Пример #1
0
/* Limited measurements show no results worse than 64 bit precision
   except for the results for arguments close to 2^63, where the
   precision of the result sometimes degrades to about 63.9 bits */
static int trig_arg(FPU_REG *st0_ptr, int even)
{
  FPU_REG tmp;
  u_char tmptag;
  unsigned long long q;
  int old_cw = control_word, saved_status = partial_status;
  int tag, st0_tag = TAG_Valid;

  if ( exponent(st0_ptr) >= 63 )
    {
      partial_status |= SW_C2;     /* Reduction incomplete. */
      return -1;
    }

  control_word &= ~CW_RC;
  control_word |= RC_CHOP;

  setpositive(st0_ptr);
  tag = FPU_u_div(st0_ptr, &CONST_PI2, &tmp, PR_64_BITS | RC_CHOP | 0x3f,
		  SIGN_POS);

  FPU_round_to_int(&tmp, tag);  /* Fortunately, this can't overflow
				   to 2^64 */
  q = significand(&tmp);
  if ( q )
    {
      rem_kernel(significand(st0_ptr),
		 &significand(&tmp),
		 significand(&CONST_PI2),
		 q, exponent(st0_ptr) - exponent(&CONST_PI2));
      setexponent16(&tmp, exponent(&CONST_PI2));
      st0_tag = FPU_normalize(&tmp);
      FPU_copy_to_reg0(&tmp, st0_tag);
    }

  if ( (even && !(q & 1)) || (!even && (q & 1)) )
    {
      st0_tag = FPU_sub(REV|LOADED|TAG_Valid, (int)&CONST_PI2, FULL_PRECISION);

#ifdef BETTER_THAN_486
      /* So far, the results are exact but based upon a 64 bit
	 precision approximation to pi/2. The technique used
	 now is equivalent to using an approximation to pi/2 which
	 is accurate to about 128 bits. */
      if ( (exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64) || (q > 1) )
	{
	  /* This code gives the effect of having pi/2 to better than
	     128 bits precision. */

	  significand(&tmp) = q + 1;
	  setexponent16(&tmp, 63);
	  FPU_normalize(&tmp);
	  tmptag =
	    FPU_u_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION, SIGN_POS,
		      exponent(&CONST_PI2extra) + exponent(&tmp));
	  setsign(&tmp, getsign(&CONST_PI2extra));
	  st0_tag = FPU_add(&tmp, tmptag, 0, FULL_PRECISION);
	  if ( signnegative(st0_ptr) )
	    {
	      /* CONST_PI2extra is negative, so the result of the addition
		 can be negative. This means that the argument is actually
		 in a different quadrant. The correction is always < pi/2,
		 so it can't overflow into yet another quadrant. */
	      setpositive(st0_ptr);
	      q++;
	    }
	}
#endif /* BETTER_THAN_486 */
    }
#ifdef BETTER_THAN_486
  else
    {
      /* So far, the results are exact but based upon a 64 bit
	 precision approximation to pi/2. The technique used
	 now is equivalent to using an approximation to pi/2 which
	 is accurate to about 128 bits. */
      if ( ((q > 0) && (exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64))
	   || (q > 1) )
	{
	  /* This code gives the effect of having p/2 to better than
	     128 bits precision. */

	  significand(&tmp) = q;
	  setexponent16(&tmp, 63);
	  FPU_normalize(&tmp);         /* This must return TAG_Valid */
	  tmptag = FPU_u_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION,
			     SIGN_POS,
			     exponent(&CONST_PI2extra) + exponent(&tmp));
	  setsign(&tmp, getsign(&CONST_PI2extra));
	  st0_tag = FPU_sub(LOADED|(tmptag & 0x0f), (int)&tmp,
			    FULL_PRECISION);
	  if ( (exponent(st0_ptr) == exponent(&CONST_PI2)) &&
	      ((st0_ptr->sigh > CONST_PI2.sigh)
	       || ((st0_ptr->sigh == CONST_PI2.sigh)
		   && (st0_ptr->sigl > CONST_PI2.sigl))) )
	    {
	      /* CONST_PI2extra is negative, so the result of the
		 subtraction can be larger than pi/2. This means
		 that the argument is actually in a different quadrant.
		 The correction is always < pi/2, so it can't overflow
		 into yet another quadrant. */
	      st0_tag = FPU_sub(REV|LOADED|TAG_Valid, (int)&CONST_PI2,
				FULL_PRECISION);
	      q++;
	    }
	}
    }
#endif /* BETTER_THAN_486 */

  FPU_settag0(st0_tag);
  control_word = old_cw;
  partial_status = saved_status & ~SW_C2;     /* Reduction complete. */

  return (q & 3) | even;
}
Пример #2
0
/*--- poly_tan() ------------------------------------------------------------+
 |                                                                           |
 +---------------------------------------------------------------------------*/
void	poly_tan(FPU_REG const *arg, FPU_REG *result)
{
  long int    		exponent;
  int                   invert;
  Xsig                  argSq, argSqSq, accumulatoro, accumulatore, accum,
                        argSignif, fix_up;
  unsigned long         adj;

  exponent = arg->exp - EXP_BIAS;

#ifdef PARANOID
  if ( arg->sign != 0 )	/* Can't hack a number < 0.0 */
    { arith_invalid(result); return; }  /* Need a positive number */
#endif PARANOID

  /* Split the problem into two domains, smaller and larger than pi/4 */
  if ( (exponent == 0) || ((exponent == -1) && (arg->sigh > 0xc90fdaa2)) )
    {
      /* The argument is greater than (approx) pi/4 */
      invert = 1;
      accum.lsw = 0;
      XSIG_LL(accum) = significand(arg);
 
      if ( exponent == 0 )
	{
	  /* The argument is >= 1.0 */
	  /* Put the binary point at the left. */
	  XSIG_LL(accum) <<= 1;
	}
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
      XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);

      argSignif.lsw = accum.lsw;
      XSIG_LL(argSignif) = XSIG_LL(accum);
      exponent = -1 + norm_Xsig(&argSignif);
    }
  else
    {
      invert = 0;
      argSignif.lsw = 0;
      XSIG_LL(accum) = XSIG_LL(argSignif) = significand(arg);
 
      if ( exponent < -1 )
	{
	  /* shift the argument right by the required places */
	  if ( shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U )
	    XSIG_LL(accum) ++;	/* round up */
	}
    }

  XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw;
  mul_Xsig_Xsig(&argSq, &argSq);
  XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw;
  mul_Xsig_Xsig(&argSqSq, &argSqSq);

  /* Compute the negative terms for the numerator polynomial */
  accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1);
  mul_Xsig_Xsig(&accumulatoro, &argSq);
  negate_Xsig(&accumulatoro);
  /* Add the positive terms */
  polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1);

  
  /* Compute the positive terms for the denominator polynomial */
  accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1);
  mul_Xsig_Xsig(&accumulatore, &argSq);
  negate_Xsig(&accumulatore);
  /* Add the negative terms */
  polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1);
  /* Multiply by arg^2 */
  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
  mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
  /* de-normalize and divide by 2 */
  shr_Xsig(&accumulatore, -2*(1+exponent) + 1);
  negate_Xsig(&accumulatore);      /* This does 1 - accumulator */

  /* Now find the ratio. */
  if ( accumulatore.msw == 0 )
    {
      /* accumulatoro must contain 1.0 here, (actually, 0) but it
	 really doesn't matter what value we use because it will
	 have negligible effect in later calculations
	 */
      XSIG_LL(accum) = 0x8000000000000000LL;
      accum.lsw = 0;
    }
  else
    {
      div_Xsig(&accumulatoro, &accumulatore, &accum);
    }

  /* Multiply by 1/3 * arg^3 */
  mul64_Xsig(&accum, &XSIG_LL(argSignif));
  mul64_Xsig(&accum, &XSIG_LL(argSignif));
  mul64_Xsig(&accum, &XSIG_LL(argSignif));
  mul64_Xsig(&accum, &twothirds);
  shr_Xsig(&accum, -2*(exponent+1));

  /* tan(arg) = arg + accum */
  add_two_Xsig(&accum, &argSignif, &exponent);

  if ( invert )
    {
      /* We now have the value of tan(pi_2 - arg) where pi_2 is an
	 approximation for pi/2
	 */
      /* The next step is to fix the answer to compensate for the
	 error due to the approximation used for pi/2
	 */

      /* This is (approx) delta, the error in our approx for pi/2
	 (see above). It has an exponent of -65
	 */
      XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
      fix_up.lsw = 0;

      if ( exponent == 0 )
	adj = 0xffffffff;   /* We want approx 1.0 here, but
			       this is close enough. */
      else if ( exponent > -30 )
	{
	  adj = accum.msw >> -(exponent+1);      /* tan */
	  mul_32_32(adj, adj, &adj);           /* tan^2 */
	}
      else
Пример #3
0
void poly_atan(FPU_REG *st0_ptr, u_char st0_tag,
	       FPU_REG *st1_ptr, u_char st1_tag)
{
	u_char transformed, inverted, sign1, sign2;
	int exponent;
	long int dummy_exp;
	Xsig accumulator, Numer, Denom, accumulatore, argSignif, argSq, argSqSq;
	u_char tag;

	sign1 = getsign(st0_ptr);
	sign2 = getsign(st1_ptr);
	if (st0_tag == TAG_Valid) {
		exponent = exponent(st0_ptr);
	} else {
		
		FPU_to_exp16(st0_ptr, st0_ptr);
		exponent = exponent16(st0_ptr);
	}
	if (st1_tag == TAG_Valid) {
		exponent -= exponent(st1_ptr);
	} else {
		
		FPU_to_exp16(st1_ptr, st1_ptr);
		exponent -= exponent16(st1_ptr);
	}

	if ((exponent < 0) || ((exponent == 0) &&
			       ((st0_ptr->sigh < st1_ptr->sigh) ||
				((st0_ptr->sigh == st1_ptr->sigh) &&
				 (st0_ptr->sigl < st1_ptr->sigl))))) {
		inverted = 1;
		Numer.lsw = Denom.lsw = 0;
		XSIG_LL(Numer) = significand(st0_ptr);
		XSIG_LL(Denom) = significand(st1_ptr);
	} else {
		inverted = 0;
		exponent = -exponent;
		Numer.lsw = Denom.lsw = 0;
		XSIG_LL(Numer) = significand(st1_ptr);
		XSIG_LL(Denom) = significand(st0_ptr);
	}
	div_Xsig(&Numer, &Denom, &argSignif);
	exponent += norm_Xsig(&argSignif);

	if ((exponent >= -1)
	    || ((exponent == -2) && (argSignif.msw > 0xd413ccd0))) {
		
		
		transformed = 1;

		if (exponent >= 0) {
#ifdef PARANOID
			if (!((exponent == 0) &&
			      (argSignif.lsw == 0) && (argSignif.midw == 0) &&
			      (argSignif.msw == 0x80000000))) {
				EXCEPTION(EX_INTERNAL | 0x104);	
				return;
			}
#endif 
			argSignif.msw = 0;	
		} else {
			Numer.lsw = Denom.lsw = argSignif.lsw;
			XSIG_LL(Numer) = XSIG_LL(Denom) = XSIG_LL(argSignif);

			if (exponent < -1)
				shr_Xsig(&Numer, -1 - exponent);
			negate_Xsig(&Numer);

			shr_Xsig(&Denom, -exponent);
			Denom.msw |= 0x80000000;

			div_Xsig(&Numer, &Denom, &argSignif);

			exponent = -1 + norm_Xsig(&argSignif);
		}
	} else {
		transformed = 0;
	}

	argSq.lsw = argSignif.lsw;
	argSq.midw = argSignif.midw;
	argSq.msw = argSignif.msw;
	mul_Xsig_Xsig(&argSq, &argSq);

	argSqSq.lsw = argSq.lsw;
	argSqSq.midw = argSq.midw;
	argSqSq.msw = argSq.msw;
	mul_Xsig_Xsig(&argSqSq, &argSqSq);

	accumulatore.lsw = argSq.lsw;
	XSIG_LL(accumulatore) = XSIG_LL(argSq);

	shr_Xsig(&argSq, 2 * (-1 - exponent - 1));
	shr_Xsig(&argSqSq, 4 * (-1 - exponent - 1));

	

	
	accumulator.msw = accumulator.midw = accumulator.lsw = 0;
	polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq),
			oddplterms, HIPOWERop - 1);
	mul64_Xsig(&accumulator, &XSIG_LL(argSq));
	negate_Xsig(&accumulator);
	polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), oddnegterms,
			HIPOWERon - 1);
	negate_Xsig(&accumulator);
	add_two_Xsig(&accumulator, &fixedpterm, &dummy_exp);

	mul64_Xsig(&accumulatore, &denomterm);
	shr_Xsig(&accumulatore, 1 + 2 * (-1 - exponent));
	accumulatore.msw |= 0x80000000;

	div_Xsig(&accumulator, &accumulatore, &accumulator);

	mul_Xsig_Xsig(&accumulator, &argSignif);
	mul_Xsig_Xsig(&accumulator, &argSq);

	shr_Xsig(&accumulator, 3);
	negate_Xsig(&accumulator);
	add_Xsig_Xsig(&accumulator, &argSignif);

	if (transformed) {
		
		shr_Xsig(&accumulator, -1 - exponent);
		negate_Xsig(&accumulator);
		add_Xsig_Xsig(&accumulator, &pi_signif);
		exponent = -1;
	}

	if (inverted) {
		
		shr_Xsig(&accumulator, -exponent);
		negate_Xsig(&accumulator);
		add_Xsig_Xsig(&accumulator, &pi_signif);
		exponent = 0;
	}

	if (sign1) {
		
		shr_Xsig(&accumulator, 1 - exponent);
		negate_Xsig(&accumulator);
		add_Xsig_Xsig(&accumulator, &pi_signif);
		exponent = 1;
	}

	exponent += round_Xsig(&accumulator);

	significand(st1_ptr) = XSIG_LL(accumulator);
	setexponent16(st1_ptr, exponent);

	tag = FPU_round(st1_ptr, 1, 0, FULL_PRECISION, sign2);
	FPU_settagi(1, tag);

	set_precision_flag_up();	

}
Пример #4
0
/*--- poly_l2() -------------------------------------------------------------+
 |   Base 2 logarithm by a polynomial approximation.                         |
 +---------------------------------------------------------------------------*/
void	poly_l2(FPU_REG *st0_ptr, FPU_REG *st1_ptr, u_char st1_sign)
{
  s32	       exponent, expon, expon_expon;
  Xsig         accumulator, expon_accum, yaccum;
  u_char       sign, argsign;
  FPU_REG      x;
  int          tag;

  exponent = exponent16(st0_ptr);

  /* From st0_ptr, make a number > sqrt(2)/2 and < sqrt(2) */
  if ( st0_ptr->sigh > (unsigned)0xb504f334 )
    {
      /* Treat as  sqrt(2)/2 < st0_ptr < 1 */
      significand(&x) = - significand(st0_ptr);
      setexponent16(&x, -1);
      exponent++;
      argsign = SIGN_NEG;
    }
  else
    {
      /* Treat as  1 <= st0_ptr < sqrt(2) */
      x.sigh = st0_ptr->sigh - 0x80000000;
      x.sigl = st0_ptr->sigl;
      setexponent16(&x, 0);
      argsign = SIGN_POS;
    }
  tag = FPU_normalize_nuo(&x, 0);

  if ( tag == TAG_Zero )
    {
      expon = 0;
      accumulator.msw = accumulator.midw = accumulator.lsw = 0;
    }
  else
    {
      log2_kernel(&x, argsign, &accumulator, &expon);
    }

  if ( exponent < 0 )
    {
      sign = SIGN_NEG;
      exponent = -exponent;
    }
  else
    sign = SIGN_POS;
  expon_accum.msw = exponent; expon_accum.midw = expon_accum.lsw = 0;
  if ( exponent )
    {
      expon_expon = 31 + norm_Xsig(&expon_accum);
      shr_Xsig(&accumulator, expon_expon - expon);

      if ( sign ^ argsign )
	negate_Xsig(&accumulator);
      add_Xsig_Xsig(&accumulator, &expon_accum);
    }
  else
    {
      expon_expon = expon;
      sign = argsign;
    }

  yaccum.lsw = 0; XSIG_LL(yaccum) = significand(st1_ptr);
  mul_Xsig_Xsig(&accumulator, &yaccum);

  expon_expon += round_Xsig(&accumulator);

  if ( accumulator.msw == 0 )
    {
      FPU_copy_to_reg1(&CONST_Z, TAG_Zero);
      return;
    }

  significand(st1_ptr) = XSIG_LL(accumulator);
  setexponent16(st1_ptr, expon_expon + exponent16(st1_ptr) + 1);

  tag = FPU_round(st1_ptr, 1, 0, FULL_PRECISION, sign ^ st1_sign);
  FPU_settagi(1, tag);

  set_precision_flag_up();  /* 80486 appears to always do this */

  return;

}
Пример #5
0
/*--- log2_kernel() ---------------------------------------------------------+
 |   Base 2 logarithm by a polynomial approximation.                         |
 |   log2(x+1)                                                               |
 +---------------------------------------------------------------------------*/
static void log2_kernel(FPU_REG const *arg, u_char argsign, Xsig *accum_result,
			s32 *expon)
{
  s32    exponent, adj;
  u64    Xsq;
  Xsig   accumulator, Numer, Denom, argSignif, arg_signif;

  exponent = exponent16(arg);
  Numer.lsw = Denom.lsw = 0;
  XSIG_LL(Numer) = XSIG_LL(Denom) = significand(arg);
  if ( argsign == SIGN_POS )
    {
      shr_Xsig(&Denom, 2 - (1 + exponent));
      Denom.msw |= 0x80000000;
      div_Xsig(&Numer, &Denom, &argSignif);
    }
  else
    {
      shr_Xsig(&Denom, 1 - (1 + exponent));
      negate_Xsig(&Denom);
      if ( Denom.msw & 0x80000000 )
	{
	  div_Xsig(&Numer, &Denom, &argSignif);
	  exponent ++;
	}
      else
	{
	  /* Denom must be 1.0 */
	  argSignif.lsw = Numer.lsw; argSignif.midw = Numer.midw;
	  argSignif.msw = Numer.msw;
	}
    }

#ifndef PECULIAR_486
  /* Should check here that  |local_arg|  is within the valid range */
  if ( exponent >= -2 )
    {
      if ( (exponent > -2) ||
	  (argSignif.msw > (unsigned)0xafb0ccc0) )
	{
	  /* The argument is too large */
	}
    }
#endif /* PECULIAR_486 */

  arg_signif.lsw = argSignif.lsw; XSIG_LL(arg_signif) = XSIG_LL(argSignif);
  adj = norm_Xsig(&argSignif);
  accumulator.lsw = argSignif.lsw; XSIG_LL(accumulator) = XSIG_LL(argSignif);
  mul_Xsig_Xsig(&accumulator, &accumulator);
  shr_Xsig(&accumulator, 2*(-1 - (1 + exponent + adj)));
  Xsq = XSIG_LL(accumulator);
  if ( accumulator.lsw & 0x80000000 )
    Xsq++;

  accumulator.msw = accumulator.midw = accumulator.lsw = 0;
  /* Do the basic fixed point polynomial evaluation */
  polynomial_Xsig(&accumulator, &Xsq, logterms, HIPOWER-1);

  mul_Xsig_Xsig(&accumulator, &argSignif);
  shr_Xsig(&accumulator, 6 - adj);

  mul32_Xsig(&arg_signif, leadterm);
  add_two_Xsig(&accumulator, &arg_signif, &exponent);

  *expon = exponent + 1;
  accum_result->lsw = accumulator.lsw;
  accum_result->midw = accumulator.midw;
  accum_result->msw = accumulator.msw;

}
Пример #6
0
/*--- poly_sine() -----------------------------------------------------------+
 |                                                                           |
 +---------------------------------------------------------------------------*/
void	poly_sine(FPU_REG const *arg, FPU_REG *result)
{
  int                 exponent, echange;
  Xsig                accumulator, argSqrd, argTo4;
  unsigned long       fix_up, adj;
  unsigned long long  fixed_arg;


#ifdef PARANOID
  if ( arg->tag == TW_Zero )
    {
      /* Return 0.0 */
      reg_move(&CONST_Z, result);
      return;
    }
#endif PARANOID

  exponent = arg->exp - EXP_BIAS;

  accumulator.lsw = accumulator.midw = accumulator.msw = 0;

  /* Split into two ranges, for arguments below and above 1.0 */
  /* The boundary between upper and lower is approx 0.88309101259 */
  if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xe21240aa)) )
    {
      /* The argument is <= 0.88309101259 */

      argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0;
      mul64_Xsig(&argSqrd, &significand(arg));
      shr_Xsig(&argSqrd, 2*(-1-exponent));
      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
      argTo4.lsw = argSqrd.lsw;
      mul_Xsig_Xsig(&argTo4, &argTo4);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
		      N_COEFF_N-1);
      mul_Xsig_Xsig(&accumulator, &argSqrd);
      negate_Xsig(&accumulator);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
		      N_COEFF_P-1);

      shr_Xsig(&accumulator, 2);    /* Divide by four */
      accumulator.msw |= 0x80000000;  /* Add 1.0 */

      mul64_Xsig(&accumulator, &significand(arg));
      mul64_Xsig(&accumulator, &significand(arg));
      mul64_Xsig(&accumulator, &significand(arg));

      /* Divide by four, FPU_REG compatible, etc */
      exponent = 3*exponent + EXP_BIAS;

      /* The minimum exponent difference is 3 */
      shr_Xsig(&accumulator, arg->exp - exponent);

      negate_Xsig(&accumulator);
      XSIG_LL(accumulator) += significand(arg);

      echange = round_Xsig(&accumulator);

      result->exp = arg->exp + echange;
    }
  else
    {
      /* The argument is > 0.88309101259 */
      /* We use sin(arg) = cos(pi/2-arg) */

      fixed_arg = significand(arg);

      if ( exponent == 0 )
	{
	  /* The argument is >= 1.0 */

	  /* Put the binary point at the left. */
	  fixed_arg <<= 1;
	}
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
      fixed_arg = 0x921fb54442d18469LL - fixed_arg;

      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;
      mul64_Xsig(&argSqrd, &fixed_arg);

      XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw;
      mul_Xsig_Xsig(&argTo4, &argTo4);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
		      N_COEFF_NH-1);
      mul_Xsig_Xsig(&accumulator, &argSqrd);
      negate_Xsig(&accumulator);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
		      N_COEFF_PH-1);
      negate_Xsig(&accumulator);

      mul64_Xsig(&accumulator, &fixed_arg);
      mul64_Xsig(&accumulator, &fixed_arg);

      shr_Xsig(&accumulator, 3);
      negate_Xsig(&accumulator);

      add_Xsig_Xsig(&accumulator, &argSqrd);

      shr_Xsig(&accumulator, 1);

      accumulator.lsw |= 1;  /* A zero accumulator here would cause problems */
      negate_Xsig(&accumulator);

      /* The basic computation is complete. Now fix the answer to
	 compensate for the error due to the approximation used for
	 pi/2
	 */

      /* This has an exponent of -65 */
      fix_up = 0x898cc517;
      /* The fix-up needs to be improved for larger args */
      if ( argSqrd.msw & 0xffc00000 )
	{
	  /* Get about 32 bit precision in these: */
	  mul_32_32(0x898cc517, argSqrd.msw, &adj);
	  fix_up -= adj/6;
	}
      mul_32_32(fix_up, LL_MSW(fixed_arg), &fix_up);

      adj = accumulator.lsw;    /* temp save */
      accumulator.lsw -= fix_up;
      if ( accumulator.lsw > adj )
	XSIG_LL(accumulator) --;

      echange = round_Xsig(&accumulator);

      result->exp = EXP_BIAS - 1 + echange;
    }

  significand(result) = XSIG_LL(accumulator);
  result->tag = TW_Valid;
  result->sign = arg->sign;

#ifdef PARANOID
  if ( (result->exp >= EXP_BIAS)
      && (significand(result) > 0x8000000000000000LL) )
    {
      EXCEPTION(EX_INTERNAL|0x150);
    }
#endif PARANOID

}
Пример #7
0
/*--- poly_cos() ------------------------------------------------------------+
 |                                                                           |
 +---------------------------------------------------------------------------*/
void	poly_cos(FPU_REG const *arg, FPU_REG *result)
{
  long int            exponent, exp2, echange;
  Xsig                accumulator, argSqrd, fix_up, argTo4;
  unsigned long       adj;
  unsigned long long  fixed_arg;


#ifdef PARANOID
  if ( arg->tag == TW_Zero )
    {
      /* Return 1.0 */
      reg_move(&CONST_1, result);
      return;
    }

  if ( (arg->exp > EXP_BIAS)
      || ((arg->exp == EXP_BIAS)
	  && (significand(arg) > 0xc90fdaa22168c234LL)) )
    {
      EXCEPTION(EX_Invalid);
      reg_move(&CONST_QNaN, result);
      return;
    }
#endif PARANOID

  exponent = arg->exp - EXP_BIAS;

  accumulator.lsw = accumulator.midw = accumulator.msw = 0;

  if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xb00d6f54)) )
    {
      /* arg is < 0.687705 */

      argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0;
      mul64_Xsig(&argSqrd, &significand(arg));

      if ( exponent < -1 )
	{
	  /* shift the argument right by the required places */
	  shr_Xsig(&argSqrd, 2*(-1-exponent));
	}

      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
      argTo4.lsw = argSqrd.lsw;
      mul_Xsig_Xsig(&argTo4, &argTo4);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
		      N_COEFF_NH-1);
      mul_Xsig_Xsig(&accumulator, &argSqrd);
      negate_Xsig(&accumulator);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
		      N_COEFF_PH-1);
      negate_Xsig(&accumulator);

      mul64_Xsig(&accumulator, &significand(arg));
      mul64_Xsig(&accumulator, &significand(arg));
      shr_Xsig(&accumulator, -2*(1+exponent));

      shr_Xsig(&accumulator, 3);
      negate_Xsig(&accumulator);

      add_Xsig_Xsig(&accumulator, &argSqrd);

      shr_Xsig(&accumulator, 1);

      /* It doesn't matter if accumulator is all zero here, the
	 following code will work ok */
      negate_Xsig(&accumulator);

      if ( accumulator.lsw & 0x80000000 )
	XSIG_LL(accumulator) ++;
      if ( accumulator.msw == 0 )
	{
	  /* The result is 1.0 */
	  reg_move(&CONST_1, result);
	}
      else
	{
	  significand(result) = XSIG_LL(accumulator);
      
	  /* will be a valid positive nr with expon = -1 */
	  *(short *)&(result->sign) = 0;
	  result->exp = EXP_BIAS - 1;
	}
    }
  else
    {
      fixed_arg = significand(arg);

      if ( exponent == 0 )
	{
	  /* The argument is >= 1.0 */

	  /* Put the binary point at the left. */
	  fixed_arg <<= 1;
	}
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
      fixed_arg = 0x921fb54442d18469LL - fixed_arg;

      exponent = -1;
      exp2 = -1;

      /* A shift is needed here only for a narrow range of arguments,
	 i.e. for fixed_arg approx 2^-32, but we pick up more... */
      if ( !(LL_MSW(fixed_arg) & 0xffff0000) )
	{
	  fixed_arg <<= 16;
	  exponent -= 16;
	  exp2 -= 16;
	}

      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;
      mul64_Xsig(&argSqrd, &fixed_arg);

      if ( exponent < -1 )
	{
	  /* shift the argument right by the required places */
	  shr_Xsig(&argSqrd, 2*(-1-exponent));
	}

      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
      argTo4.lsw = argSqrd.lsw;
      mul_Xsig_Xsig(&argTo4, &argTo4);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
		      N_COEFF_N-1);
      mul_Xsig_Xsig(&accumulator, &argSqrd);
      negate_Xsig(&accumulator);

      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
		      N_COEFF_P-1);

      shr_Xsig(&accumulator, 2);    /* Divide by four */
      accumulator.msw |= 0x80000000;  /* Add 1.0 */

      mul64_Xsig(&accumulator, &fixed_arg);
      mul64_Xsig(&accumulator, &fixed_arg);
      mul64_Xsig(&accumulator, &fixed_arg);

      /* Divide by four, FPU_REG compatible, etc */
      exponent = 3*exponent;

      /* The minimum exponent difference is 3 */
      shr_Xsig(&accumulator, exp2 - exponent);

      negate_Xsig(&accumulator);
      XSIG_LL(accumulator) += fixed_arg;

      /* The basic computation is complete. Now fix the answer to
	 compensate for the error due to the approximation used for
	 pi/2
	 */

      /* This has an exponent of -65 */
      XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
      fix_up.lsw = 0;

      /* The fix-up needs to be improved for larger args */
      if ( argSqrd.msw & 0xffc00000 )
	{
	  /* Get about 32 bit precision in these: */
	  mul_32_32(0x898cc517, argSqrd.msw, &adj);
	  fix_up.msw -= adj/2;
	  mul_32_32(0x898cc517, argTo4.msw, &adj);
	  fix_up.msw += adj/24;
	}

      exp2 += norm_Xsig(&accumulator);
      shr_Xsig(&accumulator, 1); /* Prevent overflow */
      exp2++;
      shr_Xsig(&fix_up, 65 + exp2);

      add_Xsig_Xsig(&accumulator, &fix_up);

      echange = round_Xsig(&accumulator);

      result->exp = exp2 + EXP_BIAS + echange;
      *(short *)&(result->sign) = 0;      /* Is a valid positive nr */
      significand(result) = XSIG_LL(accumulator);
    }

#ifdef PARANOID
  if ( (result->exp >= EXP_BIAS)
      && (significand(result) > 0x8000000000000000LL) )
    {
      EXCEPTION(EX_INTERNAL|0x151);
    }
#endif PARANOID

}
Пример #8
0
/*--- poly_atan() -----------------------------------------------------------+
 |                                                                           |
 +---------------------------------------------------------------------------*/
void poly_atan(FPU_REG *st0_ptr, u_char st0_tag,
           FPU_REG *st1_ptr, u_char st1_tag)
{
    u_char transformed, inverted, sign1, sign2;
    int exponent;
    long int dummy_exp;
    Xsig accumulator, Numer, Denom, accumulatore, argSignif, argSq, argSqSq;
    u_char tag;

    sign1 = getsign(st0_ptr);
    sign2 = getsign(st1_ptr);
    if (st0_tag == TAG_Valid) {
        exponent = exponent(st0_ptr);
    } else {
        /* This gives non-compatible stack contents... */
        FPU_to_exp16(st0_ptr, st0_ptr);
        exponent = exponent16(st0_ptr);
    }
    if (st1_tag == TAG_Valid) {
        exponent -= exponent(st1_ptr);
    } else {
        /* This gives non-compatible stack contents... */
        FPU_to_exp16(st1_ptr, st1_ptr);
        exponent -= exponent16(st1_ptr);
    }

    if ((exponent < 0) || ((exponent == 0) &&
                   ((st0_ptr->sigh < st1_ptr->sigh) ||
                ((st0_ptr->sigh == st1_ptr->sigh) &&
                 (st0_ptr->sigl < st1_ptr->sigl))))) {
        inverted = 1;
        Numer.lsw = Denom.lsw = 0;
        XSIG_LL(Numer) = significand(st0_ptr);
        XSIG_LL(Denom) = significand(st1_ptr);
    } else {
        inverted = 0;
        exponent = -exponent;
        Numer.lsw = Denom.lsw = 0;
        XSIG_LL(Numer) = significand(st1_ptr);
        XSIG_LL(Denom) = significand(st0_ptr);
    }
    div_Xsig(&Numer, &Denom, &argSignif);
    exponent += norm_Xsig(&argSignif);

    if ((exponent >= -1)
        || ((exponent == -2) && (argSignif.msw > 0xd413ccd0))) {
        /* The argument is greater than sqrt(2)-1 (=0.414213562...) */
        /* Convert the argument by an identity for atan */
        transformed = 1;

        if (exponent >= 0) {
#ifdef PARANOID
            if (!((exponent == 0) &&
                  (argSignif.lsw == 0) && (argSignif.midw == 0) &&
                  (argSignif.msw == 0x80000000))) {
                EXCEPTION(EX_INTERNAL | 0x104);    /* There must be a logic error */
                return;
            }
#endif /* PARANOID */
            argSignif.msw = 0;    /* Make the transformed arg -> 0.0 */
        } else {
            Numer.lsw = Denom.lsw = argSignif.lsw;
            XSIG_LL(Numer) = XSIG_LL(Denom) = XSIG_LL(argSignif);

            if (exponent < -1)
                shr_Xsig(&Numer, -1 - exponent);
            negate_Xsig(&Numer);

            shr_Xsig(&Denom, -exponent);
            Denom.msw |= 0x80000000;

            div_Xsig(&Numer, &Denom, &argSignif);

            exponent = -1 + norm_Xsig(&argSignif);
        }
    } else {
        transformed = 0;
    }

    argSq.lsw = argSignif.lsw;
    argSq.midw = argSignif.midw;
    argSq.msw = argSignif.msw;
    mul_Xsig_Xsig(&argSq, &argSq);

    argSqSq.lsw = argSq.lsw;
    argSqSq.midw = argSq.midw;
    argSqSq.msw = argSq.msw;
    mul_Xsig_Xsig(&argSqSq, &argSqSq);

    accumulatore.lsw = argSq.lsw;
    XSIG_LL(accumulatore) = XSIG_LL(argSq);

    shr_Xsig(&argSq, 2 * (-1 - exponent - 1));
    shr_Xsig(&argSqSq, 4 * (-1 - exponent - 1));

    /* Now have argSq etc with binary point at the left
       .1xxxxxxxx */

    /* Do the basic fixed point polynomial evaluation */
    accumulator.msw = accumulator.midw = accumulator.lsw = 0;
    polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq),
            oddplterms, HIPOWERop - 1);
    mul64_Xsig(&accumulator, &XSIG_LL(argSq));
    negate_Xsig(&accumulator);
    polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), oddnegterms,
            HIPOWERon - 1);
    negate_Xsig(&accumulator);
    add_two_Xsig(&accumulator, &fixedpterm, &dummy_exp);

    mul64_Xsig(&accumulatore, &denomterm);
    shr_Xsig(&accumulatore, 1 + 2 * (-1 - exponent));
    accumulatore.msw |= 0x80000000;

    div_Xsig(&accumulator, &accumulatore, &accumulator);

    mul_Xsig_Xsig(&accumulator, &argSignif);
    mul_Xsig_Xsig(&accumulator, &argSq);

    shr_Xsig(&accumulator, 3);
    negate_Xsig(&accumulator);
    add_Xsig_Xsig(&accumulator, &argSignif);

    if (transformed) {
        /* compute pi/4 - accumulator */
        shr_Xsig(&accumulator, -1 - exponent);
        negate_Xsig(&accumulator);
        add_Xsig_Xsig(&accumulator, &pi_signif);
        exponent = -1;
    }

    if (inverted) {
        /* compute pi/2 - accumulator */
        shr_Xsig(&accumulator, -exponent);
        negate_Xsig(&accumulator);
        add_Xsig_Xsig(&accumulator, &pi_signif);
        exponent = 0;
    }

    if (sign1) {
        /* compute pi - accumulator */
        shr_Xsig(&accumulator, 1 - exponent);
        negate_Xsig(&accumulator);
        add_Xsig_Xsig(&accumulator, &pi_signif);
        exponent = 1;
    }

    exponent += round_Xsig(&accumulator);

    significand(st1_ptr) = XSIG_LL(accumulator);
    setexponent16(st1_ptr, exponent);

    tag = FPU_round(st1_ptr, 1, 0, FULL_PRECISION, sign2);
    FPU_settagi(1, tag);

    set_precision_flag_up();    /* We do not really know if up or down,
                       use this as the default. */

}