int32_t EventHub::getSwitchStateLocked(device_t* device, int32_t sw) const { uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)]; memset(sw_bitmask, 0, sizeof(sw_bitmask)); if (ioctl(device->fd, EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) { return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } return AKEY_STATE_UNKNOWN; }
int32_t EventHub::getScanCodeStateLocked(device_t* device, int32_t scanCode) const { uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)]; memset(key_bitmask, 0, sizeof(key_bitmask)); if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) { return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } return AKEY_STATE_UNKNOWN; }
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { if (sw >= 0 && sw <= SW_MAX) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && test_bit(sw, device->swBitmask)) { uint8_t swState[sizeof_bit_array(SW_MAX + 1)]; memset(swState, 0, sizeof(swState)); if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) { return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } } } return AKEY_STATE_UNKNOWN; }
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { if (scanCode >= 0 && scanCode <= KEY_MAX) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && test_bit(scanCode, device->keyBitmask)) { uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; memset(keyState, 0, sizeof(keyState)); if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } } } return AKEY_STATE_UNKNOWN; }
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && device->keyMap.haveKeyLayout()) { Vector<int32_t> scanCodes; device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes); if (scanCodes.size() != 0) { uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; memset(keyState, 0, sizeof(keyState)); if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { for (size_t i = 0; i < scanCodes.size(); i++) { int32_t sc = scanCodes.itemAt(i); if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) { return AKEY_STATE_DOWN; } } return AKEY_STATE_UP; } } } return AKEY_STATE_UNKNOWN; }
int32_t EventHub::getKeyCodeStateLocked(device_t* device, int32_t keyCode) const { Vector<int32_t> scanCodes; device->layoutMap->findScancodes(keyCode, &scanCodes); uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)]; memset(key_bitmask, 0, sizeof(key_bitmask)); if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) { #if 0 for (size_t i=0; i<=KEY_MAX; i++) { LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask)); } #endif const size_t N = scanCodes.size(); for (size_t i=0; i<N && i<=KEY_MAX; i++) { int32_t sc = scanCodes.itemAt(i); //LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask)); if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) { return AKEY_STATE_DOWN; } } return AKEY_STATE_UP; } return AKEY_STATE_UNKNOWN; }
status_t EventHub::openDeviceLocked(const char *devicePath) { char buffer[80]; ALOGV("Opening device: %s", devicePath); int fd = open(devicePath, O_RDWR); if(fd < 0) { LOGE("could not open %s, %s\n", devicePath, strerror(errno)); return -1; } InputDeviceIdentifier identifier; // Get device name. if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno)); } else { buffer[sizeof(buffer) - 1] = '\0'; identifier.name.setTo(buffer); } // Check to see if the device is on our excluded list for (size_t i = 0; i < mExcludedDevices.size(); i++) { const String8& item = mExcludedDevices.itemAt(i); if (identifier.name == item) { LOGI("ignoring event id %s driver %s\n", devicePath, item.string()); close(fd); return -1; } } // Get device driver version. int driverVersion; if(ioctl(fd, EVIOCGVERSION, &driverVersion)) { LOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno)); close(fd); return -1; } // Get device identifier. struct input_id inputId; if(ioctl(fd, EVIOCGID, &inputId)) { LOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno)); close(fd); return -1; } identifier.bus = inputId.bustype; identifier.product = inputId.product; identifier.vendor = inputId.vendor; identifier.version = inputId.version; // Get device physical location. if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) { //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno)); } else { buffer[sizeof(buffer) - 1] = '\0'; identifier.location.setTo(buffer); } // Get device unique id. if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) { //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno)); } else { buffer[sizeof(buffer) - 1] = '\0'; identifier.uniqueId.setTo(buffer); } // Make file descriptor non-blocking for use with poll(). if (fcntl(fd, F_SETFL, O_NONBLOCK)) { LOGE("Error %d making device file descriptor non-blocking.", errno); close(fd); return -1; } // Allocate device. (The device object takes ownership of the fd at this point.) int32_t deviceId = mNextDeviceId++; Device* device = new Device(fd, deviceId, String8(devicePath), identifier); #if 0 LOGI("add device %d: %s\n", deviceId, devicePath); LOGI(" bus: %04x\n" " vendor %04x\n" " product %04x\n" " version %04x\n", identifier.bus, identifier.vendor, identifier.product, identifier.version); LOGI(" name: \"%s\"\n", identifier.name.string()); LOGI(" location: \"%s\"\n", identifier.location.string()); LOGI(" unique id: \"%s\"\n", identifier.uniqueId.string()); LOGI(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff); #endif // Load the configuration file for the device. loadConfigurationLocked(device); // Figure out the kinds of events the device reports. ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask); ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask); ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask); ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask); ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask); ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask); // See if this is a keyboard. Ignore everything in the button range except for // joystick and gamepad buttons which are handled like keyboards for the most part. bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC)) || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK), sizeof_bit_array(KEY_MAX + 1)); bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC), sizeof_bit_array(BTN_MOUSE)) || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK), sizeof_bit_array(BTN_DIGI)); if (haveKeyboardKeys || haveGamepadButtons) { device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; } // See if this is a cursor device such as a trackball or mouse. if (test_bit(BTN_MOUSE, device->keyBitmask) && test_bit(REL_X, device->relBitmask) && test_bit(REL_Y, device->relBitmask)) { device->classes |= INPUT_DEVICE_CLASS_CURSOR; } // See if this is a touch pad. // Is this a new modern multi-touch driver? if (test_bit(ABS_MT_POSITION_X, device->absBitmask) && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) { // Some joysticks such as the PS3 controller report axes that conflict // with the ABS_MT range. Try to confirm that the device really is // a touch screen. if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) { device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT; } // Is this an old style single-touch driver? } else if (test_bit(BTN_TOUCH, device->keyBitmask) && test_bit(ABS_X, device->absBitmask) && test_bit(ABS_Y, device->absBitmask)) { device->classes |= INPUT_DEVICE_CLASS_TOUCH; } // See if this device is a joystick. // Assumes that joysticks always have gamepad buttons in order to distinguish them // from other devices such as accelerometers that also have absolute axes. if (haveGamepadButtons) { uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK; for (int i = 0; i <= ABS_MAX; i++) { if (test_bit(i, device->absBitmask) && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) { device->classes = assumedClasses; break; } } } // Check whether this device has switches. for (int i = 0; i <= SW_MAX; i++) { if (test_bit(i, device->swBitmask)) { device->classes |= INPUT_DEVICE_CLASS_SWITCH; break; } } // Configure virtual keys. if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) { // Load the virtual keys for the touch screen, if any. // We do this now so that we can make sure to load the keymap if necessary. status_t status = loadVirtualKeyMapLocked(device); if (!status) { device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; } } // Load the key map. // We need to do this for joysticks too because the key layout may specify axes. status_t keyMapStatus = NAME_NOT_FOUND; if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) { // Load the keymap for the device. keyMapStatus = loadKeyMapLocked(device); } // Configure the keyboard, gamepad or virtual keyboard. if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) { // Register the keyboard as a built-in keyboard if it is eligible. if (!keyMapStatus && mBuiltInKeyboardId == -1 && isEligibleBuiltInKeyboard(device->identifier, device->configuration, &device->keyMap)) { mBuiltInKeyboardId = device->id; } // 'Q' key support = cheap test of whether this is an alpha-capable kbd if (hasKeycodeLocked(device, AKEYCODE_Q)) { device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY; } // See if this device has a DPAD. if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) && hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) && hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) && hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) && hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) { device->classes |= INPUT_DEVICE_CLASS_DPAD; } // See if this device has a gamepad. for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) { if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) { device->classes |= INPUT_DEVICE_CLASS_GAMEPAD; break; } } } // If the device isn't recognized as something we handle, don't monitor it. if (device->classes == 0) { ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath, device->identifier.name.string()); delete device; return -1; } // Determine whether the device is external or internal. if (isExternalDeviceLocked(device)) { device->classes |= INPUT_DEVICE_CLASS_EXTERNAL; } // Register with epoll. struct epoll_event eventItem; memset(&eventItem, 0, sizeof(eventItem)); eventItem.events = EPOLLIN; eventItem.data.u32 = deviceId; if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { LOGE("Could not add device fd to epoll instance. errno=%d", errno); delete device; return -1; } LOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, " "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s", deviceId, fd, devicePath, device->identifier.name.string(), device->classes, device->configurationFile.string(), device->keyMap.keyLayoutFile.string(), device->keyMap.keyCharacterMapFile.string(), toString(mBuiltInKeyboardId == deviceId)); mDevices.add(deviceId, device); device->next = mOpeningDevices; mOpeningDevices = device; return 0; }
int EventHub::openDevice(const char *deviceName) { int version; int fd; struct pollfd *new_mFDs; device_t **new_devices; char **new_device_names; char name[80]; char location[80]; char idstr[80]; struct input_id id; LOGV("Opening device: %s", deviceName); AutoMutex _l(mLock); fd = open(deviceName, O_RDWR); if(fd < 0) { LOGE("could not open %s, %s\n", deviceName, strerror(errno)); return -1; } if(ioctl(fd, EVIOCGVERSION, &version)) { LOGE("could not get driver version for %s, %s\n", deviceName, strerror(errno)); return -1; } if(ioctl(fd, EVIOCGID, &id)) { LOGE("could not get driver id for %s, %s\n", deviceName, strerror(errno)); return -1; } name[sizeof(name) - 1] = '\0'; location[sizeof(location) - 1] = '\0'; idstr[sizeof(idstr) - 1] = '\0'; if(ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) { //fprintf(stderr, "could not get device name for %s, %s\n", deviceName, strerror(errno)); name[0] = '\0'; } // check to see if the device is on our excluded list List<String8>::iterator iter = mExcludedDevices.begin(); List<String8>::iterator end = mExcludedDevices.end(); for ( ; iter != end; iter++) { const char* test = *iter; if (strcmp(name, test) == 0) { LOGI("ignoring event id %s driver %s\n", deviceName, test); close(fd); return -1; } } if(ioctl(fd, EVIOCGPHYS(sizeof(location) - 1), &location) < 1) { //fprintf(stderr, "could not get location for %s, %s\n", deviceName, strerror(errno)); location[0] = '\0'; } if(ioctl(fd, EVIOCGUNIQ(sizeof(idstr) - 1), &idstr) < 1) { //fprintf(stderr, "could not get idstring for %s, %s\n", deviceName, strerror(errno)); idstr[0] = '\0'; } if (fcntl(fd, F_SETFL, O_NONBLOCK)) { LOGE("Error %d making device file descriptor non-blocking.", errno); close(fd); return -1; } int devid = 0; while (devid < mNumDevicesById) { if (mDevicesById[devid].device == NULL) { break; } devid++; } if (devid >= mNumDevicesById) { device_ent* new_devids = (device_ent*)realloc(mDevicesById, sizeof(mDevicesById[0]) * (devid + 1)); if (new_devids == NULL) { LOGE("out of memory"); return -1; } mDevicesById = new_devids; mNumDevicesById = devid+1; mDevicesById[devid].device = NULL; mDevicesById[devid].seq = 0; } mDevicesById[devid].seq = (mDevicesById[devid].seq+(1<<SEQ_SHIFT))&SEQ_MASK; if (mDevicesById[devid].seq == 0) { mDevicesById[devid].seq = 1<<SEQ_SHIFT; } new_mFDs = (pollfd*)realloc(mFDs, sizeof(mFDs[0]) * (mFDCount + 1)); new_devices = (device_t**)realloc(mDevices, sizeof(mDevices[0]) * (mFDCount + 1)); if (new_mFDs == NULL || new_devices == NULL) { LOGE("out of memory"); return -1; } mFDs = new_mFDs; mDevices = new_devices; #if 0 LOGI("add device %d: %s\n", mFDCount, deviceName); LOGI(" bus: %04x\n" " vendor %04x\n" " product %04x\n" " version %04x\n", id.bustype, id.vendor, id.product, id.version); LOGI(" name: \"%s\"\n", name); LOGI(" location: \"%s\"\n" " id: \"%s\"\n", location, idstr); LOGI(" version: %d.%d.%d\n", version >> 16, (version >> 8) & 0xff, version & 0xff); #endif device_t* device = new device_t(devid|mDevicesById[devid].seq, deviceName, name); if (device == NULL) { LOGE("out of memory"); return -1; } device->fd = fd; mFDs[mFDCount].fd = fd; mFDs[mFDCount].events = POLLIN; mFDs[mFDCount].revents = 0; // Figure out the kinds of events the device reports. uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)]; memset(key_bitmask, 0, sizeof(key_bitmask)); LOGV("Getting keys..."); if (ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask) >= 0) { //LOGI("MAP\n"); //for (int i = 0; i < sizeof(key_bitmask); i++) { // LOGI("%d: 0x%02x\n", i, key_bitmask[i]); //} // See if this is a keyboard. Ignore everything in the button range except for // gamepads which are also considered keyboards. if (containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC)) || containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_GAMEPAD), sizeof_bit_array(BTN_DIGI)) || containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK), sizeof_bit_array(KEY_MAX + 1))) { device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; device->keyBitmask = new uint8_t[sizeof(key_bitmask)]; if (device->keyBitmask != NULL) { memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask)); } else { delete device; LOGE("out of memory allocating key bitmask"); return -1; } } } // See if this is a trackball (or mouse). if (test_bit(BTN_MOUSE, key_bitmask)) { uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)]; memset(rel_bitmask, 0, sizeof(rel_bitmask)); LOGV("Getting relative controllers..."); if (ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask) >= 0) { if (test_bit(REL_X, rel_bitmask) && test_bit(REL_Y, rel_bitmask)) { device->classes |= INPUT_DEVICE_CLASS_TRACKBALL; } } } // See if this is a touch pad. uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)]; memset(abs_bitmask, 0, sizeof(abs_bitmask)); LOGV("Getting absolute controllers..."); if (ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask) >= 0) { // Is this a new modern multi-touch driver? if (test_bit(ABS_MT_POSITION_X, abs_bitmask) && test_bit(ABS_MT_POSITION_Y, abs_bitmask)) { device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN | INPUT_DEVICE_CLASS_TOUCHSCREEN_MT; // Is this an old style single-touch driver? } else if (test_bit(BTN_TOUCH, key_bitmask) && test_bit(ABS_X, abs_bitmask) && test_bit(ABS_Y, abs_bitmask)) { device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN; #ifdef HAVE_TSLIB mTS->fd = fd; //Configure here LOGV("Device name = %s, fd = %d", deviceName,fd); LOGV("tslib: calling ts_config from eventhub\n"); if(ts_config(mTS)) { LOGE("Error in Configuring tslib. Device Name = %s \n", deviceName); } #endif } } #ifdef FAKE_TOUCHSCREEN device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN; #endif #ifdef EV_SW // figure out the switches this device reports uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)]; memset(sw_bitmask, 0, sizeof(sw_bitmask)); bool hasSwitches = false; if (ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask) >= 0) { for (int i=0; i<EV_SW; i++) { //LOGI("Device 0x%x sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask)); if (test_bit(i, sw_bitmask)) { hasSwitches = true; if (mSwitches[i] == 0) { mSwitches[i] = device->id; } } } } if (hasSwitches) { device->classes |= INPUT_DEVICE_CLASS_SWITCH; } #endif if ((device->classes & INPUT_DEVICE_CLASS_KEYBOARD) != 0) { char tmpfn[sizeof(name)]; char keylayoutFilename[300]; // a more descriptive name device->name = name; // replace all the spaces with underscores strcpy(tmpfn, name); for (char *p = strchr(tmpfn, ' '); p && *p; p = strchr(tmpfn, ' ')) *p = '_'; // find the .kl file we need for this device const char* root = getenv("ANDROID_ROOT"); snprintf(keylayoutFilename, sizeof(keylayoutFilename), "%s/usr/keylayout/%s.kl", root, tmpfn); bool defaultKeymap = false; if (access(keylayoutFilename, R_OK)) { snprintf(keylayoutFilename, sizeof(keylayoutFilename), "%s/usr/keylayout/%s", root, "qwerty.kl"); defaultKeymap = true; } status_t status = device->layoutMap->load(keylayoutFilename); if (status) { LOGE("Error %d loading key layout.", status); } // tell the world about the devname (the descriptive name) if (!mHaveFirstKeyboard && !defaultKeymap && strstr(name, "-keypad")) { // the built-in keyboard has a well-known device ID of 0, // this device better not go away. mHaveFirstKeyboard = true; mFirstKeyboardId = device->id; property_set("hw.keyboards.0.devname", name); } else { // ensure mFirstKeyboardId is set to -something-. if (mFirstKeyboardId == 0) { mFirstKeyboardId = device->id; } } char propName[100]; sprintf(propName, "hw.keyboards.%u.devname", device->id); property_set(propName, name); // 'Q' key support = cheap test of whether this is an alpha-capable kbd if (hasKeycodeLocked(device, AKEYCODE_Q)) { device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY; } // See if this device has a DPAD. if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) && hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) && hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) && hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) && hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) { device->classes |= INPUT_DEVICE_CLASS_DPAD; } // See if this device has a gamepad. for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) { if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) { device->classes |= INPUT_DEVICE_CLASS_GAMEPAD; break; } } LOGI("New keyboard: device->id=0x%x devname='%s' propName='%s' keylayout='%s'\n", device->id, name, propName, keylayoutFilename); } // If the device isn't recognized as something we handle, don't monitor it. if (device->classes == 0) { LOGV("Dropping device %s %p, id = %d\n", deviceName, device, devid); close(fd); delete device; return -1; } LOGI("New device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n", deviceName, name, device->id, mNumDevicesById, mFDCount, fd, device->classes); LOGV("Adding device %s %p at %d, id = %d, classes = 0x%x\n", deviceName, device, mFDCount, devid, device->classes); mDevicesById[devid].device = device; device->next = mOpeningDevices; mOpeningDevices = device; mDevices[mFDCount] = device; mFDCount++; return 0; }