static int r6040_rx(struct net_device *dev, int limit) { struct r6040_private *priv = netdev_priv(dev); struct r6040_descriptor *descptr = priv->rx_remove_ptr; struct sk_buff *skb_ptr, *new_skb; int count = 0; u16 err; /* Limit not reached and the descriptor belongs to the CPU */ while (count < limit && !(descptr->status & DSC_OWNER_MAC)) { /* Read the descriptor status */ err = descptr->status; /* Global error status set */ if (err & DSC_RX_ERR) { /* RX dribble */ if (err & DSC_RX_ERR_DRI) dev->stats.rx_frame_errors++; /* Buffer length exceeded */ if (err & DSC_RX_ERR_BUF) dev->stats.rx_length_errors++; /* Packet too long */ if (err & DSC_RX_ERR_LONG) dev->stats.rx_length_errors++; /* Packet < 64 bytes */ if (err & DSC_RX_ERR_RUNT) dev->stats.rx_length_errors++; /* CRC error */ if (err & DSC_RX_ERR_CRC) { spin_lock(&priv->lock); dev->stats.rx_crc_errors++; spin_unlock(&priv->lock); } goto next_descr; } /* Packet successfully received */ new_skb = netdev_alloc_skb(dev, MAX_BUF_SIZE); if (!new_skb) { dev->stats.rx_dropped++; goto next_descr; } skb_ptr = descptr->skb_ptr; skb_ptr->dev = priv->dev; /* Do not count the CRC */ skb_put(skb_ptr, descptr->len - 4); pci_unmap_single(priv->pdev, le32_to_cpu(descptr->buf), MAX_BUF_SIZE, PCI_DMA_FROMDEVICE); skb_ptr->protocol = eth_type_trans(skb_ptr, priv->dev); /* Send to upper layer */ netif_receive_skb(skb_ptr); dev->stats.rx_packets++; dev->stats.rx_bytes += descptr->len - 4; /* put new skb into descriptor */ descptr->skb_ptr = new_skb; descptr->buf = cpu_to_le32(pci_map_single(priv->pdev, descptr->skb_ptr->data, MAX_BUF_SIZE, PCI_DMA_FROMDEVICE)); next_descr: /* put the descriptor back to the MAC */ descptr->status = DSC_OWNER_MAC; descptr = descptr->vndescp; count++; } priv->rx_remove_ptr = descptr; return count; }
/* * Create an arp packet. If (dest_hw == NULL), we create a broadcast * message. */ struct sk_buff *arp_create(int type, int ptype, u32 dest_ip, struct net_device *dev, u32 src_ip, unsigned char *dest_hw, unsigned char *src_hw, unsigned char *target_hw) { struct sk_buff *skb; struct arphdr *arp; unsigned char *arp_ptr; /* * Allocate a buffer */ skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4) + LL_RESERVED_SPACE(dev), GFP_ATOMIC); if (skb == NULL) return NULL; skb_reserve(skb, LL_RESERVED_SPACE(dev)); skb->nh.raw = skb->data; arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4)); skb->dev = dev; skb->protocol = htons(ETH_P_ARP); if (src_hw == NULL) src_hw = dev->dev_addr; if (dest_hw == NULL) dest_hw = dev->broadcast; /* * Fill the device header for the ARP frame */ if (dev->hard_header && dev->hard_header(skb,dev,ptype,dest_hw,src_hw,skb->len) < 0) goto out; /* * Fill out the arp protocol part. * * The arp hardware type should match the device type, except for FDDI, * which (according to RFC 1390) should always equal 1 (Ethernet). */ /* * Exceptions everywhere. AX.25 uses the AX.25 PID value not the * DIX code for the protocol. Make these device structure fields. */ switch (dev->type) { default: arp->ar_hrd = htons(dev->type); arp->ar_pro = htons(ETH_P_IP); break; #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) case ARPHRD_AX25: arp->ar_hrd = htons(ARPHRD_AX25); arp->ar_pro = htons(AX25_P_IP); break; #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE) case ARPHRD_NETROM: arp->ar_hrd = htons(ARPHRD_NETROM); arp->ar_pro = htons(AX25_P_IP); break; #endif #endif #ifdef CONFIG_FDDI case ARPHRD_FDDI: arp->ar_hrd = htons(ARPHRD_ETHER); arp->ar_pro = htons(ETH_P_IP); break; #endif #ifdef CONFIG_TR case ARPHRD_IEEE802_TR: arp->ar_hrd = htons(ARPHRD_IEEE802); arp->ar_pro = htons(ETH_P_IP); break; #endif } arp->ar_hln = dev->addr_len; arp->ar_pln = 4; arp->ar_op = htons(type); arp_ptr=(unsigned char *)(arp+1); memcpy(arp_ptr, src_hw, dev->addr_len); arp_ptr+=dev->addr_len; memcpy(arp_ptr, &src_ip,4); arp_ptr+=4; if (target_hw != NULL) memcpy(arp_ptr, target_hw, dev->addr_len); else memset(arp_ptr, 0, dev->addr_len); arp_ptr+=dev->addr_len; memcpy(arp_ptr, &dest_ip, 4); return skb; out: kfree_skb(skb); return NULL; }
int capi_conn_req(const char * calledPN, struct sk_buff **skb, int proto) { ushort len; /* * length * AppInfoMask - 2 * BC0 - 3 * BC1 - 1 * Chan - 2 * Keypad - 1 * CPN - 1 * CPSA - 1 * CalledPN - 2 + strlen * CalledPSA - 1 * rest... - 4 * ---------------- * Total 18 + strlen */ len = 18 + strlen(calledPN); if (proto == ISDN_PROTO_L2_TRANS) len++; if ((*skb = dev_alloc_skb(len)) == NULL) { printk(KERN_WARNING "capi_conn_req: alloc_skb failed\n"); return -1; } /* InfoElmMask */ *((ushort*) skb_put(*skb, 2)) = AppInfoMask; if (proto == ISDN_PROTO_L2_TRANS) { /* Bearer Capability - Mandatory*/ *(skb_put(*skb, 1)) = 3; /* BC0.Length */ *(skb_put(*skb, 1)) = 0x80; /* Speech */ *(skb_put(*skb, 1)) = 0x10; /* Circuit Mode */ *(skb_put(*skb, 1)) = 0x23; /* A-law */ } else { /* Bearer Capability - Mandatory*/ *(skb_put(*skb, 1)) = 2; /* BC0.Length */ *(skb_put(*skb, 1)) = 0x88; /* Digital Information */ *(skb_put(*skb, 1)) = 0x90; /* BC0.Octect4 */ } /* Bearer Capability - Optional*/ *(skb_put(*skb, 1)) = 0; /* BC1.Length = 0 */ *(skb_put(*skb, 1)) = 1; /* ChannelID.Length = 1 */ *(skb_put(*skb, 1)) = 0x83; /* Basic Interface - Any Channel */ *(skb_put(*skb, 1)) = 0; /* Keypad.Length = 0 */ *(skb_put(*skb, 1)) = 0; /* CallingPN.Length = 0 */ *(skb_put(*skb, 1)) = 0; /* CallingPSA.Length = 0 */ /* Called Party Number */ *(skb_put(*skb, 1)) = strlen(calledPN) + 1; *(skb_put(*skb, 1)) = 0x81; memcpy(skb_put(*skb, strlen(calledPN)), calledPN, strlen(calledPN)); /* '#' */ *(skb_put(*skb, 1)) = 0; /* CalledPSA.Length = 0 */ /* LLC.Length = 0; */ /* HLC0.Length = 0; */ /* HLC1.Length = 0; */ /* UTUS.Length = 0; */ memset(skb_put(*skb, 4), 0, 4); return len; }
static void rx_complete (struct urb *urb) { struct sk_buff *skb = (struct sk_buff *) urb->context; struct skb_data *entry = (struct skb_data *) skb->cb; struct usbnet *dev = entry->dev; int urb_status = urb->status; skb_put (skb, urb->actual_length); entry->state = rx_done; entry->urb = NULL; switch (urb_status) { /* success */ case 0: if (skb->len < dev->net->hard_header_len) { entry->state = rx_cleanup; dev->net->stats.rx_errors++; dev->net->stats.rx_length_errors++; netif_dbg(dev, rx_err, dev->net, "rx length %d\n", skb->len); } break; /* stalls need manual reset. this is rare ... except that * when going through USB 2.0 TTs, unplug appears this way. * we avoid the highspeed version of the ETIMEDOUT/EILSEQ * storm, recovering as needed. */ case -EPIPE: dev->net->stats.rx_errors++; usbnet_defer_kevent (dev, EVENT_RX_HALT); // FALLTHROUGH /* software-driven interface shutdown */ case -ECONNRESET: /* async unlink */ case -ESHUTDOWN: /* hardware gone */ netif_dbg(dev, ifdown, dev->net, "rx shutdown, code %d\n", urb_status); goto block; /* we get controller i/o faults during khubd disconnect() delays. * throttle down resubmits, to avoid log floods; just temporarily, * so we still recover when the fault isn't a khubd delay. */ case -EPROTO: case -ETIME: case -EILSEQ: dev->net->stats.rx_errors++; if (!timer_pending (&dev->delay)) { mod_timer (&dev->delay, jiffies + THROTTLE_JIFFIES); netif_dbg(dev, link, dev->net, "rx throttle %d\n", urb_status); } block: entry->state = rx_cleanup; entry->urb = urb; urb = NULL; break; /* data overrun ... flush fifo? */ case -EOVERFLOW: dev->net->stats.rx_over_errors++; // FALLTHROUGH default: entry->state = rx_cleanup; dev->net->stats.rx_errors++; netif_dbg(dev, rx_err, dev->net, "rx status %d\n", urb_status); break; } defer_bh(dev, skb, &dev->rxq); if (urb) { if (netif_running (dev->net) && !test_bit (EVENT_RX_HALT, &dev->flags)) { rx_submit (dev, urb, GFP_ATOMIC); return; } usb_free_urb (urb); } netif_dbg(dev, rx_err, dev->net, "no read resubmitted\n"); }
static void fjn_rx(struct net_device *dev) { struct local_info_t *lp = (struct local_info_t *)dev->priv; ioaddr_t ioaddr = dev->base_addr; int boguscount = 10; /* 5 -> 10: by agy 19940922 */ DEBUG(4, "%s: in rx_packet(), rx_status %02x.\n", dev->name, inb(ioaddr + RX_STATUS)); while ((inb(ioaddr + RX_MODE) & F_BUF_EMP) == 0) { u_short status = inw(ioaddr + DATAPORT); DEBUG(4, "%s: Rxing packet mode %02x status %04x.\n", dev->name, inb(ioaddr + RX_MODE), status); #ifndef final_version if (status == 0) { outb(F_SKP_PKT, ioaddr + RX_SKIP); break; } #endif if ((status & 0xF0) != 0x20) { /* There was an error. */ lp->stats.rx_errors++; if (status & F_LEN_ERR) lp->stats.rx_length_errors++; if (status & F_ALG_ERR) lp->stats.rx_frame_errors++; if (status & F_CRC_ERR) lp->stats.rx_crc_errors++; if (status & F_OVR_FLO) lp->stats.rx_over_errors++; } else { u_short pkt_len = inw(ioaddr + DATAPORT); /* Malloc up new buffer. */ struct sk_buff *skb; if (pkt_len > 1550) { printk(KERN_NOTICE "%s: The FMV-18x claimed a very " "large packet, size %d.\n", dev->name, pkt_len); outb(F_SKP_PKT, ioaddr + RX_SKIP); lp->stats.rx_errors++; break; } skb = dev_alloc_skb(pkt_len+2); if (skb == NULL) { printk(KERN_NOTICE "%s: Memory squeeze, dropping " "packet (len %d).\n", dev->name, pkt_len); outb(F_SKP_PKT, ioaddr + RX_SKIP); lp->stats.rx_dropped++; break; } skb->dev = dev; skb_reserve(skb, 2); insw(ioaddr + DATAPORT, skb_put(skb, pkt_len), (pkt_len + 1) >> 1); skb->protocol = eth_type_trans(skb, dev); #ifdef PCMCIA_DEBUG if (pc_debug > 5) { int i; printk(KERN_DEBUG "%s: Rxed packet of length %d: ", dev->name, pkt_len); for (i = 0; i < 14; i++) printk(" %02x", skb->data[i]); printk(".\n"); } #endif netif_rx(skb); lp->stats.rx_packets++; lp->stats.rx_bytes += skb->len; } if (--boguscount <= 0) break; } /* If any worth-while packets have been received, dev_rint() has done a netif_wake_queue() for us and will work on them when we get to the bottom-half routine. */ /* if( lp->cardtype != TDK ) { int i; for (i = 0; i < 20; i++) { if ((inb(ioaddr + RX_MODE) & F_BUF_EMP) == F_BUF_EMP) break; (void)inw(ioaddr + DATAPORT); /+ dummy status read +/ outb(F_SKP_PKT, ioaddr + RX_SKIP); } if (i > 0) DEBUG(5, "%s: Exint Rx packet with mode %02x after " "%d ticks.\n", dev->name, inb(ioaddr + RX_MODE), i); } */ return; } /* fjn_rx */
static int __ip6_append_data(struct sock *sk, struct flowi6 *fl6, struct sk_buff_head *queue, struct inet_cork *cork, struct inet6_cork *v6_cork, struct page_frag *pfrag, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, unsigned int flags, int dontfrag) { struct sk_buff *skb, *skb_prev = NULL; unsigned int maxfraglen, fragheaderlen, mtu, orig_mtu; int exthdrlen = 0; int dst_exthdrlen = 0; int hh_len; int copy; int err; int offset = 0; __u8 tx_flags = 0; u32 tskey = 0; struct rt6_info *rt = (struct rt6_info *)cork->dst; struct ipv6_txoptions *opt = v6_cork->opt; int csummode = CHECKSUM_NONE; skb = skb_peek_tail(queue); if (!skb) { exthdrlen = opt ? opt->opt_flen : 0; dst_exthdrlen = rt->dst.header_len - rt->rt6i_nfheader_len; } mtu = cork->fragsize; orig_mtu = mtu; hh_len = LL_RESERVED_SPACE(rt->dst.dev); fragheaderlen = sizeof(struct ipv6hdr) + rt->rt6i_nfheader_len + (opt ? opt->opt_nflen : 0); maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); if (mtu <= sizeof(struct ipv6hdr) + IPV6_MAXPLEN) { unsigned int maxnonfragsize, headersize; headersize = sizeof(struct ipv6hdr) + (opt ? opt->opt_flen + opt->opt_nflen : 0) + (dst_allfrag(&rt->dst) ? sizeof(struct frag_hdr) : 0) + rt->rt6i_nfheader_len; if (ip6_sk_ignore_df(sk)) maxnonfragsize = sizeof(struct ipv6hdr) + IPV6_MAXPLEN; else maxnonfragsize = mtu; /* dontfrag active */ if ((cork->length + length > mtu - headersize) && dontfrag && (sk->sk_protocol == IPPROTO_UDP || sk->sk_protocol == IPPROTO_RAW)) { ipv6_local_rxpmtu(sk, fl6, mtu - headersize + sizeof(struct ipv6hdr)); goto emsgsize; } if (cork->length + length > maxnonfragsize - headersize) { emsgsize: ipv6_local_error(sk, EMSGSIZE, fl6, mtu - headersize + sizeof(struct ipv6hdr)); return -EMSGSIZE; } } if (sk->sk_type == SOCK_DGRAM || sk->sk_type == SOCK_RAW) { sock_tx_timestamp(sk, &tx_flags); if (tx_flags & SKBTX_ANY_SW_TSTAMP && sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) tskey = sk->sk_tskey++; } /* If this is the first and only packet and device * supports checksum offloading, let's use it. * Use transhdrlen, same as IPv4, because partial * sums only work when transhdrlen is set. */ if (transhdrlen && sk->sk_protocol == IPPROTO_UDP && length + fragheaderlen < mtu && rt->dst.dev->features & NETIF_F_V6_CSUM && !exthdrlen) csummode = CHECKSUM_PARTIAL; /* * Let's try using as much space as possible. * Use MTU if total length of the message fits into the MTU. * Otherwise, we need to reserve fragment header and * fragment alignment (= 8-15 octects, in total). * * Note that we may need to "move" the data from the tail of * of the buffer to the new fragment when we split * the message. * * FIXME: It may be fragmented into multiple chunks * at once if non-fragmentable extension headers * are too large. * --yoshfuji */ cork->length += length; if (((length > mtu) || (skb && skb_is_gso(skb))) && (sk->sk_protocol == IPPROTO_UDP) && (rt->dst.dev->features & NETIF_F_UFO) && (sk->sk_type == SOCK_DGRAM)) { err = ip6_ufo_append_data(sk, queue, getfrag, from, length, hh_len, fragheaderlen, transhdrlen, mtu, flags, fl6); if (err) goto error; return 0; } if (!skb) goto alloc_new_skb; while (length > 0) { /* Check if the remaining data fits into current packet. */ copy = (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - skb->len; if (copy < length) copy = maxfraglen - skb->len; if (copy <= 0) { char *data; unsigned int datalen; unsigned int fraglen; unsigned int fraggap; unsigned int alloclen; alloc_new_skb: /* There's no room in the current skb */ if (skb) fraggap = skb->len - maxfraglen; else fraggap = 0; /* update mtu and maxfraglen if necessary */ if (!skb || !skb_prev) ip6_append_data_mtu(&mtu, &maxfraglen, fragheaderlen, skb, rt, orig_mtu); skb_prev = skb; /* * If remaining data exceeds the mtu, * we know we need more fragment(s). */ datalen = length + fraggap; if (datalen > (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - fragheaderlen) datalen = maxfraglen - fragheaderlen - rt->dst.trailer_len; if ((flags & MSG_MORE) && !(rt->dst.dev->features&NETIF_F_SG)) alloclen = mtu; else alloclen = datalen + fragheaderlen; alloclen += dst_exthdrlen; if (datalen != length + fraggap) { /* * this is not the last fragment, the trailer * space is regarded as data space. */ datalen += rt->dst.trailer_len; } alloclen += rt->dst.trailer_len; fraglen = datalen + fragheaderlen; /* * We just reserve space for fragment header. * Note: this may be overallocation if the message * (without MSG_MORE) fits into the MTU. */ alloclen += sizeof(struct frag_hdr); if (transhdrlen) { skb = sock_alloc_send_skb(sk, alloclen + hh_len, (flags & MSG_DONTWAIT), &err); } else { skb = NULL; if (atomic_read(&sk->sk_wmem_alloc) <= 2 * sk->sk_sndbuf) skb = sock_wmalloc(sk, alloclen + hh_len, 1, sk->sk_allocation); if (unlikely(!skb)) err = -ENOBUFS; } if (!skb) goto error; /* * Fill in the control structures */ skb->protocol = htons(ETH_P_IPV6); skb->ip_summed = csummode; skb->csum = 0; /* reserve for fragmentation and ipsec header */ skb_reserve(skb, hh_len + sizeof(struct frag_hdr) + dst_exthdrlen); /* Only the initial fragment is time stamped */ skb_shinfo(skb)->tx_flags = tx_flags; tx_flags = 0; skb_shinfo(skb)->tskey = tskey; tskey = 0; /* * Find where to start putting bytes */ data = skb_put(skb, fraglen); skb_set_network_header(skb, exthdrlen); data += fragheaderlen; skb->transport_header = (skb->network_header + fragheaderlen); if (fraggap) { skb->csum = skb_copy_and_csum_bits( skb_prev, maxfraglen, data + transhdrlen, fraggap, 0); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); data += fraggap; pskb_trim_unique(skb_prev, maxfraglen); } copy = datalen - transhdrlen - fraggap; if (copy < 0) { err = -EINVAL; kfree_skb(skb); goto error; } else if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { err = -EFAULT; kfree_skb(skb); goto error; } offset += copy; length -= datalen - fraggap; transhdrlen = 0; exthdrlen = 0; dst_exthdrlen = 0; /* * Put the packet on the pending queue */ __skb_queue_tail(queue, skb); continue; } if (copy > length) copy = length; if (!(rt->dst.dev->features&NETIF_F_SG)) { unsigned int off; off = skb->len; if (getfrag(from, skb_put(skb, copy), offset, copy, off, skb) < 0) { __skb_trim(skb, off); err = -EFAULT; goto error; } } else { int i = skb_shinfo(skb)->nr_frags; err = -ENOMEM; if (!sk_page_frag_refill(sk, pfrag)) goto error; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { err = -EMSGSIZE; if (i == MAX_SKB_FRAGS) goto error; __skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, 0); skb_shinfo(skb)->nr_frags = ++i; get_page(pfrag->page); } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (getfrag(from, page_address(pfrag->page) + pfrag->offset, offset, copy, skb->len, skb) < 0) goto error_efault; pfrag->offset += copy; skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); skb->len += copy; skb->data_len += copy; skb->truesize += copy; atomic_add(copy, &sk->sk_wmem_alloc); } offset += copy; length -= copy; } return 0; error_efault: err = -EFAULT; error: cork->length -= length; IP6_INC_STATS(sock_net(sk), rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); return err; }
static int bgmac_dma_rx_read(struct bgmac *bgmac, struct bgmac_dma_ring *ring, int weight) { u32 end_slot; int handled = 0; end_slot = bgmac_read(bgmac, ring->mmio_base + BGMAC_DMA_RX_STATUS); end_slot &= BGMAC_DMA_RX_STATDPTR; end_slot -= ring->index_base; end_slot &= BGMAC_DMA_RX_STATDPTR; end_slot /= sizeof(struct bgmac_dma_desc); while (ring->start != end_slot) { struct device *dma_dev = bgmac->core->dma_dev; struct bgmac_slot_info *slot = &ring->slots[ring->start]; struct bgmac_rx_header *rx = slot->buf + BGMAC_RX_BUF_OFFSET; struct sk_buff *skb; void *buf = slot->buf; dma_addr_t dma_addr = slot->dma_addr; u16 len, flags; do { /* Prepare new skb as replacement */ if (bgmac_dma_rx_skb_for_slot(bgmac, slot)) { bgmac_dma_rx_poison_buf(dma_dev, slot); break; } /* Unmap buffer to make it accessible to the CPU */ dma_unmap_single(dma_dev, dma_addr, BGMAC_RX_BUF_SIZE, DMA_FROM_DEVICE); /* Get info from the header */ len = le16_to_cpu(rx->len); flags = le16_to_cpu(rx->flags); /* Check for poison and drop or pass the packet */ if (len == 0xdead && flags == 0xbeef) { bgmac_err(bgmac, "Found poisoned packet at slot %d, DMA issue!\n", ring->start); put_page(virt_to_head_page(buf)); break; } if (len > BGMAC_RX_ALLOC_SIZE) { bgmac_err(bgmac, "Found oversized packet at slot %d, DMA issue!\n", ring->start); put_page(virt_to_head_page(buf)); break; } /* Omit CRC. */ len -= ETH_FCS_LEN; skb = build_skb(buf, BGMAC_RX_ALLOC_SIZE); skb_put(skb, BGMAC_RX_FRAME_OFFSET + BGMAC_RX_BUF_OFFSET + len); skb_pull(skb, BGMAC_RX_FRAME_OFFSET + BGMAC_RX_BUF_OFFSET); skb_checksum_none_assert(skb); skb->protocol = eth_type_trans(skb, bgmac->net_dev); napi_gro_receive(&bgmac->napi, skb); handled++; } while (0); bgmac_dma_rx_setup_desc(bgmac, ring, ring->start); if (++ring->start >= BGMAC_RX_RING_SLOTS) ring->start = 0; if (handled >= weight) /* Should never be greater */ break; } bgmac_dma_rx_update_index(bgmac, ring); return handled; }
static int bfusb_send_frame(struct sk_buff *skb) { struct hci_dev *hdev = (struct hci_dev *) skb->dev; struct bfusb_data *data; struct sk_buff *nskb; unsigned char buf[3]; int sent = 0, size, count; BT_DBG("hdev %p skb %p type %d len %d", hdev, skb, bt_cb(skb)->pkt_type, skb->len); if (!hdev) { BT_ERR("Frame for unknown HCI device (hdev=NULL)"); return -ENODEV; } if (!test_bit(HCI_RUNNING, &hdev->flags)) return -EBUSY; data = hdev->driver_data; switch (bt_cb(skb)->pkt_type) { case HCI_COMMAND_PKT: hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: hdev->stat.sco_tx++; break; }; /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1); count = skb->len; /* Max HCI frame size seems to be 1511 + 1 */ nskb = bt_skb_alloc(count + 32, GFP_ATOMIC); if (!nskb) { BT_ERR("Can't allocate memory for new packet"); return -ENOMEM; } nskb->dev = (void *) data; while (count) { size = min_t(uint, count, BFUSB_MAX_BLOCK_SIZE); buf[0] = 0xc1 | ((sent == 0) ? 0x04 : 0) | ((count == size) ? 0x08 : 0); buf[1] = 0x00; buf[2] = (size == BFUSB_MAX_BLOCK_SIZE) ? 0 : size; memcpy(skb_put(nskb, 3), buf, 3); skb_copy_from_linear_data_offset(skb, sent, skb_put(nskb, size), size); sent += size; count -= size; } /* Don't send frame with multiple size of bulk max packet */ if ((nskb->len % data->bulk_pkt_size) == 0) { buf[0] = 0xdd; buf[1] = 0x00; memcpy(skb_put(nskb, 2), buf, 2); } read_lock(&data->lock); skb_queue_tail(&data->transmit_q, nskb); bfusb_tx_wakeup(data); read_unlock(&data->lock); kfree_skb(skb); return 0; }
/* Send RST reply */ static void send_reset(struct net *net, struct sk_buff *oldskb) { struct sk_buff *nskb; struct tcphdr otcph, *tcph; unsigned int otcplen, hh_len; int tcphoff, needs_ack; const struct ipv6hdr *oip6h = ipv6_hdr(oldskb); struct ipv6hdr *ip6h; #define DEFAULT_TOS_VALUE 0x0U const __u8 tclass = DEFAULT_TOS_VALUE; struct dst_entry *dst = NULL; u8 proto; __be16 frag_off; struct flowi6 fl6; if ((!(ipv6_addr_type(&oip6h->saddr) & IPV6_ADDR_UNICAST)) || (!(ipv6_addr_type(&oip6h->daddr) & IPV6_ADDR_UNICAST))) { pr_debug("addr is not unicast.\n"); return; } proto = oip6h->nexthdr; tcphoff = ipv6_skip_exthdr(oldskb, ((u8*)(oip6h+1) - oldskb->data), &proto, &frag_off); if ((tcphoff < 0) || (tcphoff > oldskb->len)) { pr_debug("Cannot get TCP header.\n"); return; } otcplen = oldskb->len - tcphoff; /* IP header checks: fragment, too short. */ if (proto != IPPROTO_TCP || otcplen < sizeof(struct tcphdr)) { pr_debug("proto(%d) != IPPROTO_TCP, " "or too short. otcplen = %d\n", proto, otcplen); return; } if (skb_copy_bits(oldskb, tcphoff, &otcph, sizeof(struct tcphdr))) BUG(); /* No RST for RST. */ if (otcph.rst) { pr_debug("RST is set\n"); return; } /* Check checksum. */ if (csum_ipv6_magic(&oip6h->saddr, &oip6h->daddr, otcplen, IPPROTO_TCP, skb_checksum(oldskb, tcphoff, otcplen, 0))) { pr_debug("TCP checksum is invalid\n"); return; } memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_proto = IPPROTO_TCP; fl6.saddr = oip6h->daddr; fl6.daddr = oip6h->saddr; fl6.fl6_sport = otcph.dest; fl6.fl6_dport = otcph.source; security_skb_classify_flow(oldskb, flowi6_to_flowi(&fl6)); dst = ip6_route_output(net, NULL, &fl6); if (dst == NULL || dst->error) { dst_release(dst); return; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) return; hh_len = (dst->dev->hard_header_len + 15)&~15; nskb = alloc_skb(hh_len + 15 + dst->header_len + sizeof(struct ipv6hdr) + sizeof(struct tcphdr) + dst->trailer_len, GFP_ATOMIC); if (!nskb) { net_dbg_ratelimited("cannot alloc skb\n"); dst_release(dst); return; } skb_dst_set(nskb, dst); skb_reserve(nskb, hh_len + dst->header_len); skb_put(nskb, sizeof(struct ipv6hdr)); skb_reset_network_header(nskb); ip6h = ipv6_hdr(nskb); ip6_flow_hdr(ip6h, tclass, 0); ip6h->hop_limit = ip6_dst_hoplimit(dst); ip6h->nexthdr = IPPROTO_TCP; ip6h->saddr = oip6h->daddr; ip6h->daddr = oip6h->saddr; skb_reset_transport_header(nskb); tcph = (struct tcphdr *)skb_put(nskb, sizeof(struct tcphdr)); /* Truncate to length (no data) */ tcph->doff = sizeof(struct tcphdr)/4; tcph->source = otcph.dest; tcph->dest = otcph.source; if (otcph.ack) { needs_ack = 0; tcph->seq = otcph.ack_seq; tcph->ack_seq = 0; } else { needs_ack = 1; tcph->ack_seq = htonl(ntohl(otcph.seq) + otcph.syn + otcph.fin + otcplen - (otcph.doff<<2)); tcph->seq = 0; } /* Reset flags */ ((u_int8_t *)tcph)[13] = 0; tcph->rst = 1; tcph->ack = needs_ack; tcph->window = 0; tcph->urg_ptr = 0; tcph->check = 0; /* Adjust TCP checksum */ tcph->check = csum_ipv6_magic(&ipv6_hdr(nskb)->saddr, &ipv6_hdr(nskb)->daddr, sizeof(struct tcphdr), IPPROTO_TCP, csum_partial(tcph, sizeof(struct tcphdr), 0)); nf_ct_attach(nskb, oldskb); ip6_local_out(nskb); }
static inline int bfusb_recv_block(struct bfusb_data *data, int hdr, unsigned char *buf, int len) { BT_DBG("bfusb %p hdr 0x%02x data %p len %d", data, hdr, buf, len); if (hdr & 0x10) { BT_ERR("%s error in block", data->hdev->name); kfree_skb(data->reassembly); data->reassembly = NULL; return -EIO; } if (hdr & 0x04) { struct sk_buff *skb; unsigned char pkt_type; int pkt_len = 0; if (data->reassembly) { BT_ERR("%s unexpected start block", data->hdev->name); kfree_skb(data->reassembly); data->reassembly = NULL; } if (len < 1) { BT_ERR("%s no packet type found", data->hdev->name); return -EPROTO; } pkt_type = *buf++; len--; switch (pkt_type) { case HCI_EVENT_PKT: if (len >= HCI_EVENT_HDR_SIZE) { struct hci_event_hdr *hdr = (struct hci_event_hdr *) buf; pkt_len = HCI_EVENT_HDR_SIZE + hdr->plen; } else { BT_ERR("%s event block is too short", data->hdev->name); return -EILSEQ; } break; case HCI_ACLDATA_PKT: if (len >= HCI_ACL_HDR_SIZE) { struct hci_acl_hdr *hdr = (struct hci_acl_hdr *) buf; pkt_len = HCI_ACL_HDR_SIZE + __le16_to_cpu(hdr->dlen); } else { BT_ERR("%s data block is too short", data->hdev->name); return -EILSEQ; } break; case HCI_SCODATA_PKT: if (len >= HCI_SCO_HDR_SIZE) { struct hci_sco_hdr *hdr = (struct hci_sco_hdr *) buf; pkt_len = HCI_SCO_HDR_SIZE + hdr->dlen; } else { BT_ERR("%s audio block is too short", data->hdev->name); return -EILSEQ; } break; } skb = bt_skb_alloc(pkt_len, GFP_ATOMIC); if (!skb) { BT_ERR("%s no memory for the packet", data->hdev->name); return -ENOMEM; } skb->dev = (void *) data->hdev; bt_cb(skb)->pkt_type = pkt_type; data->reassembly = skb; } else { if (!data->reassembly) { BT_ERR("%s unexpected continuation block", data->hdev->name); return -EIO; } } if (len > 0) memcpy(skb_put(data->reassembly, len), buf, len); if (hdr & 0x08) { hci_recv_frame(data->reassembly); data->reassembly = NULL; } return 0; }
static void bfusb_rx_complete(struct urb *urb) { struct sk_buff *skb = (struct sk_buff *) urb->context; struct bfusb_data *data = (struct bfusb_data *) skb->dev; unsigned char *buf = urb->transfer_buffer; int count = urb->actual_length; int err, hdr, len; BT_DBG("bfusb %p urb %p skb %p len %d", data, urb, skb, skb->len); read_lock(&data->lock); if (!test_bit(HCI_RUNNING, &data->hdev->flags)) goto unlock; if (urb->status || !count) goto resubmit; data->hdev->stat.byte_rx += count; skb_put(skb, count); while (count) { hdr = buf[0] | (buf[1] << 8); if (hdr & 0x4000) { len = 0; count -= 2; buf += 2; } else { len = (buf[2] == 0) ? 256 : buf[2]; count -= 3; buf += 3; } if (count < len) { BT_ERR("%s block extends over URB buffer ranges", data->hdev->name); } if ((hdr & 0xe1) == 0xc1) bfusb_recv_block(data, hdr, buf, len); count -= len; buf += len; } skb_unlink(skb, &data->pending_q); kfree_skb(skb); bfusb_rx_submit(data, urb); read_unlock(&data->lock); return; resubmit: urb->dev = data->udev; err = usb_submit_urb(urb, GFP_ATOMIC); if (err) { BT_ERR("%s bulk resubmit failed urb %p err %d", data->hdev->name, urb, err); } unlock: read_unlock(&data->lock); }
/* * Receive a message with payloads from the USB bus into an skb * * @i2400mu: USB device descriptor * @rx_skb: skb where to place the received message * * Deals with all the USB-specifics of receiving, dynamically * increasing the buffer size if so needed. Returns the payload in the * skb, ready to process. On a zero-length packet, we retry. * * On soft USB errors, we retry (until they become too frequent and * then are promoted to hard); on hard USB errors, we reset the * device. On other errors (skb realloacation, we just drop it and * hope for the next invocation to solve it). * * Returns: pointer to the skb if ok, ERR_PTR on error. * NOTE: this function might realloc the skb (if it is too small), * so always update with the one returned. * ERR_PTR() is < 0 on error. * Will return NULL if it cannot reallocate -- this can be * considered a transient retryable error. */ static struct sk_buff *i2400mu_rx(struct i2400mu *i2400mu, struct sk_buff *rx_skb) { int result = 0; struct device *dev = &i2400mu->usb_iface->dev; int usb_pipe, read_size, rx_size, do_autopm; struct usb_endpoint_descriptor *epd; const size_t max_pkt_size = 512; d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu); do_autopm = atomic_read(&i2400mu->do_autopm); result = do_autopm ? usb_autopm_get_interface(i2400mu->usb_iface) : 0; if (result < 0) { dev_err(dev, "RX: can't get autopm: %d\n", result); do_autopm = 0; } epd = usb_get_epd(i2400mu->usb_iface, i2400mu->endpoint_cfg.bulk_in); usb_pipe = usb_rcvbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress); retry: rx_size = skb_end_pointer(rx_skb) - rx_skb->data - rx_skb->len; if (unlikely(rx_size % max_pkt_size == 0)) { rx_size -= 8; d_printf(1, dev, "RX: rx_size adapted to %d [-8]\n", rx_size); } result = usb_bulk_msg( i2400mu->usb_dev, usb_pipe, rx_skb->data + rx_skb->len, rx_size, &read_size, 200); usb_mark_last_busy(i2400mu->usb_dev); switch (result) { case 0: if (read_size == 0) goto retry; /* ZLP, just resubmit */ skb_put(rx_skb, read_size); break; case -EPIPE: /* * Stall -- maybe the device is choking with our * requests. Clear it and give it some time. If they * happen to often, it might be another symptom, so we * reset. * * No error handling for usb_clear_halt(0; if it * works, the retry works; if it fails, this switch * does the error handling for us. */ if (edc_inc(&i2400mu->urb_edc, 10 * EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) { dev_err(dev, "BM-CMD: too many stalls in " "URB; resetting device\n"); goto do_reset; } usb_clear_halt(i2400mu->usb_dev, usb_pipe); msleep(10); /* give the device some time */ goto retry; case -EINVAL: /* while removing driver */ case -ENODEV: /* dev disconnect ... */ case -ENOENT: /* just ignore it */ case -ESHUTDOWN: case -ECONNRESET: break; case -EOVERFLOW: { /* too small, reallocate */ struct sk_buff *new_skb; rx_size = i2400mu_rx_size_grow(i2400mu); if (rx_size <= (1 << 16)) /* cap it */ i2400mu->rx_size = rx_size; else if (printk_ratelimit()) { dev_err(dev, "BUG? rx_size up to %d\n", rx_size); result = -EINVAL; goto out; } skb_put(rx_skb, read_size); new_skb = skb_copy_expand(rx_skb, 0, rx_size - rx_skb->len, GFP_KERNEL); if (new_skb == NULL) { if (printk_ratelimit()) dev_err(dev, "RX: Can't reallocate skb to %d; " "RX dropped\n", rx_size); kfree_skb(rx_skb); rx_skb = NULL; goto out; /* drop it...*/ } kfree_skb(rx_skb); rx_skb = new_skb; i2400mu->rx_size_cnt = 0; i2400mu->rx_size_acc = i2400mu->rx_size; d_printf(1, dev, "RX: size changed to %d, received %d, " "copied %d, capacity %ld\n", rx_size, read_size, rx_skb->len, (long) (skb_end_pointer(new_skb) - new_skb->head)); goto retry; } /* In most cases, it happens due to the hardware scheduling a * read when there was no data - unfortunately, we have no way * to tell this timeout from a USB timeout. So we just ignore * it. */ case -ETIMEDOUT: dev_err(dev, "RX: timeout: %d\n", result); result = 0; break; default: /* Any error */ if (edc_inc(&i2400mu->urb_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) goto error_reset; dev_err(dev, "RX: error receiving URB: %d, retrying\n", result); goto retry; } out: if (do_autopm) usb_autopm_put_interface(i2400mu->usb_iface); d_fnend(4, dev, "(i2400mu %p) = %p\n", i2400mu, rx_skb); return rx_skb; error_reset: dev_err(dev, "RX: maximum errors in URB exceeded; " "resetting device\n"); do_reset: usb_queue_reset_device(i2400mu->usb_iface); rx_skb = ERR_PTR(result); goto out; }
static inline void brf6150_rx(struct brf6150_info *info) { u8 byte; NBT_DBG_TRANSFER("rx_tasklet woke up\ndata "); while (brf6150_inb(info, UART_LSR) & UART_LSR_DR) { if (info->rx_skb == NULL) { info->rx_skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC); if (!info->rx_skb) { printk(KERN_WARNING "brf6150: Can't allocate memory for new packet\n"); return; } info->rx_state = WAIT_FOR_PKT_TYPE; info->rx_skb->dev = (void *)info->hdev; brf6150_disable_pm_rx(info); clk_enable(info->uart_ck); } byte = brf6150_inb(info, UART_RX); if (info->garbage_bytes) { info->garbage_bytes--; info->hdev->stat.err_rx++; continue; } info->hdev->stat.byte_rx++; NBT_DBG_TRANSFER_NF("0x%.2x ", byte); switch (info->rx_state) { case WAIT_FOR_PKT_TYPE: bt_cb(info->rx_skb)->pkt_type = byte; info->rx_count = brf6150_get_hdr_len(byte); if (info->rx_count >= 0) { info->rx_state = WAIT_FOR_HEADER; } else { info->hdev->stat.err_rx++; kfree_skb(info->rx_skb); info->rx_skb = NULL; clk_disable(info->uart_ck); } break; case WAIT_FOR_HEADER: info->rx_count--; *skb_put(info->rx_skb, 1) = byte; if (info->rx_count == 0) { info->rx_count = brf6150_get_data_len(info, info->rx_skb); if (info->rx_count > skb_tailroom(info->rx_skb)) { printk(KERN_WARNING "brf6150: Frame is %ld bytes too long.\n", info->rx_count - skb_tailroom(info->rx_skb)); info->rx_skb = NULL; info->garbage_bytes = info->rx_count - skb_tailroom(info->rx_skb); clk_disable(info->uart_ck); break; } info->rx_state = WAIT_FOR_DATA; if (bt_cb(info->rx_skb)->pkt_type == H4_NEG_PKT) { brf6150_negotiation_packet(info, info->rx_skb); info->rx_skb = NULL; clk_disable(info->uart_ck); return; } if (bt_cb(info->rx_skb)->pkt_type == H4_ALIVE_PKT) { brf6150_alive_packet(info, info->rx_skb); info->rx_skb = NULL; clk_disable(info->uart_ck); return; } } break; case WAIT_FOR_DATA: info->rx_count--; *skb_put(info->rx_skb, 1) = byte; if (info->rx_count == 0) { brf6150_recv_frame(info, info->rx_skb); info->rx_skb = NULL; clk_disable(info->uart_ck); } break; default: WARN_ON(1); break; } } NBT_DBG_TRANSFER_NF("\n"); }
static int vnet_start_xmit(struct sk_buff *skb, struct net_device *net) { struct pdp_info *dev = (struct pdp_info *)net->ml_priv; #ifdef USE_LOOPBACK_PING int ret; struct sk_buff *skb2; struct icmphdr *icmph; struct iphdr *iph; #endif DPRINTK(2, "BEGIN\n"); #ifdef USE_LOOPBACK_PING dev->vn_dev.stats.tx_bytes += skb->len; dev->vn_dev.stats.tx_packets++; skb2 = alloc_skb(skb->len, GFP_ATOMIC); if (skb2 == NULL) { DPRINTK(1, "alloc_skb() failed\n"); dev_kfree_skb_any(skb); return -ENOMEM; } memcpy(skb2->data, skb->data, skb->len); skb_put(skb2, skb->len); dev_kfree_skb_any(skb); icmph = (struct icmphdr *)(skb2->data + sizeof(struct iphdr)); iph = (struct iphdr *)skb2->data; icmph->type = __constant_htons(ICMP_ECHOREPLY); ret = iph->daddr; iph->daddr = iph->saddr; iph->saddr = ret; iph->check = 0; iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); skb2->dev = net; skb2->protocol = __constant_htons(ETH_P_IP); netif_rx(skb2); dev->vn_dev.stats.rx_packets++; dev->vn_dev.stats.rx_bytes += skb->len; #else #if 0 if (vnet_start_xmit_flag != 0) { if (vnet_start_xmit_count > 100000) { vnet_start_xmit_flag = 0; DPRINTK(1, "vnet_start_xmit_count exceed.. clear vnet_start_xmit_flag \n"); } EPRINTK("vnet_start_xmit() return -EAGAIN \n"); vnet_start_xmit_count++; return -EAGAIN; } vnet_start_xmit_count = 0; vnet_start_xmit_flag = 1; #endif workqueue_data = (unsigned long)skb; PREPARE_WORK(&dev->vn_dev.xmit_task,vnet_defer_xmit); schedule_work(&dev->vn_dev.xmit_task); netif_stop_queue(net); #endif DPRINTK(2, "END\n"); return 0; }
static int mesh_path_sel_frame_tx(enum mpath_frame_type action, u8 flags, const u8 *orig_addr, u32 orig_sn, u8 target_flags, const u8 *target, u32 target_sn, const u8 *da, u8 hop_count, u8 ttl, u32 lifetime, u32 metric, u32 preq_id, struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos, ie_len; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.mesh_action); skb = dev_alloc_skb(local->tx_headroom + hdr_len + 2 + 37); /* max HWMP IE */ if (!skb) return -1; skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); /* BSSID == SA */ memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_MESH_ACTION; mgmt->u.action.u.mesh_action.action_code = WLAN_MESH_ACTION_HWMP_PATH_SELECTION; switch (action) { case MPATH_PREQ: mhwmp_dbg(sdata, "sending PREQ to %pM\n", target); ie_len = 37; pos = skb_put(skb, 2 + ie_len); *pos++ = WLAN_EID_PREQ; break; case MPATH_PREP: mhwmp_dbg(sdata, "sending PREP to %pM\n", orig_addr); ie_len = 31; pos = skb_put(skb, 2 + ie_len); *pos++ = WLAN_EID_PREP; break; case MPATH_RANN: mhwmp_dbg(sdata, "sending RANN from %pM\n", orig_addr); ie_len = sizeof(struct ieee80211_rann_ie); pos = skb_put(skb, 2 + ie_len); *pos++ = WLAN_EID_RANN; break; default: kfree_skb(skb); return -ENOTSUPP; } *pos++ = ie_len; *pos++ = flags; *pos++ = hop_count; *pos++ = ttl; if (action == MPATH_PREP) { memcpy(pos, target, ETH_ALEN); pos += ETH_ALEN; put_unaligned_le32(target_sn, pos); pos += 4; } else { if (action == MPATH_PREQ) { put_unaligned_le32(preq_id, pos); pos += 4; } memcpy(pos, orig_addr, ETH_ALEN); pos += ETH_ALEN; put_unaligned_le32(orig_sn, pos); pos += 4; } put_unaligned_le32(lifetime, pos); /* interval for RANN */ pos += 4; put_unaligned_le32(metric, pos); pos += 4; if (action == MPATH_PREQ) { *pos++ = 1; /* destination count */ *pos++ = target_flags; memcpy(pos, target, ETH_ALEN); pos += ETH_ALEN; put_unaligned_le32(target_sn, pos); pos += 4; } else if (action == MPATH_PREP) { memcpy(pos, orig_addr, ETH_ALEN); pos += ETH_ALEN; put_unaligned_le32(orig_sn, pos); pos += 4; } ieee80211_tx_skb(sdata, skb); return 0; }
/* During a receive, the cur_rx points to the current incoming buffer. * When we update through the ring, if the next incoming buffer has * not been given to the system, we just set the empty indicator, * effectively tossing the packet. */ static int fec_enet_rx(struct net_device *ndev, int budget) { struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); struct bufdesc *bdp; unsigned short status; struct sk_buff *skb; ushort pkt_len; __u8 *data; int pkt_received = 0; #ifdef CONFIG_M532x flush_cache_all(); #endif /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = fep->cur_rx; while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { if (pkt_received >= budget) break; pkt_received++; /* Since we have allocated space to hold a complete frame, * the last indicator should be set. */ if ((status & BD_ENET_RX_LAST) == 0) printk("FEC ENET: rcv is not +last\n"); if (!fep->opened) goto rx_processing_done; /* Check for errors. */ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { ndev->stats.rx_errors++; if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { /* Frame too long or too short. */ ndev->stats.rx_length_errors++; } if (status & BD_ENET_RX_NO) /* Frame alignment */ ndev->stats.rx_frame_errors++; if (status & BD_ENET_RX_CR) /* CRC Error */ ndev->stats.rx_crc_errors++; if (status & BD_ENET_RX_OV) /* FIFO overrun */ ndev->stats.rx_fifo_errors++; } /* Report late collisions as a frame error. * On this error, the BD is closed, but we don't know what we * have in the buffer. So, just drop this frame on the floor. */ if (status & BD_ENET_RX_CL) { ndev->stats.rx_errors++; ndev->stats.rx_frame_errors++; goto rx_processing_done; } /* Process the incoming frame. */ ndev->stats.rx_packets++; pkt_len = bdp->cbd_datlen; ndev->stats.rx_bytes += pkt_len; data = (__u8*)__va(bdp->cbd_bufaddr); dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE); if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) swap_buffer(data, pkt_len); /* This does 16 byte alignment, exactly what we need. * The packet length includes FCS, but we don't want to * include that when passing upstream as it messes up * bridging applications. */ skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN); if (unlikely(!skb)) { printk("%s: Memory squeeze, dropping packet.\n", ndev->name); ndev->stats.rx_dropped++; } else { skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, pkt_len - 4); /* Make room */ skb_copy_to_linear_data(skb, data, pkt_len - 4); skb->protocol = eth_type_trans(skb, ndev); /* Get receive timestamp from the skb */ if (fep->hwts_rx_en && fep->bufdesc_ex) { struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); unsigned long flags; struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; memset(shhwtstamps, 0, sizeof(*shhwtstamps)); spin_lock_irqsave(&fep->tmreg_lock, flags); shhwtstamps->hwtstamp = ns_to_ktime( timecounter_cyc2time(&fep->tc, ebdp->ts)); spin_unlock_irqrestore(&fep->tmreg_lock, flags); } if (!skb_defer_rx_timestamp(skb)) napi_gro_receive(&fep->napi, skb); } bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data, FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE); rx_processing_done: /* Clear the status flags for this buffer */ status &= ~BD_ENET_RX_STATS; /* Mark the buffer empty */ status |= BD_ENET_RX_EMPTY; bdp->cbd_sc = status; if (fep->bufdesc_ex) { struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ebdp->cbd_esc = BD_ENET_RX_INT; ebdp->cbd_prot = 0; ebdp->cbd_bdu = 0; } /* Update BD pointer to next entry */ if (status & BD_ENET_RX_WRAP) bdp = fep->rx_bd_base; else bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex); /* Doing this here will keep the FEC running while we process * incoming frames. On a heavily loaded network, we should be * able to keep up at the expense of system resources. */ writel(0, fep->hwp + FEC_R_DES_ACTIVE); } fep->cur_rx = bdp; return pkt_received; }
static struct sk_buff_head *msm_ipc_router_build_msg(unsigned int num_sect, struct iovec const *msg_sect, size_t total_len) { struct sk_buff_head *msg_head; struct sk_buff *msg; int i, copied, first = 1; int data_size = 0, request_size, offset; void *data; for (i = 0; i < num_sect; i++) data_size += msg_sect[i].iov_len; if (!data_size) return NULL; msg_head = kmalloc(sizeof(struct sk_buff_head), GFP_KERNEL); if (!msg_head) { pr_err("%s: cannot allocate skb_head\n", __func__); return NULL; } skb_queue_head_init(msg_head); for (copied = 1, i = 0; copied && (i < num_sect); i++) { data_size = msg_sect[i].iov_len; offset = 0; while (offset != msg_sect[i].iov_len) { request_size = data_size; if (first) request_size += IPC_ROUTER_HDR_SIZE; msg = alloc_skb(request_size, GFP_KERNEL); if (!msg) { if (request_size <= (PAGE_SIZE/2)) { pr_err("%s: cannot allocated skb\n", __func__); goto msg_build_failure; } data_size = data_size / 2; continue; } if (first) { skb_reserve(msg, IPC_ROUTER_HDR_SIZE); first = 0; } data = skb_put(msg, data_size); copied = !copy_from_user(msg->data, msg_sect[i].iov_base + offset, data_size); if (!copied) { pr_err("%s: copy_from_user failed\n", __func__); kfree_skb(msg); goto msg_build_failure; } skb_queue_tail(msg_head, msg); offset += data_size; data_size = msg_sect[i].iov_len - offset; } } return msg_head; msg_build_failure: while (!skb_queue_empty(msg_head)) { msg = skb_dequeue(msg_head); kfree_skb(msg); } kfree(msg_head); return NULL; }
/* receive a single frame and assemble datagram * (this is the heart of the interrupt routine) */ static inline int sb1000_rx(struct net_device *dev) { #define FRAMESIZE 184 unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id; short dlen; int ioaddr, ns; unsigned int skbsize; struct sk_buff *skb; struct sb1000_private *lp = netdev_priv(dev); struct net_device_stats *stats = &lp->stats; /* SB1000 frame constants */ const int FrameSize = FRAMESIZE; const int NewDatagramHeaderSkip = 8; const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18; const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize; const int ContDatagramHeaderSkip = 7; const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1; const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize; const int TrailerSize = 4; ioaddr = dev->base_addr; insw(ioaddr, (unsigned short*) st, 1); #ifdef XXXDEBUG printk("cm0: received: %02x %02x\n", st[0], st[1]); #endif /* XXXDEBUG */ lp->rx_frames++; /* decide if it is a good or bad frame */ for (ns = 0; ns < NPIDS; ns++) { session_id = lp->rx_session_id[ns]; frame_id = lp->rx_frame_id[ns]; if (st[0] == session_id) { if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) { goto good_frame; } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) { goto skipped_frame; } else { goto bad_frame; } } else if (st[0] == (session_id | 0x40)) { if ((st[1] & 0xf0) == 0x30) { goto skipped_frame; } else { goto bad_frame; } } } goto bad_frame; skipped_frame: stats->rx_frame_errors++; skb = lp->rx_skb[ns]; if (sb1000_debug > 1) printk(KERN_WARNING "%s: missing frame(s): got %02x %02x " "expecting %02x %02x\n", dev->name, st[0], st[1], skb ? session_id : session_id | 0x40, frame_id); if (skb) { dev_kfree_skb(skb); skb = NULL; } good_frame: lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f); /* new datagram */ if (st[0] & 0x40) { /* get data length */ insw(ioaddr, buffer, NewDatagramHeaderSize / 2); #ifdef XXXDEBUG printk("cm0: IP identification: %02x%02x fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]); #endif /* XXXDEBUG */ if (buffer[0] != NewDatagramHeaderSkip) { if (sb1000_debug > 1) printk(KERN_WARNING "%s: new datagram header skip error: " "got %02x expecting %02x\n", dev->name, buffer[0], NewDatagramHeaderSkip); stats->rx_length_errors++; insw(ioaddr, buffer, NewDatagramDataSize / 2); goto bad_frame_next; } dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 | buffer[NewDatagramHeaderSkip + 4]) - 17; if (dlen > SB1000_MRU) { if (sb1000_debug > 1) printk(KERN_WARNING "%s: datagram length (%d) greater " "than MRU (%d)\n", dev->name, dlen, SB1000_MRU); stats->rx_length_errors++; insw(ioaddr, buffer, NewDatagramDataSize / 2); goto bad_frame_next; } lp->rx_dlen[ns] = dlen; /* compute size to allocate for datagram */ skbsize = dlen + FrameSize; if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) { if (sb1000_debug > 1) printk(KERN_WARNING "%s: can't allocate %d bytes long " "skbuff\n", dev->name, skbsize); stats->rx_dropped++; insw(ioaddr, buffer, NewDatagramDataSize / 2); goto dropped_frame; } skb->dev = dev; skb->mac.raw = skb->data; skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16]; insw(ioaddr, skb_put(skb, NewDatagramDataSize), NewDatagramDataSize / 2); lp->rx_skb[ns] = skb; } else { /* continuation of previous datagram */ insw(ioaddr, buffer, ContDatagramHeaderSize / 2); if (buffer[0] != ContDatagramHeaderSkip) { if (sb1000_debug > 1) printk(KERN_WARNING "%s: cont datagram header skip error: " "got %02x expecting %02x\n", dev->name, buffer[0], ContDatagramHeaderSkip); stats->rx_length_errors++; insw(ioaddr, buffer, ContDatagramDataSize / 2); goto bad_frame_next; } skb = lp->rx_skb[ns]; insw(ioaddr, skb_put(skb, ContDatagramDataSize), ContDatagramDataSize / 2); dlen = lp->rx_dlen[ns]; } if (skb->len < dlen + TrailerSize) { lp->rx_session_id[ns] &= ~0x40; return 0; } /* datagram completed: send to upper level */ skb_trim(skb, dlen); netif_rx(skb); dev->last_rx = jiffies; stats->rx_bytes+=dlen; stats->rx_packets++; lp->rx_skb[ns] = NULL; lp->rx_session_id[ns] |= 0x40; return 0; bad_frame: insw(ioaddr, buffer, FrameSize / 2); if (sb1000_debug > 1) printk(KERN_WARNING "%s: frame error: got %02x %02x\n", dev->name, st[0], st[1]); stats->rx_frame_errors++; bad_frame_next: if (sb1000_debug > 2) sb1000_print_status_buffer(dev->name, st, buffer, FrameSize); dropped_frame: stats->rx_errors++; if (ns < NPIDS) { if ((skb = lp->rx_skb[ns])) { dev_kfree_skb(skb); lp->rx_skb[ns] = NULL; } lp->rx_session_id[ns] |= 0x40; } return -1; }
int ip6_fragment(struct sock *sk, struct sk_buff *skb, int (*output)(struct sock *, struct sk_buff *)) { struct sk_buff *frag; struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ? inet6_sk(skb->sk) : NULL; struct ipv6hdr *tmp_hdr; struct frag_hdr *fh; unsigned int mtu, hlen, left, len; int hroom, troom; __be32 frag_id; int ptr, offset = 0, err = 0; u8 *prevhdr, nexthdr = 0; struct net *net = dev_net(skb_dst(skb)->dev); hlen = ip6_find_1stfragopt(skb, &prevhdr); nexthdr = *prevhdr; mtu = ip6_skb_dst_mtu(skb); /* We must not fragment if the socket is set to force MTU discovery * or if the skb it not generated by a local socket. */ if (unlikely(!skb->ignore_df && skb->len > mtu)) goto fail_toobig; if (IP6CB(skb)->frag_max_size) { if (IP6CB(skb)->frag_max_size > mtu) goto fail_toobig; /* don't send fragments larger than what we received */ mtu = IP6CB(skb)->frag_max_size; if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; } if (np && np->frag_size < mtu) { if (np->frag_size) mtu = np->frag_size; } mtu -= hlen + sizeof(struct frag_hdr); frag_id = ipv6_select_ident(net, &ipv6_hdr(skb)->daddr, &ipv6_hdr(skb)->saddr); hroom = LL_RESERVED_SPACE(rt->dst.dev); if (skb_has_frag_list(skb)) { int first_len = skb_pagelen(skb); struct sk_buff *frag2; if (first_len - hlen > mtu || ((first_len - hlen) & 7) || skb_cloned(skb) || skb_headroom(skb) < (hroom + sizeof(struct frag_hdr))) goto slow_path; skb_walk_frags(skb, frag) { /* Correct geometry. */ if (frag->len > mtu || ((frag->len & 7) && frag->next) || skb_headroom(frag) < (hlen + hroom + sizeof(struct frag_hdr))) goto slow_path_clean; /* Partially cloned skb? */ if (skb_shared(frag)) goto slow_path_clean; BUG_ON(frag->sk); if (skb->sk) { frag->sk = skb->sk; frag->destructor = sock_wfree; } skb->truesize -= frag->truesize; } err = 0; offset = 0; /* BUILD HEADER */ *prevhdr = NEXTHDR_FRAGMENT; tmp_hdr = kmemdup(skb_network_header(skb), hlen, GFP_ATOMIC); if (!tmp_hdr) { IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); err = -ENOMEM; goto fail; } frag = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); __skb_pull(skb, hlen); fh = (struct frag_hdr *)__skb_push(skb, sizeof(struct frag_hdr)); __skb_push(skb, hlen); skb_reset_network_header(skb); memcpy(skb_network_header(skb), tmp_hdr, hlen); fh->nexthdr = nexthdr; fh->reserved = 0; fh->frag_off = htons(IP6_MF); fh->identification = frag_id; first_len = skb_pagelen(skb); skb->data_len = first_len - skb_headlen(skb); skb->len = first_len; ipv6_hdr(skb)->payload_len = htons(first_len - sizeof(struct ipv6hdr)); dst_hold(&rt->dst); for (;;) { /* Prepare header of the next frame, * before previous one went down. */ if (frag) { frag->ip_summed = CHECKSUM_NONE; skb_reset_transport_header(frag); fh = (struct frag_hdr *)__skb_push(frag, sizeof(struct frag_hdr)); __skb_push(frag, hlen); skb_reset_network_header(frag); memcpy(skb_network_header(frag), tmp_hdr, hlen); offset += skb->len - hlen - sizeof(struct frag_hdr); fh->nexthdr = nexthdr; fh->reserved = 0; fh->frag_off = htons(offset); if (frag->next) fh->frag_off |= htons(IP6_MF); fh->identification = frag_id; ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); ip6_copy_metadata(frag, skb); } err = output(sk, skb); if (!err) IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGCREATES); if (err || !frag) break; skb = frag; frag = skb->next; skb->next = NULL; } kfree(tmp_hdr); if (err == 0) { IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGOKS); ip6_rt_put(rt); return 0; } kfree_skb_list(frag); IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGFAILS); ip6_rt_put(rt); return err; slow_path_clean: skb_walk_frags(skb, frag2) { if (frag2 == frag) break; frag2->sk = NULL; frag2->destructor = NULL; skb->truesize += frag2->truesize; } } slow_path: if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb)) goto fail; left = skb->len - hlen; /* Space per frame */ ptr = hlen; /* Where to start from */ /* * Fragment the datagram. */ *prevhdr = NEXTHDR_FRAGMENT; troom = rt->dst.dev->needed_tailroom; /* * Keep copying data until we run out. */ while (left > 0) { len = left; /* IF: it doesn't fit, use 'mtu' - the data space left */ if (len > mtu) len = mtu; /* IF: we are not sending up to and including the packet end then align the next start on an eight byte boundary */ if (len < left) { len &= ~7; } /* Allocate buffer */ frag = alloc_skb(len + hlen + sizeof(struct frag_hdr) + hroom + troom, GFP_ATOMIC); if (!frag) { IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); err = -ENOMEM; goto fail; } /* * Set up data on packet */ ip6_copy_metadata(frag, skb); skb_reserve(frag, hroom); skb_put(frag, len + hlen + sizeof(struct frag_hdr)); skb_reset_network_header(frag); fh = (struct frag_hdr *)(skb_network_header(frag) + hlen); frag->transport_header = (frag->network_header + hlen + sizeof(struct frag_hdr)); /* * Charge the memory for the fragment to any owner * it might possess */ if (skb->sk) skb_set_owner_w(frag, skb->sk); /* * Copy the packet header into the new buffer. */ skb_copy_from_linear_data(skb, skb_network_header(frag), hlen); /* * Build fragment header. */ fh->nexthdr = nexthdr; fh->reserved = 0; fh->identification = frag_id; /* * Copy a block of the IP datagram. */ BUG_ON(skb_copy_bits(skb, ptr, skb_transport_header(frag), len)); left -= len; fh->frag_off = htons(offset); if (left > 0) fh->frag_off |= htons(IP6_MF); ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); ptr += len; offset += len; /* * Put this fragment into the sending queue. */ err = output(sk, frag); if (err) goto fail; IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGCREATES); } IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGOKS); consume_skb(skb); return err; fail_toobig: if (skb->sk && dst_allfrag(skb_dst(skb))) sk_nocaps_add(skb->sk, NETIF_F_GSO_MASK); skb->dev = skb_dst(skb)->dev; icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); err = -EMSGSIZE; fail: IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return err; }
static inline int ip6_ufo_append_data(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int hh_len, int fragheaderlen, int transhdrlen, int mtu,unsigned int flags) { struct sk_buff *skb; int err; /* There is support for UDP large send offload by network * device, so create one single skb packet containing complete * udp datagram */ if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) { skb = sock_alloc_send_skb(sk, hh_len + fragheaderlen + transhdrlen + 20, (flags & MSG_DONTWAIT), &err); if (skb == NULL) return -ENOMEM; /* reserve space for Hardware header */ skb_reserve(skb, hh_len); /* create space for UDP/IP header */ skb_put(skb,fragheaderlen + transhdrlen); /* initialize network header pointer */ skb_reset_network_header(skb); /* initialize protocol header pointer */ skb->transport_header = skb->network_header + fragheaderlen; skb->ip_summed = CHECKSUM_PARTIAL; skb->csum = 0; } err = skb_append_datato_frags(sk,skb, getfrag, from, (length - transhdrlen)); if (!err) { struct frag_hdr fhdr; /* Specify the length of each IPv6 datagram fragment. * It has to be a multiple of 8. */ skb_shinfo(skb)->gso_size = (mtu - fragheaderlen - sizeof(struct frag_hdr)) & ~7; skb_shinfo(skb)->gso_type = SKB_GSO_UDP; ipv6_select_ident(&fhdr); skb_shinfo(skb)->ip6_frag_id = fhdr.identification; __skb_queue_tail(&sk->sk_write_queue, skb); return 0; } /* There is not enough support do UPD LSO, * so follow normal path */ kfree_skb(skb); return err; }
/* * This function checks the current interrupt status. * * The following interrupts are checked and handled by this function - * - Data sent * - Command sent * - Packets received * * Since the firmware does not generate download ready interrupt if the * port updated is command port only, command sent interrupt checking * should be done manually, and for every SDIO interrupt. * * In case of Rx packets received, the packets are uploaded from card to * host and processed accordingly. */ static int mwifiex_process_int_status(struct mwifiex_adapter *adapter) { struct sdio_mmc_card *card = adapter->card; int ret = 0; u8 sdio_ireg; struct sk_buff *skb; u8 port = CTRL_PORT; u32 len_reg_l, len_reg_u; u32 rx_blocks; u16 rx_len; unsigned long flags; spin_lock_irqsave(&adapter->int_lock, flags); sdio_ireg = adapter->int_status; adapter->int_status = 0; spin_unlock_irqrestore(&adapter->int_lock, flags); if (!sdio_ireg) return ret; if (sdio_ireg & DN_LD_HOST_INT_STATUS) { card->mp_wr_bitmap = ((u16) card->mp_regs[WR_BITMAP_U]) << 8; card->mp_wr_bitmap |= (u16) card->mp_regs[WR_BITMAP_L]; dev_dbg(adapter->dev, "int: DNLD: wr_bitmap=0x%04x\n", card->mp_wr_bitmap); if (adapter->data_sent && (card->mp_wr_bitmap & card->mp_data_port_mask)) { dev_dbg(adapter->dev, "info: <--- Tx DONE Interrupt --->\n"); adapter->data_sent = false; } } /* As firmware will not generate download ready interrupt if the port updated is command port only, cmd_sent should be done for any SDIO interrupt. */ if (adapter->cmd_sent) { /* Check if firmware has attach buffer at command port and update just that in wr_bit_map. */ card->mp_wr_bitmap |= (u16) card->mp_regs[WR_BITMAP_L] & CTRL_PORT_MASK; if (card->mp_wr_bitmap & CTRL_PORT_MASK) adapter->cmd_sent = false; } dev_dbg(adapter->dev, "info: cmd_sent=%d data_sent=%d\n", adapter->cmd_sent, adapter->data_sent); if (sdio_ireg & UP_LD_HOST_INT_STATUS) { card->mp_rd_bitmap = ((u16) card->mp_regs[RD_BITMAP_U]) << 8; card->mp_rd_bitmap |= (u16) card->mp_regs[RD_BITMAP_L]; dev_dbg(adapter->dev, "int: UPLD: rd_bitmap=0x%04x\n", card->mp_rd_bitmap); while (true) { ret = mwifiex_get_rd_port(adapter, &port); if (ret) { dev_dbg(adapter->dev, "info: no more rd_port available\n"); break; } len_reg_l = RD_LEN_P0_L + (port << 1); len_reg_u = RD_LEN_P0_U + (port << 1); rx_len = ((u16) card->mp_regs[len_reg_u]) << 8; rx_len |= (u16) card->mp_regs[len_reg_l]; dev_dbg(adapter->dev, "info: RX: port=%d rx_len=%u\n", port, rx_len); rx_blocks = (rx_len + MWIFIEX_SDIO_BLOCK_SIZE - 1) / MWIFIEX_SDIO_BLOCK_SIZE; if (rx_len <= INTF_HEADER_LEN || (rx_blocks * MWIFIEX_SDIO_BLOCK_SIZE) > MWIFIEX_RX_DATA_BUF_SIZE) { dev_err(adapter->dev, "invalid rx_len=%d\n", rx_len); return -1; } rx_len = (u16) (rx_blocks * MWIFIEX_SDIO_BLOCK_SIZE); skb = dev_alloc_skb(rx_len); if (!skb) { dev_err(adapter->dev, "%s: failed to alloc skb", __func__); return -1; } skb_put(skb, rx_len); dev_dbg(adapter->dev, "info: rx_len = %d skb->len = %d\n", rx_len, skb->len); if (mwifiex_sdio_card_to_host_mp_aggr(adapter, skb, port)) { u32 cr = 0; dev_err(adapter->dev, "card_to_host_mpa failed:" " int status=%#x\n", sdio_ireg); if (mwifiex_read_reg(adapter, CONFIGURATION_REG, &cr)) dev_err(adapter->dev, "read CFG reg failed\n"); dev_dbg(adapter->dev, "info: CFG reg val = %d\n", cr); if (mwifiex_write_reg(adapter, CONFIGURATION_REG, (cr | 0x04))) dev_err(adapter->dev, "write CFG reg failed\n"); dev_dbg(adapter->dev, "info: write success\n"); if (mwifiex_read_reg(adapter, CONFIGURATION_REG, &cr)) dev_err(adapter->dev, "read CFG reg failed\n"); dev_dbg(adapter->dev, "info: CFG reg val =%x\n", cr); return -1; } } } return 0; }
int ip6_append_data(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, int hlimit, int tclass, struct ipv6_txoptions *opt, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags, int dontfrag) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct inet_cork *cork; struct sk_buff *skb; unsigned int maxfraglen, fragheaderlen; int exthdrlen; int hh_len; int mtu; int copy; int err; int offset = 0; int csummode = CHECKSUM_NONE; __u8 tx_flags = 0; if (flags&MSG_PROBE) return 0; cork = &inet->cork.base; if (skb_queue_empty(&sk->sk_write_queue)) { /* * setup for corking */ if (opt) { if (WARN_ON(np->cork.opt)) return -EINVAL; np->cork.opt = kmalloc(opt->tot_len, sk->sk_allocation); if (unlikely(np->cork.opt == NULL)) return -ENOBUFS; np->cork.opt->tot_len = opt->tot_len; np->cork.opt->opt_flen = opt->opt_flen; np->cork.opt->opt_nflen = opt->opt_nflen; np->cork.opt->dst0opt = ip6_opt_dup(opt->dst0opt, sk->sk_allocation); if (opt->dst0opt && !np->cork.opt->dst0opt) return -ENOBUFS; np->cork.opt->dst1opt = ip6_opt_dup(opt->dst1opt, sk->sk_allocation); if (opt->dst1opt && !np->cork.opt->dst1opt) return -ENOBUFS; np->cork.opt->hopopt = ip6_opt_dup(opt->hopopt, sk->sk_allocation); if (opt->hopopt && !np->cork.opt->hopopt) return -ENOBUFS; np->cork.opt->srcrt = ip6_rthdr_dup(opt->srcrt, sk->sk_allocation); if (opt->srcrt && !np->cork.opt->srcrt) return -ENOBUFS; /* need source address above miyazawa*/ } dst_hold(&rt->dst); cork->dst = &rt->dst; inet->cork.fl.u.ip6 = *fl6; np->cork.hop_limit = hlimit; np->cork.tclass = tclass; mtu = np->pmtudisc == IPV6_PMTUDISC_PROBE ? rt->dst.dev->mtu : dst_mtu(rt->dst.path); if (np->frag_size < mtu) { if (np->frag_size) mtu = np->frag_size; } cork->fragsize = mtu; if (dst_allfrag(rt->dst.path)) cork->flags |= IPCORK_ALLFRAG; cork->length = 0; sk->sk_sndmsg_page = NULL; sk->sk_sndmsg_off = 0; exthdrlen = rt->dst.header_len + (opt ? opt->opt_flen : 0) - rt->rt6i_nfheader_len; length += exthdrlen; transhdrlen += exthdrlen; } else { rt = (struct rt6_info *)cork->dst; fl6 = &inet->cork.fl.u.ip6; opt = np->cork.opt; transhdrlen = 0; exthdrlen = 0; mtu = cork->fragsize; } hh_len = LL_RESERVED_SPACE(rt->dst.dev); fragheaderlen = sizeof(struct ipv6hdr) + rt->rt6i_nfheader_len + (opt ? opt->opt_nflen : 0); maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); if (mtu <= sizeof(struct ipv6hdr) + IPV6_MAXPLEN) { if (cork->length + length > sizeof(struct ipv6hdr) + IPV6_MAXPLEN - fragheaderlen) { ipv6_local_error(sk, EMSGSIZE, fl6, mtu-exthdrlen); return -EMSGSIZE; } } /* For UDP, check if TX timestamp is enabled */ if (sk->sk_type == SOCK_DGRAM) { err = sock_tx_timestamp(sk, &tx_flags); if (err) goto error; } /* * Let's try using as much space as possible. * Use MTU if total length of the message fits into the MTU. * Otherwise, we need to reserve fragment header and * fragment alignment (= 8-15 octects, in total). * * Note that we may need to "move" the data from the tail of * of the buffer to the new fragment when we split * the message. * * FIXME: It may be fragmented into multiple chunks * at once if non-fragmentable extension headers * are too large. * --yoshfuji */ cork->length += length; if (length > mtu) { int proto = sk->sk_protocol; if (dontfrag && (proto == IPPROTO_UDP || proto == IPPROTO_RAW)){ ipv6_local_rxpmtu(sk, fl6, mtu-exthdrlen); return -EMSGSIZE; } if (proto == IPPROTO_UDP && (rt->dst.dev->features & NETIF_F_UFO)) { err = ip6_ufo_append_data(sk, getfrag, from, length, hh_len, fragheaderlen, transhdrlen, mtu, flags); if (err) goto error; return 0; } } if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) goto alloc_new_skb; while (length > 0) { /* Check if the remaining data fits into current packet. */ copy = (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - skb->len; if (copy < length) copy = maxfraglen - skb->len; if (copy <= 0) { char *data; unsigned int datalen; unsigned int fraglen; unsigned int fraggap; unsigned int alloclen; struct sk_buff *skb_prev; alloc_new_skb: skb_prev = skb; /* There's no room in the current skb */ if (skb_prev) fraggap = skb_prev->len - maxfraglen; else fraggap = 0; /* * If remaining data exceeds the mtu, * we know we need more fragment(s). */ datalen = length + fraggap; if (datalen > (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - fragheaderlen) datalen = maxfraglen - fragheaderlen; fraglen = datalen + fragheaderlen; if ((flags & MSG_MORE) && !(rt->dst.dev->features&NETIF_F_SG)) alloclen = mtu; else alloclen = datalen + fragheaderlen; /* * The last fragment gets additional space at tail. * Note: we overallocate on fragments with MSG_MODE * because we have no idea if we're the last one. */ if (datalen == length + fraggap) alloclen += rt->dst.trailer_len; /* * We just reserve space for fragment header. * Note: this may be overallocation if the message * (without MSG_MORE) fits into the MTU. */ alloclen += sizeof(struct frag_hdr); if (transhdrlen) { skb = sock_alloc_send_skb(sk, alloclen + hh_len, (flags & MSG_DONTWAIT), &err); } else { skb = NULL; if (atomic_read(&sk->sk_wmem_alloc) <= 2 * sk->sk_sndbuf) skb = sock_wmalloc(sk, alloclen + hh_len, 1, sk->sk_allocation); if (unlikely(skb == NULL)) err = -ENOBUFS; else { /* Only the initial fragment * is time stamped. */ tx_flags = 0; } } if (skb == NULL) goto error; /* * Fill in the control structures */ skb->ip_summed = csummode; skb->csum = 0; /* reserve for fragmentation */ skb_reserve(skb, hh_len+sizeof(struct frag_hdr)); if (sk->sk_type == SOCK_DGRAM) skb_shinfo(skb)->tx_flags = tx_flags; /* * Find where to start putting bytes */ data = skb_put(skb, fraglen); skb_set_network_header(skb, exthdrlen); data += fragheaderlen; skb->transport_header = (skb->network_header + fragheaderlen); if (fraggap) { skb->csum = skb_copy_and_csum_bits( skb_prev, maxfraglen, data + transhdrlen, fraggap, 0); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); data += fraggap; pskb_trim_unique(skb_prev, maxfraglen); } copy = datalen - transhdrlen - fraggap; if (copy < 0) { err = -EINVAL; kfree_skb(skb); goto error; } else if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { err = -EFAULT; kfree_skb(skb); goto error; } offset += copy; length -= datalen - fraggap; transhdrlen = 0; exthdrlen = 0; csummode = CHECKSUM_NONE; /* * Put the packet on the pending queue */ __skb_queue_tail(&sk->sk_write_queue, skb); continue; } if (copy > length) copy = length; if (!(rt->dst.dev->features&NETIF_F_SG)) { unsigned int off; off = skb->len; if (getfrag(from, skb_put(skb, copy), offset, copy, off, skb) < 0) { __skb_trim(skb, off); err = -EFAULT; goto error; } } else { int i = skb_shinfo(skb)->nr_frags; skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1]; struct page *page = sk->sk_sndmsg_page; int off = sk->sk_sndmsg_off; unsigned int left; if (page && (left = PAGE_SIZE - off) > 0) { if (copy >= left) copy = left; if (page != frag->page) { if (i == MAX_SKB_FRAGS) { err = -EMSGSIZE; goto error; } get_page(page); skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0); frag = &skb_shinfo(skb)->frags[i]; } } else if(i < MAX_SKB_FRAGS) { if (copy > PAGE_SIZE) copy = PAGE_SIZE; page = alloc_pages(sk->sk_allocation, 0); if (page == NULL) { err = -ENOMEM; goto error; } sk->sk_sndmsg_page = page; sk->sk_sndmsg_off = 0; skb_fill_page_desc(skb, i, page, 0, 0); frag = &skb_shinfo(skb)->frags[i]; } else { err = -EMSGSIZE; goto error; } if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) { err = -EFAULT; goto error; } sk->sk_sndmsg_off += copy; frag->size += copy; skb->len += copy; skb->data_len += copy; skb->truesize += copy; atomic_add(copy, &sk->sk_wmem_alloc); } offset += copy; length -= copy; } return 0; error: cork->length -= length; IP6_INC_STATS(sock_net(sk), rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); return err; }
void isac_interrupt(struct IsdnCardState *cs, u_char val) { u_char exval, v1; struct sk_buff *skb; unsigned int count; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "ISAC interrupt %x", val); if (val & 0x80) { /* RME */ exval = cs->readisac(cs, ISAC_RSTA); if ((exval & 0x70) != 0x20) { if (exval & 0x40) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "ISAC RDO"); #ifdef ERROR_STATISTIC cs->err_rx++; #endif } if (!(exval & 0x20)) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "ISAC CRC error"); #ifdef ERROR_STATISTIC cs->err_crc++; #endif } cs->writeisac(cs, ISAC_CMDR, 0x80); } else { count = cs->readisac(cs, ISAC_RBCL) & 0x1f; if (count == 0) count = 32; isac_empty_fifo(cs, count); if ((count = cs->rcvidx) > 0) { cs->rcvidx = 0; if (!(skb = alloc_skb(count, GFP_ATOMIC))) printk(KERN_WARNING "HiSax: D receive out of memory\n"); else { memcpy(skb_put(skb, count), cs->rcvbuf, count); skb_queue_tail(&cs->rq, skb); } } } cs->rcvidx = 0; schedule_event(cs, D_RCVBUFREADY); } if (val & 0x40) { /* RPF */ isac_empty_fifo(cs, 32); } if (val & 0x20) { /* RSC */ /* never */ if (cs->debug & L1_DEB_WARN) debugl1(cs, "ISAC RSC interrupt"); } if (val & 0x10) { /* XPR */ if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) del_timer(&cs->dbusytimer); if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags)) schedule_event(cs, D_CLEARBUSY); if (cs->tx_skb) { if (cs->tx_skb->len) { isac_fill_fifo(cs); goto afterXPR; } else { dev_kfree_skb_irq(cs->tx_skb); cs->tx_cnt = 0; cs->tx_skb = NULL; } } if ((cs->tx_skb = skb_dequeue(&cs->sq))) { cs->tx_cnt = 0; isac_fill_fifo(cs); } else schedule_event(cs, D_XMTBUFREADY); } afterXPR: if (val & 0x04) { /* CISQ */ exval = cs->readisac(cs, ISAC_CIR0); if (cs->debug & L1_DEB_ISAC) debugl1(cs, "ISAC CIR0 %02X", exval ); if (exval & 2) { cs->dc.isac.ph_state = (exval >> 2) & 0xf; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "ph_state change %x", cs->dc.isac.ph_state); schedule_event(cs, D_L1STATECHANGE); }
/* * Decode frames received on the B/D channel. * Note that this function will be called continuously * with 64Kbit/s / 16Kbit/s of data and hence it will be * called 50 times per second with 20 ISOC descriptors. * Called at interrupt. */ static void usb_in_complete(struct urb *urb) { struct st5481_in *in = urb->context; unsigned char *ptr; struct sk_buff *skb; int len, count, status; if (unlikely(urb->status < 0)) { switch (urb->status) { case -ENOENT: case -ESHUTDOWN: case -ECONNRESET: DBG(1,"urb killed status %d", urb->status); return; // Give up default: WARNING("urb status %d",urb->status); break; } } DBG_ISO_PACKET(0x80,urb); len = st5481_isoc_flatten(urb); ptr = urb->transfer_buffer; while (len > 0) { if (in->mode == L1_MODE_TRANS) { memcpy(in->rcvbuf, ptr, len); status = len; len = 0; } else { status = isdnhdlc_decode(&in->hdlc_state, ptr, len, &count, in->rcvbuf, in->bufsize); ptr += count; len -= count; } if (status > 0) { // Good frame received DBG(4,"count=%d",status); DBG_PACKET(0x400, in->rcvbuf, status); if (!(skb = dev_alloc_skb(status))) { WARNING("receive out of memory\n"); break; } memcpy(skb_put(skb, status), in->rcvbuf, status); in->hisax_if->l1l2(in->hisax_if, PH_DATA | INDICATION, skb); } else if (status == -HDLC_CRC_ERROR) { INFO("CRC error"); } else if (status == -HDLC_FRAMING_ERROR) { INFO("framing error"); } else if (status == -HDLC_LENGTH_ERROR) { INFO("length error"); } } // Prepare URB for next transfer urb->dev = in->adapter->usb_dev; urb->actual_length = 0; SUBMIT_URB(urb, GFP_ATOMIC); }
/* EIF(Error in FIFO/End in Frame) handler for FIR */ static void pxa_irda_fir_irq_eif(struct pxa_irda *si, struct net_device *dev, int icsr0) { unsigned int len, stat, data; /* Get the current data position. */ len = DTADR(si->rxdma) - si->dma_rx_buff_phy; do { /* Read Status, and then Data. */ stat = ICSR1; rmb(); data = ICDR; if (stat & (ICSR1_CRE | ICSR1_ROR)) { dev->stats.rx_errors++; if (stat & ICSR1_CRE) { printk(KERN_DEBUG "pxa_ir: fir receive CRC error\n"); dev->stats.rx_crc_errors++; } if (stat & ICSR1_ROR) { printk(KERN_DEBUG "pxa_ir: fir receive overrun\n"); dev->stats.rx_over_errors++; } } else { si->dma_rx_buff[len++] = data; } /* If we hit the end of frame, there's no point in continuing. */ if (stat & ICSR1_EOF) break; } while (ICSR0 & ICSR0_EIF); if (stat & ICSR1_EOF) { /* end of frame. */ struct sk_buff *skb; if (icsr0 & ICSR0_FRE) { printk(KERN_ERR "pxa_ir: dropping erroneous frame\n"); dev->stats.rx_dropped++; return; } skb = alloc_skb(len+1,GFP_ATOMIC); if (!skb) { printk(KERN_ERR "pxa_ir: fir out of memory for receive skb\n"); dev->stats.rx_dropped++; return; } /* Align IP header to 20 bytes */ skb_reserve(skb, 1); skb_copy_to_linear_data(skb, si->dma_rx_buff, len); skb_put(skb, len); /* Feed it to IrLAP */ skb->dev = dev; skb_reset_mac_header(skb); skb->protocol = htons(ETH_P_IRDA); netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += len; } }
static int btusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_endpoint_descriptor *ep_desc; struct btusb_data *data; struct hci_dev *hdev; int i, err; BT_DBG("intf %p id %p", intf, id); /* interface numbers are hardcoded in the spec */ if (intf->cur_altsetting->desc.bInterfaceNumber != 0) return -ENODEV; if (!id->driver_info) { const struct usb_device_id *match; match = usb_match_id(intf, blacklist_table); if (match) id = match; } if (id->driver_info == BTUSB_IGNORE) return -ENODEV; if (ignore_dga && id->driver_info & BTUSB_DIGIANSWER) return -ENODEV; if (ignore_csr && id->driver_info & BTUSB_CSR) return -ENODEV; if (ignore_sniffer && id->driver_info & BTUSB_SNIFFER) return -ENODEV; if (id->driver_info & BTUSB_ATH3012) { struct usb_device *udev = interface_to_usbdev(intf); /* Old firmware would otherwise let ath3k driver load * patch and sysconfig files */ if (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x0001) return -ENODEV; } data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { ep_desc = &intf->cur_altsetting->endpoint[i].desc; if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) { data->intr_ep = ep_desc; continue; } if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) { data->bulk_tx_ep = ep_desc; continue; } if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) { data->bulk_rx_ep = ep_desc; continue; } } if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) { kfree(data); return -ENODEV; } data->cmdreq_type = USB_TYPE_CLASS; data->udev = interface_to_usbdev(intf); data->intf = intf; spin_lock_init(&data->lock); INIT_WORK(&data->work, btusb_work); INIT_WORK(&data->waker, btusb_waker); spin_lock_init(&data->txlock); init_usb_anchor(&data->tx_anchor); init_usb_anchor(&data->intr_anchor); init_usb_anchor(&data->bulk_anchor); init_usb_anchor(&data->isoc_anchor); init_usb_anchor(&data->deferred); hdev = hci_alloc_dev(); if (!hdev) { kfree(data); return -ENOMEM; } hdev->bus = HCI_USB; hdev->driver_data = data; data->hdev = hdev; SET_HCIDEV_DEV(hdev, &intf->dev); hdev->open = btusb_open; hdev->close = btusb_close; hdev->flush = btusb_flush; hdev->send = btusb_send_frame; hdev->destruct = btusb_destruct; hdev->notify = btusb_notify; hdev->owner = THIS_MODULE; /* Interface numbers are hardcoded in the specification */ data->isoc = usb_ifnum_to_if(data->udev, 1); if (!reset) set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks); if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) { if (!disable_scofix) set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks); } if (id->driver_info & BTUSB_BROKEN_ISOC) data->isoc = NULL; if (id->driver_info & BTUSB_DIGIANSWER) { data->cmdreq_type = USB_TYPE_VENDOR; set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks); } if (id->driver_info & BTUSB_CSR) { struct usb_device *udev = data->udev; /* Old firmware would otherwise execute USB reset */ if (le16_to_cpu(udev->descriptor.bcdDevice) < 0x117) set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks); } if (id->driver_info & BTUSB_SNIFFER) { struct usb_device *udev = data->udev; /* New sniffer firmware has crippled HCI interface */ if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997) set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks); data->isoc = NULL; } if (id->driver_info & BTUSB_BCM92035) { unsigned char cmd[] = { 0x3b, 0xfc, 0x01, 0x00 }; struct sk_buff *skb; skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); if (skb) { memcpy(skb_put(skb, sizeof(cmd)), cmd, sizeof(cmd)); skb_queue_tail(&hdev->driver_init, skb); } } if (data->isoc) { err = usb_driver_claim_interface(&btusb_driver, data->isoc, data); if (err < 0) { hci_free_dev(hdev); kfree(data); return err; } } err = hci_register_dev(hdev); if (err < 0) { hci_free_dev(hdev); kfree(data); return err; } usb_set_intfdata(intf, data); return 0; }
int capi_select_proto_req(struct pcbit_chan *chan, struct sk_buff **skb, int outgoing) { /* * 18 bytes */ if ((*skb = dev_alloc_skb(18)) == NULL) { printk(KERN_WARNING "capi_select_proto_req: alloc_skb failed\n"); return -1; } *((ushort*) skb_put(*skb, 2) ) = chan->callref; /* Layer2 protocol */ switch (chan->proto) { case ISDN_PROTO_L2_X75I: *(skb_put(*skb, 1)) = 0x05; /* LAPB */ break; case ISDN_PROTO_L2_HDLC: *(skb_put(*skb, 1)) = 0x02; break; case ISDN_PROTO_L2_TRANS: /* * Voice (a-law) */ *(skb_put(*skb, 1)) = 0x06; break; default: #ifdef DEBUG printk(KERN_DEBUG "Transparent\n"); #endif *(skb_put(*skb, 1)) = 0x03; break; } *(skb_put(*skb, 1)) = (outgoing ? 0x02 : 0x42); /* Don't ask */ *(skb_put(*skb, 1)) = 0x00; *((ushort *) skb_put(*skb, 2)) = MRU; *(skb_put(*skb, 1)) = 0x08; /* Modulo */ *(skb_put(*skb, 1)) = 0x07; /* Max Window */ *(skb_put(*skb, 1)) = 0x01; /* No Layer3 Protocol */ /* * 2 - layer3 MTU [10] * - Modulo [12] * - Window * - layer1 proto [14] * - bitrate * - sub-channel [16] * - layer1dataformat [17] */ memset(skb_put(*skb, 8), 0, 8); return 18; }
void hycapi_rx_capipkt(hysdn_card * card, unsigned char *buf, unsigned short len) { struct sk_buff *skb; hycapictrl_info *cinfo = card->hyctrlinfo; struct capi_ctr *ctrl; __u16 ApplId; __u16 MsgLen, info; __u16 len2, CapiCmd; __u32 CP64[2] = {0,0}; #ifdef HYCAPI_PRINTFNAMES printk(KERN_NOTICE "hycapi_rx_capipkt\n"); #endif if(!cinfo) { return; } ctrl = &cinfo->capi_ctrl; if(len < CAPI_MSG_BASELEN) { printk(KERN_ERR "HYSDN Card%d: invalid CAPI-message, length %d!\n", card->myid, len); return; } MsgLen = CAPIMSG_LEN(buf); ApplId = CAPIMSG_APPID(buf); CapiCmd = CAPIMSG_CMD(buf); if((CapiCmd == CAPI_DATA_B3_IND) && (MsgLen < 30)) { len2 = len + (30 - MsgLen); if (!(skb = alloc_skb(len2, GFP_ATOMIC))) { printk(KERN_ERR "HYSDN Card%d: incoming packet dropped\n", card->myid); return; } memcpy(skb_put(skb, MsgLen), buf, MsgLen); memcpy(skb_put(skb, 2*sizeof(__u32)), CP64, 2* sizeof(__u32)); memcpy(skb_put(skb, len - MsgLen), buf + MsgLen, len - MsgLen); CAPIMSG_SETLEN(skb->data, 30); } else { if (!(skb = alloc_skb(len, GFP_ATOMIC))) { printk(KERN_ERR "HYSDN Card%d: incoming packet dropped\n", card->myid); return; } memcpy(skb_put(skb, len), buf, len); } switch(CAPIMSG_CMD(skb->data)) { case CAPI_CONNECT_B3_CONF: /* Check info-field for error-indication: */ info = CAPIMSG_U16(skb->data, 12); switch(info) { case 0: capilib_new_ncci(&cinfo->ncci_head, ApplId, CAPIMSG_NCCI(skb->data), hycapi_applications[ApplId-1].rp.datablkcnt); break; case 0x0001: printk(KERN_ERR "HYSDN Card%d: NCPI not supported by current " "protocol. NCPI ignored.\n", card->myid); break; case 0x2001: printk(KERN_ERR "HYSDN Card%d: Message not supported in" " current state\n", card->myid); break; case 0x2002: printk(KERN_ERR "HYSDN Card%d: invalid PLCI\n", card->myid); break; case 0x2004: printk(KERN_ERR "HYSDN Card%d: out of NCCI\n", card->myid); break; case 0x3008: printk(KERN_ERR "HYSDN Card%d: NCPI not supported\n", card->myid); break; default: printk(KERN_ERR "HYSDN Card%d: Info in CONNECT_B3_CONF: %d\n", card->myid, info); break; } break; case CAPI_CONNECT_B3_IND: capilib_new_ncci(&cinfo->ncci_head, ApplId, CAPIMSG_NCCI(skb->data), hycapi_applications[ApplId-1].rp.datablkcnt); break; case CAPI_DATA_B3_CONF: capilib_data_b3_conf(&cinfo->ncci_head, ApplId, CAPIMSG_NCCI(skb->data), CAPIMSG_MSGID(skb->data)); break; default: break; } capi_ctr_handle_message(ctrl, ApplId, skb); }
static void rx_complete(struct usb_ep *ep, struct usb_request *req) { struct sk_buff *skb = req->context; struct eth_dev *dev = ep->driver_data; int status = req->status; bool queue = 0; switch (status) { /* normal completion */ case 0: skb_put(skb, req->actual); if (dev->unwrap) { unsigned long flags; spin_lock_irqsave(&dev->lock, flags); if (dev->port_usb) { status = dev->unwrap(dev->port_usb, skb, &dev->rx_frames); if (status == -EINVAL) dev->net->stats.rx_errors++; else if (status == -EOVERFLOW) dev->net->stats.rx_over_errors++; } else { dev_kfree_skb_any(skb); status = -ENOTCONN; } spin_unlock_irqrestore(&dev->lock, flags); } else { skb_queue_tail(&dev->rx_frames, skb); } if (!status) queue = 1; break; /* software-driven interface shutdown */ case -ECONNRESET: /* unlink */ case -ESHUTDOWN: /* disconnect etc */ VDBG(dev, "rx shutdown, code %d\n", status); goto quiesce; /* for hardware automagic (such as pxa) */ case -ECONNABORTED: /* endpoint reset */ DBG(dev, "rx %s reset\n", ep->name); defer_kevent(dev, WORK_RX_MEMORY); quiesce: dev_kfree_skb_any(skb); goto clean; /* data overrun */ case -EOVERFLOW: dev->net->stats.rx_over_errors++; /* FALLTHROUGH */ default: queue = 1; dev_kfree_skb_any(skb); dev->net->stats.rx_errors++; DBG(dev, "rx status %d\n", status); break; } clean: spin_lock(&dev->req_lock); list_add(&req->list, &dev->rx_reqs); spin_unlock(&dev->req_lock); if (queue) queue_work(uether_wq, &dev->rx_work); }
static bool pio_rx_frame(struct b43_pio_rxqueue *q) { struct b43_wldev *dev = q->dev; struct b43_wl *wl = dev->wl; u16 len; u32 macstat = 0; unsigned int i, padding; struct sk_buff *skb; const char *err_msg = NULL; struct b43_rxhdr_fw4 *rxhdr = (struct b43_rxhdr_fw4 *)wl->pio_scratchspace; size_t rxhdr_size = sizeof(*rxhdr); BUILD_BUG_ON(sizeof(wl->pio_scratchspace) < sizeof(*rxhdr)); switch (dev->fw.hdr_format) { case B43_FW_HDR_410: case B43_FW_HDR_351: rxhdr_size -= sizeof(rxhdr->format_598) - sizeof(rxhdr->format_351); break; case B43_FW_HDR_598: break; } memset(rxhdr, 0, rxhdr_size); if (q->rev >= 8) { u32 ctl; ctl = b43_piorx_read32(q, B43_PIO8_RXCTL); if (!(ctl & B43_PIO8_RXCTL_FRAMERDY)) return 0; b43_piorx_write32(q, B43_PIO8_RXCTL, B43_PIO8_RXCTL_FRAMERDY); for (i = 0; i < 10; i++) { ctl = b43_piorx_read32(q, B43_PIO8_RXCTL); if (ctl & B43_PIO8_RXCTL_DATARDY) goto data_ready; udelay(10); } } else { u16 ctl; ctl = b43_piorx_read16(q, B43_PIO_RXCTL); if (!(ctl & B43_PIO_RXCTL_FRAMERDY)) return 0; b43_piorx_write16(q, B43_PIO_RXCTL, B43_PIO_RXCTL_FRAMERDY); for (i = 0; i < 10; i++) { ctl = b43_piorx_read16(q, B43_PIO_RXCTL); if (ctl & B43_PIO_RXCTL_DATARDY) goto data_ready; udelay(10); } } b43dbg(q->dev->wl, "PIO RX timed out\n"); return 1; data_ready: if (q->rev >= 8) { b43_block_read(dev, rxhdr, rxhdr_size, q->mmio_base + B43_PIO8_RXDATA, sizeof(u32)); } else { b43_block_read(dev, rxhdr, rxhdr_size, q->mmio_base + B43_PIO_RXDATA, sizeof(u16)); } len = le16_to_cpu(rxhdr->frame_len); if (unlikely(len > 0x700)) { err_msg = "len > 0x700"; goto rx_error; } if (unlikely(len == 0)) { err_msg = "len == 0"; goto rx_error; } switch (dev->fw.hdr_format) { case B43_FW_HDR_598: macstat = le32_to_cpu(rxhdr->format_598.mac_status); break; case B43_FW_HDR_410: case B43_FW_HDR_351: macstat = le32_to_cpu(rxhdr->format_351.mac_status); break; } if (macstat & B43_RX_MAC_FCSERR) { if (!(q->dev->wl->filter_flags & FIF_FCSFAIL)) { err_msg = "Frame FCS error"; goto rx_error; } } padding = (macstat & B43_RX_MAC_PADDING) ? 2 : 0; skb = dev_alloc_skb(len + padding + 2); if (unlikely(!skb)) { err_msg = "Out of memory"; goto rx_error; } skb_reserve(skb, 2); skb_put(skb, len + padding); if (q->rev >= 8) { b43_block_read(dev, skb->data + padding, (len & ~3), q->mmio_base + B43_PIO8_RXDATA, sizeof(u32)); if (len & 3) { u8 *tail = wl->pio_tailspace; BUILD_BUG_ON(sizeof(wl->pio_tailspace) < 4); b43_block_read(dev, tail, 4, q->mmio_base + B43_PIO8_RXDATA, sizeof(u32)); switch (len & 3) { case 3: skb->data[len + padding - 3] = tail[0]; skb->data[len + padding - 2] = tail[1]; skb->data[len + padding - 1] = tail[2]; break; case 2: skb->data[len + padding - 2] = tail[0]; skb->data[len + padding - 1] = tail[1]; break; case 1: skb->data[len + padding - 1] = tail[0]; break; } } } else { b43_block_read(dev, skb->data + padding, (len & ~1), q->mmio_base + B43_PIO_RXDATA, sizeof(u16)); if (len & 1) { u8 *tail = wl->pio_tailspace; BUILD_BUG_ON(sizeof(wl->pio_tailspace) < 2); b43_block_read(dev, tail, 2, q->mmio_base + B43_PIO_RXDATA, sizeof(u16)); skb->data[len + padding - 1] = tail[0]; } } b43_rx(q->dev, skb, rxhdr); return 1; rx_error: if (err_msg) b43dbg(q->dev->wl, "PIO RX error: %s\n", err_msg); if (q->rev >= 8) b43_piorx_write32(q, B43_PIO8_RXCTL, B43_PIO8_RXCTL_DATARDY); else b43_piorx_write16(q, B43_PIO_RXCTL, B43_PIO_RXCTL_DATARDY); return 1; }