Пример #1
0
    void operator delete(void* obj)
    {
      CALL("operator delete(void* obj)");
      Alloc::deallocate(obj,
			sizeof(Page) + 
			sizeInBytes(static_cast<Page*>(obj)->normalisedSize));
    };
Пример #2
0
void DisplayList::dump(TextStream& ts) const
{
    TextStream::GroupScope group(ts);
    ts << "display list";

    size_t numItems = m_list.size();
    for (size_t i = 0; i < numItems; ++i) {
        TextStream::GroupScope scope(ts);
        ts << i << " " << m_list[i].get();
    }
    ts.startGroup();
    ts << "size in bytes: " << sizeInBytes();
    ts.endGroup();
}
Пример #3
0
   Subscriber subscribe(const std::string &, uint32_t, void(T::*fun)(M), T *obj) {
      struct Thread : QThread {
         Thread(QObject*p):QThread(p){} ~Thread() override { quit(); wait(); } };
      static QPointer<Thread> thread = new Thread(qApp);
      thread->start(); // no-op if already started
      auto *timer = new QTimer;
      timer->start(1000/60);
      timer->moveToThread(thread);
      QObject::connect(timer, &QTimer::timeout, [timer, obj, fun]{
         auto const msec = QTime::currentTime().msecsSinceStartOfDay();
         auto val = timer->property("name");
         QVariant f;
         auto img = takeProperty<QImage>(timer, "image", 256, 256, QImage::Format_ARGB32_Premultiplied);
//         else img = {256, 256, QImage::Format_ARGB32_Premultiplied};
         Q_ASSERT(img.isDetached());
         qDebug() << val.isDetached() << timer->property("image").constData() << (void*)img.constBits();
//         QImage img{256, 256, QImage::Format_ARGB32_Premultiplied};
         img.fill(Qt::white);
         QPainter p{&img};
         constexpr int period = 3000;
         p.scale(img.width()/2.0, img.height()/2.0);
         p.translate(1.0, 1.0);
         p.rotate((msec % period) * 360.0/period);
         p.setPen({Qt::darkBlue, 0.1});
         p.drawLine(QLineF{{-1., 0.}, {1., 0.}});
         p.end();
         setProperty(timer, "image", img);
         img = std::move(img).convertToFormat(QImage::Format_RGB888).rgbSwapped();

         sensor_msgs::ImageConstPtr ptr{new sensor_msgs::Image{
               {img.constBits(), img.constBits() + img.sizeInBytes()},
               sensor_msgs::image_encodings::BGR8,
                     (uint32_t)img.height(), (uint32_t)img.width()}};
         (*obj.*fun)(ptr);
      });
      return {};
   }   
Пример #4
0
 unsigned CanvasArray::alignedSizeInBytes() const {
     // Assume we only need to round up to 4-byte boundaries for alignment.
     return ((sizeInBytes() + 3) / 4) * 4;
 }
Пример #5
0
bool VertexFormat::isValid() const
{
	return sizeInBytes() != 0;
}
Пример #6
0
RetainPtr<CGImageRef> ShareableBitmap::makeCGImage()
{
    ref(); // Balanced by deref in releaseDataProviderData.
    RetainPtr<CGDataProvider> dataProvider = adoptCF(CGDataProviderCreateWithData(this, data(), sizeInBytes(), releaseDataProviderData));
    return createCGImage(dataProvider.get());
}
Пример #7
0
 void* operator new(size_t,size_t size)
 {
   CALL("operator new(size_t,size_t size)");
   return Alloc::allocate(sizeof(Page) + sizeInBytes(size));
 };
Пример #8
0
void DynamicDataBuffer::update( ID3D11DeviceContext* pContext, const void* srcData )
{
	pContext->UpdateSubresource( m_pBuffer, 0,
		NULL, srcData, sizeInBytes(), sizeInBytes() );
}
Пример #9
0
	void Texture::copyTo(Buffer& target, size_t dstOffset) const
	{
		auto binder = target.bind(GL_PIXEL_PACK_BUFFER);
		read(sizeInBytes(), (void*)dstOffset);
	}
void SparseShaderIntrinsicsInstanceSampledBase::recordCommands (const VkCommandBuffer		commandBuffer,
																const VkImageCreateInfo&	imageSparseInfo,
																const VkImage				imageSparse,
																const VkImage				imageTexels,
																const VkImage				imageResidency)
{
	const InstanceInterface&		 instance			= m_context.getInstanceInterface();
	const DeviceInterface&			 deviceInterface	= getDeviceInterface();
	const VkPhysicalDevice			 physicalDevice		= m_context.getPhysicalDevice();
	const VkPhysicalDeviceProperties deviceProperties	= getPhysicalDeviceProperties(instance, physicalDevice);

	if (imageSparseInfo.extent.width  > deviceProperties.limits.maxFramebufferWidth  ||
		imageSparseInfo.extent.height > deviceProperties.limits.maxFramebufferHeight ||
		imageSparseInfo.arrayLayers   > deviceProperties.limits.maxFramebufferLayers)
	{
		TCU_THROW(NotSupportedError, "Image size exceeds allowed framebuffer dimensions");
	}

	// Check if device supports image format for sampled images
	if (!checkImageFormatFeatureSupport(instance, physicalDevice, imageSparseInfo.format, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT))
		TCU_THROW(NotSupportedError, "Device does not support image format for sampled images");

	// Check if device supports image format for color attachment
	if (!checkImageFormatFeatureSupport(instance, physicalDevice, imageSparseInfo.format, VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT))
		TCU_THROW(NotSupportedError, "Device does not support image format for color attachment");

	// Make sure device supports VK_FORMAT_R32_UINT format for color attachment
	if (!checkImageFormatFeatureSupport(instance, physicalDevice, mapTextureFormat(m_residencyFormat), VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT))
		TCU_THROW(TestError, "Device does not support VK_FORMAT_R32_UINT format for color attachment");

	// Create buffer storing vertex data
	std::vector<tcu::Vec2> vertexData;

	vertexData.push_back(tcu::Vec2(-1.0f,-1.0f));
	vertexData.push_back(tcu::Vec2( 0.0f, 0.0f));

	vertexData.push_back(tcu::Vec2(-1.0f, 1.0f));
	vertexData.push_back(tcu::Vec2( 0.0f, 1.0f));

	vertexData.push_back(tcu::Vec2( 1.0f,-1.0f));
	vertexData.push_back(tcu::Vec2( 1.0f, 0.0f));

	vertexData.push_back(tcu::Vec2( 1.0f, 1.0f));
	vertexData.push_back(tcu::Vec2( 1.0f, 1.0f));

	const VkDeviceSize			vertexDataSizeInBytes	= sizeInBytes(vertexData);
	const VkBufferCreateInfo	vertexBufferCreateInfo	= makeBufferCreateInfo(vertexDataSizeInBytes, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);

	m_vertexBuffer		= createBuffer(deviceInterface, getDevice(), &vertexBufferCreateInfo);
	m_vertexBufferAlloc	= bindBuffer(deviceInterface, getDevice(), getAllocator(), *m_vertexBuffer, MemoryRequirement::HostVisible);

	deMemcpy(m_vertexBufferAlloc->getHostPtr(), &vertexData[0], static_cast<std::size_t>(vertexDataSizeInBytes));
	flushMappedMemoryRange(deviceInterface, getDevice(), m_vertexBufferAlloc->getMemory(), m_vertexBufferAlloc->getOffset(), vertexDataSizeInBytes);

	// Create render pass
	const VkAttachmentDescription texelsAttachmentDescription =
	{
		(VkAttachmentDescriptionFlags)0,					// VkAttachmentDescriptionFlags		flags;
		imageSparseInfo.format,								// VkFormat							format;
		VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits			samples;
		VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp				loadOp;
		VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
		VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
		VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					initialLayout;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout					finalLayout;
	};

	const VkAttachmentDescription residencyAttachmentDescription =
	{
		(VkAttachmentDescriptionFlags)0,					// VkAttachmentDescriptionFlags		flags;
		mapTextureFormat(m_residencyFormat),				// VkFormat							format;
		VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits			samples;
		VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp				loadOp;
		VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
		VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
		VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					initialLayout;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout					finalLayout;
	};

	const VkAttachmentDescription colorAttachmentsDescription[] = { texelsAttachmentDescription, residencyAttachmentDescription };

	const VkAttachmentReference texelsAttachmentReference =
	{
		0u,													// deUint32			attachment;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
	};

	const VkAttachmentReference residencyAttachmentReference =
	{
		1u,													// deUint32			attachment;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
	};

	const VkAttachmentReference colorAttachmentsReference[] = { texelsAttachmentReference, residencyAttachmentReference };

	const VkAttachmentReference depthAttachmentReference =
	{
		VK_ATTACHMENT_UNUSED,								// deUint32			attachment;
		VK_IMAGE_LAYOUT_UNDEFINED							// VkImageLayout	layout;
	};

	const VkSubpassDescription subpassDescription =
	{
		(VkSubpassDescriptionFlags)0,						// VkSubpassDescriptionFlags		flags;
		VK_PIPELINE_BIND_POINT_GRAPHICS,					// VkPipelineBindPoint				pipelineBindPoint;
		0u,													// deUint32							inputAttachmentCount;
		DE_NULL,											// const VkAttachmentReference*		pInputAttachments;
		2u,													// deUint32							colorAttachmentCount;
		colorAttachmentsReference,							// const VkAttachmentReference*		pColorAttachments;
		DE_NULL,											// const VkAttachmentReference*		pResolveAttachments;
		&depthAttachmentReference,							// const VkAttachmentReference*		pDepthStencilAttachment;
		0u,													// deUint32							preserveAttachmentCount;
		DE_NULL												// const deUint32*					pPreserveAttachments;
	};

	const VkRenderPassCreateInfo renderPassInfo =
	{
		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,			// VkStructureType					sType;
		DE_NULL,											// const void*						pNext;
		(VkRenderPassCreateFlags)0,							// VkRenderPassCreateFlags			flags;
		2u,													// deUint32							attachmentCount;
		colorAttachmentsDescription,						// const VkAttachmentDescription*	pAttachments;
		1u,													// deUint32							subpassCount;
		&subpassDescription,								// const VkSubpassDescription*		pSubpasses;
		0u,													// deUint32							dependencyCount;
		DE_NULL												// const VkSubpassDependency*		pDependencies;
	};

	m_renderPass = createRenderPass(deviceInterface, getDevice(), &renderPassInfo);

	// Create descriptor set layout
	DescriptorSetLayoutBuilder descriptorLayerBuilder;

	descriptorLayerBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT);

	const Unique<VkDescriptorSetLayout> descriptorSetLayout(descriptorLayerBuilder.build(deviceInterface, getDevice()));

	// Create descriptor pool
	DescriptorPoolBuilder descriptorPoolBuilder;

	descriptorPoolBuilder.addType(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageSparseInfo.mipLevels);

	descriptorPool = descriptorPoolBuilder.build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, imageSparseInfo.mipLevels);

	// Create sampler object
	const tcu::Sampler			samplerObject(tcu::Sampler::REPEAT_GL, tcu::Sampler::REPEAT_GL, tcu::Sampler::REPEAT_GL, tcu::Sampler::NEAREST_MIPMAP_NEAREST, tcu::Sampler::NEAREST);
	const VkSamplerCreateInfo	samplerCreateInfo = mapSampler(samplerObject, m_format);
	m_sampler = createSampler(deviceInterface, getDevice(), &samplerCreateInfo);

	struct PushConstants
	{
		deUint32	lod;
		deUint32	padding;			// padding needed to satisfy std430 rules
		float		lodWidth;
		float		lodHeight;
	};

	// Create pipeline layout
	const VkPushConstantRange lodConstantRange =
	{
		VK_SHADER_STAGE_FRAGMENT_BIT,	// VkShaderStageFlags	stageFlags;
		0u,								// deUint32			offset;
		sizeof(PushConstants),			// deUint32			size;
	};

	const VkPipelineLayoutCreateInfo pipelineLayoutParams =
	{
		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,		// VkStructureType					sType;
		DE_NULL,											// const void*						pNext;
		0u,													// VkPipelineLayoutCreateFlags		flags;
		1u,													// deUint32							setLayoutCount;
		&descriptorSetLayout.get(),							// const VkDescriptorSetLayout*		pSetLayouts;
		1u,													// deUint32							pushConstantRangeCount;
		&lodConstantRange,									// const VkPushConstantRange*		pPushConstantRanges;
	};

	const Unique<VkPipelineLayout> pipelineLayout(createPipelineLayout(deviceInterface, getDevice(), &pipelineLayoutParams));

	// Create graphics pipeline
	{
		Move<VkShaderModule> vertexModule	= createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("vertex_shader"), (VkShaderModuleCreateFlags)0);
		Move<VkShaderModule> fragmentModule	= createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("fragment_shader"), (VkShaderModuleCreateFlags)0);
		Move<VkShaderModule> geometryModule;

		if (imageSparseInfo.arrayLayers > 1u)
		{
			requireFeatures(instance, physicalDevice, FEATURE_GEOMETRY_SHADER);
			geometryModule = createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("geometry_shader"), (VkShaderModuleCreateFlags)0);
		}

		pipelines.push_back(makeVkSharedPtr(makeGraphicsPipeline(
			deviceInterface, getDevice(), *pipelineLayout, *m_renderPass, *vertexModule, *fragmentModule, *geometryModule)));
	}

	const VkPipeline graphicsPipeline = **pipelines[0];

	{
		const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers);

		VkImageMemoryBarrier imageShaderAccessBarriers[3];

		imageShaderAccessBarriers[0] = makeImageMemoryBarrier
		(
			VK_ACCESS_TRANSFER_WRITE_BIT,
			VK_ACCESS_SHADER_READ_BIT,
			VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
			VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
			imageSparse,
			fullImageSubresourceRange
		);

		imageShaderAccessBarriers[1] = makeImageMemoryBarrier
		(
			0u,
			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
			VK_IMAGE_LAYOUT_UNDEFINED,
			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
			imageTexels,
			fullImageSubresourceRange
		);

		imageShaderAccessBarriers[2] = makeImageMemoryBarrier
		(
			0u,
			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
			VK_IMAGE_LAYOUT_UNDEFINED,
			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
			imageResidency,
			fullImageSubresourceRange
		);

		deviceInterface.cmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 3u, imageShaderAccessBarriers);
	}

	imageSparseViews.resize(imageSparseInfo.mipLevels);
	imageTexelsViews.resize(imageSparseInfo.mipLevels);
	imageResidencyViews.resize(imageSparseInfo.mipLevels);
	m_framebuffers.resize(imageSparseInfo.mipLevels);
	descriptorSets.resize(imageSparseInfo.mipLevels);

	std::vector<VkClearValue> clearValues;
	clearValues.push_back(makeClearValueColor(tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f)));
	clearValues.push_back(makeClearValueColor(tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f)));

	for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
	{
		const vk::VkExtent3D			mipLevelSize	= mipLevelExtents(imageSparseInfo.extent, mipLevelNdx);
		const vk::VkRect2D				renderArea		= makeRect2D(mipLevelSize);
		const VkViewport				viewport		= makeViewport(mipLevelSize);
		const VkImageSubresourceRange	mipLevelRange	= makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, mipLevelNdx, 1u, 0u, imageSparseInfo.arrayLayers);

		// Create color attachments image views
		imageTexelsViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), imageTexels, mapImageViewType(m_imageType), imageSparseInfo.format, mipLevelRange));
		imageResidencyViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), imageResidency, mapImageViewType(m_imageType), mapTextureFormat(m_residencyFormat), mipLevelRange));

		const VkImageView attachmentsViews[] = { **imageTexelsViews[mipLevelNdx], **imageResidencyViews[mipLevelNdx] };

		// Create framebuffer
		const VkFramebufferCreateInfo framebufferInfo =
		{
			VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,	// VkStructureType                             sType;
			DE_NULL,									// const void*                                 pNext;
			(VkFramebufferCreateFlags)0,				// VkFramebufferCreateFlags                    flags;
			*m_renderPass,								// VkRenderPass                                renderPass;
			2u,											// uint32_t                                    attachmentCount;
			attachmentsViews,							// const VkImageView*                          pAttachments;
			mipLevelSize.width,							// uint32_t                                    width;
			mipLevelSize.height,						// uint32_t                                    height;
			imageSparseInfo.arrayLayers,				// uint32_t                                    layers;
		};

		m_framebuffers[mipLevelNdx] = makeVkSharedPtr(createFramebuffer(deviceInterface, getDevice(), &framebufferInfo));

		// Create descriptor set
		descriptorSets[mipLevelNdx] = makeVkSharedPtr(makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout));
		const VkDescriptorSet descriptorSet = **descriptorSets[mipLevelNdx];

		// Update descriptor set
		const VkImageSubresourceRange sparseImageSubresourceRange = sampledImageRangeToBind(imageSparseInfo, mipLevelNdx);

		imageSparseViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), imageSparse, mapImageViewType(m_imageType), imageSparseInfo.format, sparseImageSubresourceRange));

		const VkDescriptorImageInfo imageSparseDescInfo = makeDescriptorImageInfo(*m_sampler, **imageSparseViews[mipLevelNdx], VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);

		DescriptorSetUpdateBuilder descriptorUpdateBuilder;

		descriptorUpdateBuilder.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(BINDING_IMAGE_SPARSE), VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, &imageSparseDescInfo);
		descriptorUpdateBuilder.update(deviceInterface, getDevice());

		// Begin render pass
		beginRenderPass(deviceInterface, commandBuffer, *m_renderPass, **m_framebuffers[mipLevelNdx], renderArea, (deUint32)clearValues.size(), &clearValues[0]);

		// Bind graphics pipeline
		deviceInterface.cmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

		// Bind descriptor set
		deviceInterface.cmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL);

		// Bind vertex buffer
		{
			const VkDeviceSize offset = 0ull;
			deviceInterface.cmdBindVertexBuffers(commandBuffer, 0u, 1u, &m_vertexBuffer.get(), &offset);
		}

		// Bind Viewport
		deviceInterface.cmdSetViewport(commandBuffer, 0u, 1u, &viewport);

		// Bind Scissor Rectangle
		deviceInterface.cmdSetScissor(commandBuffer, 0u, 1u, &renderArea);

		const PushConstants pushConstants =
		{
			mipLevelNdx,
			0u,											// padding
			static_cast<float>(mipLevelSize.width),
			static_cast<float>(mipLevelSize.height)
		};

		// Update push constants
		deviceInterface.cmdPushConstants(commandBuffer, *pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0u, sizeof(PushConstants), &pushConstants);

		// Draw full screen quad
		deviceInterface.cmdDraw(commandBuffer, 4u, 1u, 0u, 0u);

		// End render pass
		endRenderPass(deviceInterface, commandBuffer);
	}

	{
		const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers);

		VkImageMemoryBarrier imageOutputTransferSrcBarriers[2];

		imageOutputTransferSrcBarriers[0] = makeImageMemoryBarrier
		(
			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
			VK_ACCESS_TRANSFER_READ_BIT,
			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
			imageTexels,
			fullImageSubresourceRange
		);

		imageOutputTransferSrcBarriers[1] = makeImageMemoryBarrier
		(
			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
			VK_ACCESS_TRANSFER_READ_BIT,
			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
			imageResidency,
			fullImageSubresourceRange
		);

		deviceInterface.cmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 2u, imageOutputTransferSrcBarriers);
	}
}
Пример #11
0
void DataSet_Coords_CRD::Info() const {
  mprintf(" (%s)",
          ByteString(sizeInBytes(coords_.size(), top_.Natom(), numBoxCrd_), BYTE_DECIMAL).c_str());
  CommonInfo();
}