacpy_("Full", &n, &n, &a[1], &lda, &afac[1], & lda); slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "SGESV ", (ftnlen)6, ( ftnlen)6); sgesv_(&n, nrhs, &afac[1], &lda, &iwork[1], &x[1], &lda, &info); /* Check error code from SGESV . */ if (info != izero) { alaerh_(path, "SGESV ", &info, &izero, " ", & n, &n, &c_n1, &c_n1, nrhs, &imat, & nfail, &nerrs, nout); } /* Reconstruct matrix from factors and compute */ /* residual. */ sget01_(&n, &n, &a[1], &lda, &afac[1], &lda, & iwork[1], &rwork[1], result); nt = 1; if (izero == 0) { /* Compute residual of the computed solution. */ slacpy_("Full", &n, nrhs, &b[1], &lda, &work[ 1], &lda); sget02_("No transpose", &n, &n, nrhs, &a[1], & lda, &x[1], &lda, &work[1], &lda, & rwork[1], &result[1]); /* Check solution from generated exact solution. */ sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); nt = 3; } /* Print information about the tests that did not */ /* pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___55.ciunit = *nout; s_wsfe(&io___55); do_fio(&c__1, "SGESV ", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(real)); e_wsfe(); ++nfail; } /* L30: */ } nrun += nt; } /* --- Test SGESVX --- */ if (! prefac) { slaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], &lda); } slaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT = 'F' and */ /* EQUED = 'R', 'C', or 'B'. */ slaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], & rowcnd, &colcnd, &amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using SGESVX. */ s_copy(srnamc_1.srnamt, "SGESVX", (ftnlen)6, (ftnlen) 6); sgesvx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], &lda, &iwork[1], equed, &s[1], &s[n + 1], &b[ 1], &lda, &x[1], &lda, &rcond, &rwork[1], & rwork[*nrhs + 1], &work[1], &iwork[n + 1], & info); /* Check the error code from SGESVX. */ if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "SGESVX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); } /* Compare WORK(1) from SGESVX with the computed */ /* reciprocal pivot growth factor RPVGRW */ if (info != 0) { rpvgrw = slantr_("M", "U", "N", &info, &info, & afac[1], &lda, &work[1]); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = slange_("M", &n, &info, &a[1], &lda, &work[1]) / rpvgrw; } } else { rpvgrw = slantr_("M", "U", "N", &n, &n, &afac[1], &lda, &work[1]); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = slange_("M", &n, &n, &a[1], &lda, & work[1]) / rpvgrw; } } result[6] = (r__1 = rpvgrw - work[1], dabs(r__1)) / dmax(work[1],rpvgrw) / slamch_("E") ; if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ sget01_(&n, &n, &a[1], &lda, &afac[1], &lda, & iwork[1], &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } if (info == 0) { trfcon = FALSE_; /* Compute residual of the computed solution. */ slacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); sget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1] , &lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { if (itran == 1) { roldc = roldo; } else { roldc = roldi; } sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ sget07_(trans, &n, nrhs, &asav[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[*nrhs + 1], &result[3]); } else { trfcon = TRUE_; } /* Compare RCOND from SGESVX with the computed value */ /* in RCONDC. */ result[5] = sget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ if (! trfcon) { for (k = k1; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___61.ciunit = *nout; s_wsfe(&io___61); do_fio(&c__1, "SGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(real)); e_wsfe(); } else { io___62.ciunit = *nout; s_wsfe(&io___62); do_fio(&c__1, "SGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; } /* L40: */ } nrun = nrun + 7 - k1; } else { if (result[0] >= *thresh && ! prefac) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___63.ciunit = *nout; s_wsfe(&io___63); do_fio(&c__1, "SGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(real)); e_wsfe(); } else { io___64.ciunit = *nout; s_wsfe(&io___64); do_fio(&c__1, "SGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___65.ciunit = *nout; s_wsfe(&io___65); do_fio(&c__1, "SGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__6, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen) sizeof(real)); e_wsfe(); } else { io___66.ciunit = *nout; s_wsfe(&io___66); do_fio(&c__1, "SGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__6, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen) sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___67.ciunit = *nout; s_wsfe(&io___67); do_fio(&c__1, "SGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(real)); e_wsfe(); } else { io___68.ciunit = *nout; s_wsfe(&io___68); do_fio(&c__1, "SGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } } /* L50: */ } L60: ; } /* L70: */ } L80: ; } /* L90: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of SDRVGE */ } /* sdrvge_ */