/* Limited measurements show no results worse than 64 bit precision except for the results for arguments close to 2^63, where the precision of the result sometimes degrades to about 63.9 bits */ static int trig_arg(FPU_REG *st0_ptr, int even) { FPU_REG tmp; u_char tmptag; unsigned long long q; int old_cw = control_word, saved_status = partial_status; int tag, st0_tag = TAG_Valid; if ( exponent(st0_ptr) >= 63 ) { partial_status |= SW_C2; /* Reduction incomplete. */ return -1; } control_word &= ~CW_RC; control_word |= RC_CHOP; setpositive(st0_ptr); tag = FPU_u_div(st0_ptr, &CONST_PI2, &tmp, PR_64_BITS | RC_CHOP | 0x3f, SIGN_POS); FPU_round_to_int(&tmp, tag); /* Fortunately, this can't overflow to 2^64 */ q = significand(&tmp); if ( q ) { rem_kernel(significand(st0_ptr), &significand(&tmp), significand(&CONST_PI2), q, exponent(st0_ptr) - exponent(&CONST_PI2)); setexponent16(&tmp, exponent(&CONST_PI2)); st0_tag = FPU_normalize(&tmp); FPU_copy_to_reg0(&tmp, st0_tag); } if ( (even && !(q & 1)) || (!even && (q & 1)) ) { st0_tag = FPU_sub(REV|LOADED|TAG_Valid, (int)&CONST_PI2, FULL_PRECISION); #ifdef BETTER_THAN_486 /* So far, the results are exact but based upon a 64 bit precision approximation to pi/2. The technique used now is equivalent to using an approximation to pi/2 which is accurate to about 128 bits. */ if ( (exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64) || (q > 1) ) { /* This code gives the effect of having pi/2 to better than 128 bits precision. */ significand(&tmp) = q + 1; setexponent16(&tmp, 63); FPU_normalize(&tmp); tmptag = FPU_u_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION, SIGN_POS, exponent(&CONST_PI2extra) + exponent(&tmp)); setsign(&tmp, getsign(&CONST_PI2extra)); st0_tag = FPU_add(&tmp, tmptag, 0, FULL_PRECISION); if ( signnegative(st0_ptr) ) { /* CONST_PI2extra is negative, so the result of the addition can be negative. This means that the argument is actually in a different quadrant. The correction is always < pi/2, so it can't overflow into yet another quadrant. */ setpositive(st0_ptr); q++; } } #endif /* BETTER_THAN_486 */ } #ifdef BETTER_THAN_486 else { /* So far, the results are exact but based upon a 64 bit precision approximation to pi/2. The technique used now is equivalent to using an approximation to pi/2 which is accurate to about 128 bits. */ if ( ((q > 0) && (exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64)) || (q > 1) ) { /* This code gives the effect of having p/2 to better than 128 bits precision. */ significand(&tmp) = q; setexponent16(&tmp, 63); FPU_normalize(&tmp); /* This must return TAG_Valid */ tmptag = FPU_u_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION, SIGN_POS, exponent(&CONST_PI2extra) + exponent(&tmp)); setsign(&tmp, getsign(&CONST_PI2extra)); st0_tag = FPU_sub(LOADED|(tmptag & 0x0f), (int)&tmp, FULL_PRECISION); if ( (exponent(st0_ptr) == exponent(&CONST_PI2)) && ((st0_ptr->sigh > CONST_PI2.sigh) || ((st0_ptr->sigh == CONST_PI2.sigh) && (st0_ptr->sigl > CONST_PI2.sigl))) ) { /* CONST_PI2extra is negative, so the result of the subtraction can be larger than pi/2. This means that the argument is actually in a different quadrant. The correction is always < pi/2, so it can't overflow into yet another quadrant. */ st0_tag = FPU_sub(REV|LOADED|TAG_Valid, (int)&CONST_PI2, FULL_PRECISION); q++; } } } #endif /* BETTER_THAN_486 */ FPU_settag0(st0_tag); control_word = old_cw; partial_status = saved_status & ~SW_C2; /* Reduction complete. */ return (q & 3) | even; }
/*--- poly_tan() ------------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_tan(FPU_REG const *arg, FPU_REG *result) { long int exponent; int invert; Xsig argSq, argSqSq, accumulatoro, accumulatore, accum, argSignif, fix_up; unsigned long adj; exponent = arg->exp - EXP_BIAS; #ifdef PARANOID if ( arg->sign != 0 ) /* Can't hack a number < 0.0 */ { arith_invalid(result); return; } /* Need a positive number */ #endif PARANOID /* Split the problem into two domains, smaller and larger than pi/4 */ if ( (exponent == 0) || ((exponent == -1) && (arg->sigh > 0xc90fdaa2)) ) { /* The argument is greater than (approx) pi/4 */ invert = 1; accum.lsw = 0; XSIG_LL(accum) = significand(arg); if ( exponent == 0 ) { /* The argument is >= 1.0 */ /* Put the binary point at the left. */ XSIG_LL(accum) <<= 1; } /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum); argSignif.lsw = accum.lsw; XSIG_LL(argSignif) = XSIG_LL(accum); exponent = -1 + norm_Xsig(&argSignif); } else { invert = 0; argSignif.lsw = 0; XSIG_LL(accum) = XSIG_LL(argSignif) = significand(arg); if ( exponent < -1 ) { /* shift the argument right by the required places */ if ( shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U ) XSIG_LL(accum) ++; /* round up */ } } XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw; mul_Xsig_Xsig(&argSq, &argSq); XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw; mul_Xsig_Xsig(&argSqSq, &argSqSq); /* Compute the negative terms for the numerator polynomial */ accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1); mul_Xsig_Xsig(&accumulatoro, &argSq); negate_Xsig(&accumulatoro); /* Add the positive terms */ polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1); /* Compute the positive terms for the denominator polynomial */ accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1); mul_Xsig_Xsig(&accumulatore, &argSq); negate_Xsig(&accumulatore); /* Add the negative terms */ polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1); /* Multiply by arg^2 */ mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); /* de-normalize and divide by 2 */ shr_Xsig(&accumulatore, -2*(1+exponent) + 1); negate_Xsig(&accumulatore); /* This does 1 - accumulator */ /* Now find the ratio. */ if ( accumulatore.msw == 0 ) { /* accumulatoro must contain 1.0 here, (actually, 0) but it really doesn't matter what value we use because it will have negligible effect in later calculations */ XSIG_LL(accum) = 0x8000000000000000LL; accum.lsw = 0; } else { div_Xsig(&accumulatoro, &accumulatore, &accum); } /* Multiply by 1/3 * arg^3 */ mul64_Xsig(&accum, &XSIG_LL(argSignif)); mul64_Xsig(&accum, &XSIG_LL(argSignif)); mul64_Xsig(&accum, &XSIG_LL(argSignif)); mul64_Xsig(&accum, &twothirds); shr_Xsig(&accum, -2*(exponent+1)); /* tan(arg) = arg + accum */ add_two_Xsig(&accum, &argSignif, &exponent); if ( invert ) { /* We now have the value of tan(pi_2 - arg) where pi_2 is an approximation for pi/2 */ /* The next step is to fix the answer to compensate for the error due to the approximation used for pi/2 */ /* This is (approx) delta, the error in our approx for pi/2 (see above). It has an exponent of -65 */ XSIG_LL(fix_up) = 0x898cc51701b839a2LL; fix_up.lsw = 0; if ( exponent == 0 ) adj = 0xffffffff; /* We want approx 1.0 here, but this is close enough. */ else if ( exponent > -30 ) { adj = accum.msw >> -(exponent+1); /* tan */ mul_32_32(adj, adj, &adj); /* tan^2 */ } else
void poly_atan(FPU_REG *st0_ptr, u_char st0_tag, FPU_REG *st1_ptr, u_char st1_tag) { u_char transformed, inverted, sign1, sign2; int exponent; long int dummy_exp; Xsig accumulator, Numer, Denom, accumulatore, argSignif, argSq, argSqSq; u_char tag; sign1 = getsign(st0_ptr); sign2 = getsign(st1_ptr); if (st0_tag == TAG_Valid) { exponent = exponent(st0_ptr); } else { FPU_to_exp16(st0_ptr, st0_ptr); exponent = exponent16(st0_ptr); } if (st1_tag == TAG_Valid) { exponent -= exponent(st1_ptr); } else { FPU_to_exp16(st1_ptr, st1_ptr); exponent -= exponent16(st1_ptr); } if ((exponent < 0) || ((exponent == 0) && ((st0_ptr->sigh < st1_ptr->sigh) || ((st0_ptr->sigh == st1_ptr->sigh) && (st0_ptr->sigl < st1_ptr->sigl))))) { inverted = 1; Numer.lsw = Denom.lsw = 0; XSIG_LL(Numer) = significand(st0_ptr); XSIG_LL(Denom) = significand(st1_ptr); } else { inverted = 0; exponent = -exponent; Numer.lsw = Denom.lsw = 0; XSIG_LL(Numer) = significand(st1_ptr); XSIG_LL(Denom) = significand(st0_ptr); } div_Xsig(&Numer, &Denom, &argSignif); exponent += norm_Xsig(&argSignif); if ((exponent >= -1) || ((exponent == -2) && (argSignif.msw > 0xd413ccd0))) { transformed = 1; if (exponent >= 0) { #ifdef PARANOID if (!((exponent == 0) && (argSignif.lsw == 0) && (argSignif.midw == 0) && (argSignif.msw == 0x80000000))) { EXCEPTION(EX_INTERNAL | 0x104); return; } #endif argSignif.msw = 0; } else { Numer.lsw = Denom.lsw = argSignif.lsw; XSIG_LL(Numer) = XSIG_LL(Denom) = XSIG_LL(argSignif); if (exponent < -1) shr_Xsig(&Numer, -1 - exponent); negate_Xsig(&Numer); shr_Xsig(&Denom, -exponent); Denom.msw |= 0x80000000; div_Xsig(&Numer, &Denom, &argSignif); exponent = -1 + norm_Xsig(&argSignif); } } else { transformed = 0; } argSq.lsw = argSignif.lsw; argSq.midw = argSignif.midw; argSq.msw = argSignif.msw; mul_Xsig_Xsig(&argSq, &argSq); argSqSq.lsw = argSq.lsw; argSqSq.midw = argSq.midw; argSqSq.msw = argSq.msw; mul_Xsig_Xsig(&argSqSq, &argSqSq); accumulatore.lsw = argSq.lsw; XSIG_LL(accumulatore) = XSIG_LL(argSq); shr_Xsig(&argSq, 2 * (-1 - exponent - 1)); shr_Xsig(&argSqSq, 4 * (-1 - exponent - 1)); accumulator.msw = accumulator.midw = accumulator.lsw = 0; polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), oddplterms, HIPOWERop - 1); mul64_Xsig(&accumulator, &XSIG_LL(argSq)); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), oddnegterms, HIPOWERon - 1); negate_Xsig(&accumulator); add_two_Xsig(&accumulator, &fixedpterm, &dummy_exp); mul64_Xsig(&accumulatore, &denomterm); shr_Xsig(&accumulatore, 1 + 2 * (-1 - exponent)); accumulatore.msw |= 0x80000000; div_Xsig(&accumulator, &accumulatore, &accumulator); mul_Xsig_Xsig(&accumulator, &argSignif); mul_Xsig_Xsig(&accumulator, &argSq); shr_Xsig(&accumulator, 3); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &argSignif); if (transformed) { shr_Xsig(&accumulator, -1 - exponent); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &pi_signif); exponent = -1; } if (inverted) { shr_Xsig(&accumulator, -exponent); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &pi_signif); exponent = 0; } if (sign1) { shr_Xsig(&accumulator, 1 - exponent); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &pi_signif); exponent = 1; } exponent += round_Xsig(&accumulator); significand(st1_ptr) = XSIG_LL(accumulator); setexponent16(st1_ptr, exponent); tag = FPU_round(st1_ptr, 1, 0, FULL_PRECISION, sign2); FPU_settagi(1, tag); set_precision_flag_up(); }
/*--- poly_l2() -------------------------------------------------------------+ | Base 2 logarithm by a polynomial approximation. | +---------------------------------------------------------------------------*/ void poly_l2(FPU_REG *st0_ptr, FPU_REG *st1_ptr, u_char st1_sign) { s32 exponent, expon, expon_expon; Xsig accumulator, expon_accum, yaccum; u_char sign, argsign; FPU_REG x; int tag; exponent = exponent16(st0_ptr); /* From st0_ptr, make a number > sqrt(2)/2 and < sqrt(2) */ if ( st0_ptr->sigh > (unsigned)0xb504f334 ) { /* Treat as sqrt(2)/2 < st0_ptr < 1 */ significand(&x) = - significand(st0_ptr); setexponent16(&x, -1); exponent++; argsign = SIGN_NEG; } else { /* Treat as 1 <= st0_ptr < sqrt(2) */ x.sigh = st0_ptr->sigh - 0x80000000; x.sigl = st0_ptr->sigl; setexponent16(&x, 0); argsign = SIGN_POS; } tag = FPU_normalize_nuo(&x, 0); if ( tag == TAG_Zero ) { expon = 0; accumulator.msw = accumulator.midw = accumulator.lsw = 0; } else { log2_kernel(&x, argsign, &accumulator, &expon); } if ( exponent < 0 ) { sign = SIGN_NEG; exponent = -exponent; } else sign = SIGN_POS; expon_accum.msw = exponent; expon_accum.midw = expon_accum.lsw = 0; if ( exponent ) { expon_expon = 31 + norm_Xsig(&expon_accum); shr_Xsig(&accumulator, expon_expon - expon); if ( sign ^ argsign ) negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &expon_accum); } else { expon_expon = expon; sign = argsign; } yaccum.lsw = 0; XSIG_LL(yaccum) = significand(st1_ptr); mul_Xsig_Xsig(&accumulator, &yaccum); expon_expon += round_Xsig(&accumulator); if ( accumulator.msw == 0 ) { FPU_copy_to_reg1(&CONST_Z, TAG_Zero); return; } significand(st1_ptr) = XSIG_LL(accumulator); setexponent16(st1_ptr, expon_expon + exponent16(st1_ptr) + 1); tag = FPU_round(st1_ptr, 1, 0, FULL_PRECISION, sign ^ st1_sign); FPU_settagi(1, tag); set_precision_flag_up(); /* 80486 appears to always do this */ return; }
/*--- log2_kernel() ---------------------------------------------------------+ | Base 2 logarithm by a polynomial approximation. | | log2(x+1) | +---------------------------------------------------------------------------*/ static void log2_kernel(FPU_REG const *arg, u_char argsign, Xsig *accum_result, s32 *expon) { s32 exponent, adj; u64 Xsq; Xsig accumulator, Numer, Denom, argSignif, arg_signif; exponent = exponent16(arg); Numer.lsw = Denom.lsw = 0; XSIG_LL(Numer) = XSIG_LL(Denom) = significand(arg); if ( argsign == SIGN_POS ) { shr_Xsig(&Denom, 2 - (1 + exponent)); Denom.msw |= 0x80000000; div_Xsig(&Numer, &Denom, &argSignif); } else { shr_Xsig(&Denom, 1 - (1 + exponent)); negate_Xsig(&Denom); if ( Denom.msw & 0x80000000 ) { div_Xsig(&Numer, &Denom, &argSignif); exponent ++; } else { /* Denom must be 1.0 */ argSignif.lsw = Numer.lsw; argSignif.midw = Numer.midw; argSignif.msw = Numer.msw; } } #ifndef PECULIAR_486 /* Should check here that |local_arg| is within the valid range */ if ( exponent >= -2 ) { if ( (exponent > -2) || (argSignif.msw > (unsigned)0xafb0ccc0) ) { /* The argument is too large */ } } #endif /* PECULIAR_486 */ arg_signif.lsw = argSignif.lsw; XSIG_LL(arg_signif) = XSIG_LL(argSignif); adj = norm_Xsig(&argSignif); accumulator.lsw = argSignif.lsw; XSIG_LL(accumulator) = XSIG_LL(argSignif); mul_Xsig_Xsig(&accumulator, &accumulator); shr_Xsig(&accumulator, 2*(-1 - (1 + exponent + adj))); Xsq = XSIG_LL(accumulator); if ( accumulator.lsw & 0x80000000 ) Xsq++; accumulator.msw = accumulator.midw = accumulator.lsw = 0; /* Do the basic fixed point polynomial evaluation */ polynomial_Xsig(&accumulator, &Xsq, logterms, HIPOWER-1); mul_Xsig_Xsig(&accumulator, &argSignif); shr_Xsig(&accumulator, 6 - adj); mul32_Xsig(&arg_signif, leadterm); add_two_Xsig(&accumulator, &arg_signif, &exponent); *expon = exponent + 1; accum_result->lsw = accumulator.lsw; accum_result->midw = accumulator.midw; accum_result->msw = accumulator.msw; }
/*--- poly_sine() -----------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_sine(FPU_REG const *arg, FPU_REG *result) { int exponent, echange; Xsig accumulator, argSqrd, argTo4; unsigned long fix_up, adj; unsigned long long fixed_arg; #ifdef PARANOID if ( arg->tag == TW_Zero ) { /* Return 0.0 */ reg_move(&CONST_Z, result); return; } #endif PARANOID exponent = arg->exp - EXP_BIAS; accumulator.lsw = accumulator.midw = accumulator.msw = 0; /* Split into two ranges, for arguments below and above 1.0 */ /* The boundary between upper and lower is approx 0.88309101259 */ if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xe21240aa)) ) { /* The argument is <= 0.88309101259 */ argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &significand(arg)); shr_Xsig(&argSqrd, 2*(-1-exponent)); argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, N_COEFF_N-1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, N_COEFF_P-1); shr_Xsig(&accumulator, 2); /* Divide by four */ accumulator.msw |= 0x80000000; /* Add 1.0 */ mul64_Xsig(&accumulator, &significand(arg)); mul64_Xsig(&accumulator, &significand(arg)); mul64_Xsig(&accumulator, &significand(arg)); /* Divide by four, FPU_REG compatible, etc */ exponent = 3*exponent + EXP_BIAS; /* The minimum exponent difference is 3 */ shr_Xsig(&accumulator, arg->exp - exponent); negate_Xsig(&accumulator); XSIG_LL(accumulator) += significand(arg); echange = round_Xsig(&accumulator); result->exp = arg->exp + echange; } else { /* The argument is > 0.88309101259 */ /* We use sin(arg) = cos(pi/2-arg) */ fixed_arg = significand(arg); if ( exponent == 0 ) { /* The argument is >= 1.0 */ /* Put the binary point at the left. */ fixed_arg <<= 1; } /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ fixed_arg = 0x921fb54442d18469LL - fixed_arg; XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &fixed_arg); XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, N_COEFF_NH-1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, N_COEFF_PH-1); negate_Xsig(&accumulator); mul64_Xsig(&accumulator, &fixed_arg); mul64_Xsig(&accumulator, &fixed_arg); shr_Xsig(&accumulator, 3); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &argSqrd); shr_Xsig(&accumulator, 1); accumulator.lsw |= 1; /* A zero accumulator here would cause problems */ negate_Xsig(&accumulator); /* The basic computation is complete. Now fix the answer to compensate for the error due to the approximation used for pi/2 */ /* This has an exponent of -65 */ fix_up = 0x898cc517; /* The fix-up needs to be improved for larger args */ if ( argSqrd.msw & 0xffc00000 ) { /* Get about 32 bit precision in these: */ mul_32_32(0x898cc517, argSqrd.msw, &adj); fix_up -= adj/6; } mul_32_32(fix_up, LL_MSW(fixed_arg), &fix_up); adj = accumulator.lsw; /* temp save */ accumulator.lsw -= fix_up; if ( accumulator.lsw > adj ) XSIG_LL(accumulator) --; echange = round_Xsig(&accumulator); result->exp = EXP_BIAS - 1 + echange; } significand(result) = XSIG_LL(accumulator); result->tag = TW_Valid; result->sign = arg->sign; #ifdef PARANOID if ( (result->exp >= EXP_BIAS) && (significand(result) > 0x8000000000000000LL) ) { EXCEPTION(EX_INTERNAL|0x150); } #endif PARANOID }
/*--- poly_cos() ------------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_cos(FPU_REG const *arg, FPU_REG *result) { long int exponent, exp2, echange; Xsig accumulator, argSqrd, fix_up, argTo4; unsigned long adj; unsigned long long fixed_arg; #ifdef PARANOID if ( arg->tag == TW_Zero ) { /* Return 1.0 */ reg_move(&CONST_1, result); return; } if ( (arg->exp > EXP_BIAS) || ((arg->exp == EXP_BIAS) && (significand(arg) > 0xc90fdaa22168c234LL)) ) { EXCEPTION(EX_Invalid); reg_move(&CONST_QNaN, result); return; } #endif PARANOID exponent = arg->exp - EXP_BIAS; accumulator.lsw = accumulator.midw = accumulator.msw = 0; if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xb00d6f54)) ) { /* arg is < 0.687705 */ argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &significand(arg)); if ( exponent < -1 ) { /* shift the argument right by the required places */ shr_Xsig(&argSqrd, 2*(-1-exponent)); } argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, N_COEFF_NH-1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, N_COEFF_PH-1); negate_Xsig(&accumulator); mul64_Xsig(&accumulator, &significand(arg)); mul64_Xsig(&accumulator, &significand(arg)); shr_Xsig(&accumulator, -2*(1+exponent)); shr_Xsig(&accumulator, 3); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &argSqrd); shr_Xsig(&accumulator, 1); /* It doesn't matter if accumulator is all zero here, the following code will work ok */ negate_Xsig(&accumulator); if ( accumulator.lsw & 0x80000000 ) XSIG_LL(accumulator) ++; if ( accumulator.msw == 0 ) { /* The result is 1.0 */ reg_move(&CONST_1, result); } else { significand(result) = XSIG_LL(accumulator); /* will be a valid positive nr with expon = -1 */ *(short *)&(result->sign) = 0; result->exp = EXP_BIAS - 1; } } else { fixed_arg = significand(arg); if ( exponent == 0 ) { /* The argument is >= 1.0 */ /* Put the binary point at the left. */ fixed_arg <<= 1; } /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ fixed_arg = 0x921fb54442d18469LL - fixed_arg; exponent = -1; exp2 = -1; /* A shift is needed here only for a narrow range of arguments, i.e. for fixed_arg approx 2^-32, but we pick up more... */ if ( !(LL_MSW(fixed_arg) & 0xffff0000) ) { fixed_arg <<= 16; exponent -= 16; exp2 -= 16; } XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &fixed_arg); if ( exponent < -1 ) { /* shift the argument right by the required places */ shr_Xsig(&argSqrd, 2*(-1-exponent)); } argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, N_COEFF_N-1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, N_COEFF_P-1); shr_Xsig(&accumulator, 2); /* Divide by four */ accumulator.msw |= 0x80000000; /* Add 1.0 */ mul64_Xsig(&accumulator, &fixed_arg); mul64_Xsig(&accumulator, &fixed_arg); mul64_Xsig(&accumulator, &fixed_arg); /* Divide by four, FPU_REG compatible, etc */ exponent = 3*exponent; /* The minimum exponent difference is 3 */ shr_Xsig(&accumulator, exp2 - exponent); negate_Xsig(&accumulator); XSIG_LL(accumulator) += fixed_arg; /* The basic computation is complete. Now fix the answer to compensate for the error due to the approximation used for pi/2 */ /* This has an exponent of -65 */ XSIG_LL(fix_up) = 0x898cc51701b839a2ll; fix_up.lsw = 0; /* The fix-up needs to be improved for larger args */ if ( argSqrd.msw & 0xffc00000 ) { /* Get about 32 bit precision in these: */ mul_32_32(0x898cc517, argSqrd.msw, &adj); fix_up.msw -= adj/2; mul_32_32(0x898cc517, argTo4.msw, &adj); fix_up.msw += adj/24; } exp2 += norm_Xsig(&accumulator); shr_Xsig(&accumulator, 1); /* Prevent overflow */ exp2++; shr_Xsig(&fix_up, 65 + exp2); add_Xsig_Xsig(&accumulator, &fix_up); echange = round_Xsig(&accumulator); result->exp = exp2 + EXP_BIAS + echange; *(short *)&(result->sign) = 0; /* Is a valid positive nr */ significand(result) = XSIG_LL(accumulator); } #ifdef PARANOID if ( (result->exp >= EXP_BIAS) && (significand(result) > 0x8000000000000000LL) ) { EXCEPTION(EX_INTERNAL|0x151); } #endif PARANOID }
/*--- poly_atan() -----------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_atan(FPU_REG *st0_ptr, u_char st0_tag, FPU_REG *st1_ptr, u_char st1_tag) { u_char transformed, inverted, sign1, sign2; int exponent; long int dummy_exp; Xsig accumulator, Numer, Denom, accumulatore, argSignif, argSq, argSqSq; u_char tag; sign1 = getsign(st0_ptr); sign2 = getsign(st1_ptr); if (st0_tag == TAG_Valid) { exponent = exponent(st0_ptr); } else { /* This gives non-compatible stack contents... */ FPU_to_exp16(st0_ptr, st0_ptr); exponent = exponent16(st0_ptr); } if (st1_tag == TAG_Valid) { exponent -= exponent(st1_ptr); } else { /* This gives non-compatible stack contents... */ FPU_to_exp16(st1_ptr, st1_ptr); exponent -= exponent16(st1_ptr); } if ((exponent < 0) || ((exponent == 0) && ((st0_ptr->sigh < st1_ptr->sigh) || ((st0_ptr->sigh == st1_ptr->sigh) && (st0_ptr->sigl < st1_ptr->sigl))))) { inverted = 1; Numer.lsw = Denom.lsw = 0; XSIG_LL(Numer) = significand(st0_ptr); XSIG_LL(Denom) = significand(st1_ptr); } else { inverted = 0; exponent = -exponent; Numer.lsw = Denom.lsw = 0; XSIG_LL(Numer) = significand(st1_ptr); XSIG_LL(Denom) = significand(st0_ptr); } div_Xsig(&Numer, &Denom, &argSignif); exponent += norm_Xsig(&argSignif); if ((exponent >= -1) || ((exponent == -2) && (argSignif.msw > 0xd413ccd0))) { /* The argument is greater than sqrt(2)-1 (=0.414213562...) */ /* Convert the argument by an identity for atan */ transformed = 1; if (exponent >= 0) { #ifdef PARANOID if (!((exponent == 0) && (argSignif.lsw == 0) && (argSignif.midw == 0) && (argSignif.msw == 0x80000000))) { EXCEPTION(EX_INTERNAL | 0x104); /* There must be a logic error */ return; } #endif /* PARANOID */ argSignif.msw = 0; /* Make the transformed arg -> 0.0 */ } else { Numer.lsw = Denom.lsw = argSignif.lsw; XSIG_LL(Numer) = XSIG_LL(Denom) = XSIG_LL(argSignif); if (exponent < -1) shr_Xsig(&Numer, -1 - exponent); negate_Xsig(&Numer); shr_Xsig(&Denom, -exponent); Denom.msw |= 0x80000000; div_Xsig(&Numer, &Denom, &argSignif); exponent = -1 + norm_Xsig(&argSignif); } } else { transformed = 0; } argSq.lsw = argSignif.lsw; argSq.midw = argSignif.midw; argSq.msw = argSignif.msw; mul_Xsig_Xsig(&argSq, &argSq); argSqSq.lsw = argSq.lsw; argSqSq.midw = argSq.midw; argSqSq.msw = argSq.msw; mul_Xsig_Xsig(&argSqSq, &argSqSq); accumulatore.lsw = argSq.lsw; XSIG_LL(accumulatore) = XSIG_LL(argSq); shr_Xsig(&argSq, 2 * (-1 - exponent - 1)); shr_Xsig(&argSqSq, 4 * (-1 - exponent - 1)); /* Now have argSq etc with binary point at the left .1xxxxxxxx */ /* Do the basic fixed point polynomial evaluation */ accumulator.msw = accumulator.midw = accumulator.lsw = 0; polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), oddplterms, HIPOWERop - 1); mul64_Xsig(&accumulator, &XSIG_LL(argSq)); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), oddnegterms, HIPOWERon - 1); negate_Xsig(&accumulator); add_two_Xsig(&accumulator, &fixedpterm, &dummy_exp); mul64_Xsig(&accumulatore, &denomterm); shr_Xsig(&accumulatore, 1 + 2 * (-1 - exponent)); accumulatore.msw |= 0x80000000; div_Xsig(&accumulator, &accumulatore, &accumulator); mul_Xsig_Xsig(&accumulator, &argSignif); mul_Xsig_Xsig(&accumulator, &argSq); shr_Xsig(&accumulator, 3); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &argSignif); if (transformed) { /* compute pi/4 - accumulator */ shr_Xsig(&accumulator, -1 - exponent); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &pi_signif); exponent = -1; } if (inverted) { /* compute pi/2 - accumulator */ shr_Xsig(&accumulator, -exponent); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &pi_signif); exponent = 0; } if (sign1) { /* compute pi - accumulator */ shr_Xsig(&accumulator, 1 - exponent); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &pi_signif); exponent = 1; } exponent += round_Xsig(&accumulator); significand(st1_ptr) = XSIG_LL(accumulator); setexponent16(st1_ptr, exponent); tag = FPU_round(st1_ptr, 1, 0, FULL_PRECISION, sign2); FPU_settagi(1, tag); set_precision_flag_up(); /* We do not really know if up or down, use this as the default. */ }