Пример #1
0
/* remove VLAN header from packet and update csum accordingly. */
static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
{
	struct vlan_hdr *vhdr;
	int err;

	err = make_writable(skb, VLAN_ETH_HLEN);
	if (unlikely(err))
		return err;

	if (get_ip_summed(skb) == OVS_CSUM_COMPLETE)
		skb->csum = csum_sub(skb->csum, csum_partial(skb->data
					+ ETH_HLEN, VLAN_HLEN, 0));

	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
	*current_tci = vhdr->h_vlan_TCI;

	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
	__skb_pull(skb, VLAN_HLEN);

	vlan_set_encap_proto(skb, vhdr);
	skb->mac_header += VLAN_HLEN;
	skb_reset_mac_len(skb);

	return 0;
}
Пример #2
0
static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
		    const struct ovs_action_push_eth *ethh)
{
	struct ethhdr *hdr;

	/* Add the new Ethernet header */
	if (skb_cow_head(skb, ETH_HLEN) < 0)
		return -ENOMEM;

	skb_push(skb, ETH_HLEN);
	skb_reset_mac_header(skb);
	skb_reset_mac_len(skb);

	hdr = eth_hdr(skb);
	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
	hdr->h_proto = skb->protocol;

	skb_postpush_rcsum(skb, hdr, ETH_HLEN);

	/* safe right before invalidate_flow_key */
	key->mac_proto = MAC_PROTO_ETHERNET;
	invalidate_flow_key(key);
	return 0;
}
Пример #3
0
bool vlan_do_receive(struct sk_buff **skbp, bool last_handler)
{
	struct sk_buff *skb = *skbp;
	u16 vlan_id = skb->vlan_tci & VLAN_VID_MASK;
	struct net_device *vlan_dev;
	struct vlan_pcpu_stats *rx_stats;

	vlan_dev = vlan_find_dev(skb->dev, vlan_id);
	if (!vlan_dev) {
		/* Only the last call to vlan_do_receive() should change
		 * pkt_type to PACKET_OTHERHOST
		 */
		if (vlan_id && last_handler)
			skb->pkt_type = PACKET_OTHERHOST;
		return false;
	}

	skb = *skbp = skb_share_check(skb, GFP_ATOMIC);
	if (unlikely(!skb))
		return false;

	skb->dev = vlan_dev;
	if (skb->pkt_type == PACKET_OTHERHOST) {
		/* Our lower layer thinks this is not local, let's make sure.
		 * This allows the VLAN to have a different MAC than the
		 * underlying device, and still route correctly. */
		if (ether_addr_equal(eth_hdr(skb)->h_dest, vlan_dev->dev_addr))
			skb->pkt_type = PACKET_HOST;
	}

	if (!(vlan_dev_priv(vlan_dev)->flags & VLAN_FLAG_REORDER_HDR)) {
		unsigned int offset = skb->data - skb_mac_header(skb);

		/*
		 * vlan_insert_tag expect skb->data pointing to mac header.
		 * So change skb->data before calling it and change back to
		 * original position later
		 */
		skb_push(skb, offset);
		skb = *skbp = vlan_insert_tag(skb, skb->vlan_tci);
		if (!skb)
			return false;
		skb_pull(skb, offset + VLAN_HLEN);
		skb_reset_mac_len(skb);
	}

	skb->priority = vlan_get_ingress_priority(vlan_dev, skb->vlan_tci);
	skb->vlan_tci = 0;

	rx_stats = this_cpu_ptr(vlan_dev_priv(vlan_dev)->vlan_pcpu_stats);

	u64_stats_update_begin(&rx_stats->syncp);
	rx_stats->rx_packets++;
	rx_stats->rx_bytes += skb->len;
	if (skb->pkt_type == PACKET_MULTICAST)
		rx_stats->rx_multicast++;
	u64_stats_update_end(&rx_stats->syncp);

	return true;
}
Пример #4
0
static struct sk_buff *vlan_reorder_header(struct sk_buff *skb)
{
	if (skb_cow(skb, skb_headroom(skb)) < 0)
		return NULL;
	memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
	skb->mac_header += VLAN_HLEN;
	skb_reset_mac_len(skb);
	return skb;
}
Пример #5
0
/* pop_eth does not support VLAN packets as this action is never called
 * for them.
 */
static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
{
	skb_pull_rcsum(skb, ETH_HLEN);
	skb_reset_mac_header(skb);
	skb_reset_mac_len(skb);

	/* safe right before invalidate_flow_key */
	key->mac_proto = MAC_PROTO_NONE;
	invalidate_flow_key(key);
	return 0;
}
Пример #6
0
void ovs_vport_send(struct vport *vport, struct sk_buff *skb, u8 mac_proto)
{
	int mtu = vport->dev->mtu;

	switch (vport->dev->type) {
	case ARPHRD_NONE:
		if (mac_proto == MAC_PROTO_ETHERNET) {
			skb_reset_network_header(skb);
			skb_reset_mac_len(skb);
			skb->protocol = htons(ETH_P_TEB);
		} else if (mac_proto != MAC_PROTO_NONE) {
			WARN_ON_ONCE(1);
			goto drop;
		}
		break;
	case ARPHRD_ETHER:
		if (mac_proto != MAC_PROTO_ETHERNET)
			goto drop;
		break;
	default:
		goto drop;
	}

	if (unlikely(packet_length(skb, vport->dev) > mtu &&
		     !skb_is_gso(skb))) {
		net_warn_ratelimited("%s: dropped over-mtu packet: %d > %d\n",
				     vport->dev->name,
				     packet_length(skb, vport->dev), mtu);
		vport->dev->stats.tx_errors++;
		goto drop;
	}

	skb->dev = vport->dev;
	vport->ops->send(skb);
	return;

drop:
	kfree_skb(skb);
}
Пример #7
0
struct sk_buff *vlan_untag(struct sk_buff *skb)
{
	struct vlan_hdr *vhdr;
	u16 vlan_tci;

	if (unlikely(vlan_tx_tag_present(skb))) {
		/* vlan_tci is already set-up so leave this for another time */
		return skb;
	}

	skb = skb_share_check(skb, GFP_ATOMIC);
	if (unlikely(!skb))
		goto err_free;

	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
		goto err_free;

	vhdr = (struct vlan_hdr *) skb->data;
	vlan_tci = ntohs(vhdr->h_vlan_TCI);
	__vlan_hwaccel_put_tag(skb, vlan_tci);

	skb_pull_rcsum(skb, VLAN_HLEN);
	vlan_set_encap_proto(skb, vhdr);

	skb = vlan_reorder_header(skb);
	if (unlikely(!skb))
		goto err_free;

	skb_reset_network_header(skb);
	skb_reset_transport_header(skb);
	skb_reset_mac_len(skb);

	return skb;

err_free:
	kfree_skb(skb);
	return NULL;
}
Пример #8
0
/**
 * key_extract - extracts a flow key from an Ethernet frame.
 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 * Ethernet header
 * @key: output flow key
 *
 * The caller must ensure that skb->len >= ETH_HLEN.
 *
 * Returns 0 if successful, otherwise a negative errno value.
 *
 * Initializes @skb header pointers as follows:
 *
 *    - skb->mac_header: the Ethernet header.
 *
 *    - skb->network_header: just past the Ethernet header, or just past the
 *      VLAN header, to the first byte of the Ethernet payload.
 *
 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
 *      on output, then just past the IP header, if one is present and
 *      of a correct length, otherwise the same as skb->network_header.
 *      For other key->eth.type values it is left untouched.
 */
static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
{
	int error;
	struct ethhdr *eth;

	/* Flags are always used as part of stats */
	key->tp.flags = 0;

	skb_reset_mac_header(skb);

	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
	 * header in the linear data area.
	 */
	eth = eth_hdr(skb);
	ether_addr_copy(key->eth.src, eth->h_source);
	ether_addr_copy(key->eth.dst, eth->h_dest);

	__skb_pull(skb, 2 * ETH_ALEN);
	/* We are going to push all headers that we pull, so no need to
	 * update skb->csum here.
	 */

	key->eth.tci = 0;
	if (vlan_tx_tag_present(skb))
		key->eth.tci = htons(vlan_get_tci(skb));
	else if (eth->h_proto == htons(ETH_P_8021Q))
		if (unlikely(parse_vlan(skb, key)))
			return -ENOMEM;

	key->eth.type = parse_ethertype(skb);
	if (unlikely(key->eth.type == htons(0)))
		return -ENOMEM;

	skb_reset_network_header(skb);
	skb_reset_mac_len(skb);
	__skb_push(skb, skb->data - skb_mac_header(skb));

	/* Network layer. */
	if (key->eth.type == htons(ETH_P_IP)) {
		struct iphdr *nh;
		__be16 offset;

		error = check_iphdr(skb);
		if (unlikely(error)) {
			memset(&key->ip, 0, sizeof(key->ip));
			memset(&key->ipv4, 0, sizeof(key->ipv4));
			if (error == -EINVAL) {
				skb->transport_header = skb->network_header;
				error = 0;
			}
			return error;
		}

		nh = ip_hdr(skb);
		key->ipv4.addr.src = nh->saddr;
		key->ipv4.addr.dst = nh->daddr;

		key->ip.proto = nh->protocol;
		key->ip.tos = nh->tos;
		key->ip.ttl = nh->ttl;

		offset = nh->frag_off & htons(IP_OFFSET);
		if (offset) {
			key->ip.frag = OVS_FRAG_TYPE_LATER;
			return 0;
		}
		if (nh->frag_off & htons(IP_MF) ||
			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
			key->ip.frag = OVS_FRAG_TYPE_FIRST;
		else
			key->ip.frag = OVS_FRAG_TYPE_NONE;

		/* Transport layer. */
		if (key->ip.proto == IPPROTO_TCP) {
			if (tcphdr_ok(skb)) {
				struct tcphdr *tcp = tcp_hdr(skb);
				key->tp.src = tcp->source;
				key->tp.dst = tcp->dest;
				key->tp.flags = TCP_FLAGS_BE16(tcp);
			} else {
				memset(&key->tp, 0, sizeof(key->tp));
			}

		} else if (key->ip.proto == IPPROTO_UDP) {
			if (udphdr_ok(skb)) {
				struct udphdr *udp = udp_hdr(skb);
				key->tp.src = udp->source;
				key->tp.dst = udp->dest;
			} else {
				memset(&key->tp, 0, sizeof(key->tp));
			}
		} else if (key->ip.proto == IPPROTO_SCTP) {
			if (sctphdr_ok(skb)) {
				struct sctphdr *sctp = sctp_hdr(skb);
				key->tp.src = sctp->source;
				key->tp.dst = sctp->dest;
			} else {
				memset(&key->tp, 0, sizeof(key->tp));
			}
		} else if (key->ip.proto == IPPROTO_ICMP) {
			if (icmphdr_ok(skb)) {
				struct icmphdr *icmp = icmp_hdr(skb);
				/* The ICMP type and code fields use the 16-bit
				 * transport port fields, so we need to store
				 * them in 16-bit network byte order.
				 */
				key->tp.src = htons(icmp->type);
				key->tp.dst = htons(icmp->code);
			} else {
				memset(&key->tp, 0, sizeof(key->tp));
			}
		}

	} else if (key->eth.type == htons(ETH_P_ARP) ||
		   key->eth.type == htons(ETH_P_RARP)) {
		struct arp_eth_header *arp;
		bool arp_available = arphdr_ok(skb);

		arp = (struct arp_eth_header *)skb_network_header(skb);

		if (arp_available &&
		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
		    arp->ar_pro == htons(ETH_P_IP) &&
		    arp->ar_hln == ETH_ALEN &&
		    arp->ar_pln == 4) {

			/* We only match on the lower 8 bits of the opcode. */
			if (ntohs(arp->ar_op) <= 0xff)
				key->ip.proto = ntohs(arp->ar_op);
			else
				key->ip.proto = 0;

			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
		} else {
			memset(&key->ip, 0, sizeof(key->ip));
			memset(&key->ipv4, 0, sizeof(key->ipv4));
		}
	} else if (eth_p_mpls(key->eth.type)) {
		size_t stack_len = MPLS_HLEN;

		/* In the presence of an MPLS label stack the end of the L2
		 * header and the beginning of the L3 header differ.
		 *
		 * Advance network_header to the beginning of the L3
		 * header. mac_len corresponds to the end of the L2 header.
		 */
		while (1) {
			__be32 lse;

			error = check_header(skb, skb->mac_len + stack_len);
			if (unlikely(error))
				return 0;

			memcpy(&lse, skb_network_header(skb), MPLS_HLEN);

			if (stack_len == MPLS_HLEN)
				memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);

			skb_set_network_header(skb, skb->mac_len + stack_len);
			if (lse & htonl(MPLS_LS_S_MASK))
				break;

			stack_len += MPLS_HLEN;
		}
	} else if (key->eth.type == htons(ETH_P_IPV6)) {
		int nh_len;             /* IPv6 Header + Extensions */

		nh_len = parse_ipv6hdr(skb, key);
		if (unlikely(nh_len < 0)) {
			memset(&key->ip, 0, sizeof(key->ip));
			memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
			if (nh_len == -EINVAL) {
				skb->transport_header = skb->network_header;
				error = 0;
			} else {
				error = nh_len;
			}
			return error;
		}

		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
			return 0;
		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
			key->ip.frag = OVS_FRAG_TYPE_FIRST;

		/* Transport layer. */
		if (key->ip.proto == NEXTHDR_TCP) {
			if (tcphdr_ok(skb)) {
				struct tcphdr *tcp = tcp_hdr(skb);
				key->tp.src = tcp->source;
				key->tp.dst = tcp->dest;
				key->tp.flags = TCP_FLAGS_BE16(tcp);
			} else {
				memset(&key->tp, 0, sizeof(key->tp));
			}
		} else if (key->ip.proto == NEXTHDR_UDP) {
			if (udphdr_ok(skb)) {
				struct udphdr *udp = udp_hdr(skb);
				key->tp.src = udp->source;
				key->tp.dst = udp->dest;
			} else {
				memset(&key->tp, 0, sizeof(key->tp));
			}
		} else if (key->ip.proto == NEXTHDR_SCTP) {
			if (sctphdr_ok(skb)) {
				struct sctphdr *sctp = sctp_hdr(skb);
				key->tp.src = sctp->source;
				key->tp.dst = sctp->dest;
			} else {
				memset(&key->tp, 0, sizeof(key->tp));
			}
		} else if (key->ip.proto == NEXTHDR_ICMP) {
			if (icmp6hdr_ok(skb)) {
				error = parse_icmpv6(skb, key, nh_len);
				if (error)
					return error;
			} else {
				memset(&key->tp, 0, sizeof(key->tp));
			}
		}
	}
	return 0;
}
Пример #9
0
bool vlan_do_receive(struct sk_buff **skbp, bool last_handler)
{
	struct sk_buff *skb = *skbp;
	u16 vlan_id = skb->vlan_tci & VLAN_VID_MASK;
	struct net_device *vlan_dev;
	struct vlan_pcpu_stats *rx_stats;

	vlan_dev = vlan_find_dev(skb->dev, vlan_id);
	if (!vlan_dev) {
		/*                                                      
                                 
   */
		if (vlan_id && last_handler)
			skb->pkt_type = PACKET_OTHERHOST;
		return false;
	}

	skb = *skbp = skb_share_check(skb, GFP_ATOMIC);
	if (unlikely(!skb))
		return false;

	skb->dev = vlan_dev;
	if (skb->pkt_type == PACKET_OTHERHOST) {
		/*                                                           
                                                          
                                                   */
		if (!compare_ether_addr(eth_hdr(skb)->h_dest,
					vlan_dev->dev_addr))
			skb->pkt_type = PACKET_HOST;
	}

	if (!(vlan_dev_priv(vlan_dev)->flags & VLAN_FLAG_REORDER_HDR)) {
		unsigned int offset = skb->data - skb_mac_header(skb);

		/*
                                                             
                                                             
                            
   */
		skb_push(skb, offset);
		skb = *skbp = vlan_insert_tag(skb, skb->vlan_tci);
		if (!skb)
			return false;
		skb_pull(skb, offset + VLAN_HLEN);
		skb_reset_mac_len(skb);
	}

	skb->priority = vlan_get_ingress_priority(vlan_dev, skb->vlan_tci);
	skb->vlan_tci = 0;

	rx_stats = this_cpu_ptr(vlan_dev_priv(vlan_dev)->vlan_pcpu_stats);

	u64_stats_update_begin(&rx_stats->syncp);
	rx_stats->rx_packets++;
	rx_stats->rx_bytes += skb->len;
	if (skb->pkt_type == PACKET_MULTICAST)
		rx_stats->rx_multicast++;
	u64_stats_update_end(&rx_stats->syncp);

	return true;
}