int slaed7_(int *icompq, int *n, int *qsiz, int *tlvls, int *curlvl, int *curpbm, float *d__, float *q, int *ldq, int *indxq, float *rho, int *cutpnt, float * qstore, int *qptr, int *prmptr, int *perm, int * givptr, int *givcol, float *givnum, float *work, int *iwork, int *info) { /* System generated locals */ int q_dim1, q_offset, i__1, i__2; /* Builtin functions */ int pow_ii(int *, int *); /* Local variables */ int i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr, indxc; extern int sgemm_(char *, char *, int *, int *, int *, float *, float *, int *, float *, int *, float *, float *, int *); int indxp; extern int slaed8_(int *, int *, int *, int *, float *, float *, int *, int *, float *, int * , float *, float *, float *, int *, float *, int *, int *, int *, float *, int *, int *, int *), slaed9_( int *, int *, int *, int *, float *, float *, int *, float *, float *, float *, float *, int *, int *), slaeda_(int *, int *, int *, int *, int *, int *, int *, int *, float *, float *, int *, float * , float *, int *); int idlmda; extern int xerbla_(char *, int *), slamrg_( int *, int *, float *, int *, int *, int *); int coltyp; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAED7 computes the updated eigensystem of a diagonal */ /* matrix after modification by a rank-one symmetric matrix. This */ /* routine is used only for the eigenproblem which requires all */ /* eigenvalues and optionally eigenvectors of a dense symmetric matrix */ /* that has been reduced to tridiagonal form. SLAED1 handles */ /* the case in which all eigenvalues and eigenvectors of a symmetric */ /* tridiagonal matrix are desired. */ /* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */ /* where Z = Q'u, u is a vector of length N with ones in the */ /* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */ /* The eigenvectors of the original matrix are stored in Q, and the */ /* eigenvalues are in D. The algorithm consists of three stages: */ /* The first stage consists of deflating the size of the problem */ /* when there are multiple eigenvalues or if there is a zero in */ /* the Z vector. For each such occurence the dimension of the */ /* secular equation problem is reduced by one. This stage is */ /* performed by the routine SLAED8. */ /* The second stage consists of calculating the updated */ /* eigenvalues. This is done by finding the roots of the secular */ /* equation via the routine SLAED4 (as called by SLAED9). */ /* This routine also calculates the eigenvectors of the current */ /* problem. */ /* The final stage consists of computing the updated eigenvectors */ /* directly using the updated eigenvalues. The eigenvectors for */ /* the current problem are multiplied with the eigenvectors from */ /* the overall problem. */ /* Arguments */ /* ========= */ /* ICOMPQ (input) INTEGER */ /* = 0: Compute eigenvalues only. */ /* = 1: Compute eigenvectors of original dense symmetric matrix */ /* also. On entry, Q contains the orthogonal matrix used */ /* to reduce the original matrix to tridiagonal form. */ /* N (input) INTEGER */ /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ /* QSIZ (input) INTEGER */ /* The dimension of the orthogonal matrix used to reduce */ /* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */ /* TLVLS (input) INTEGER */ /* The total number of merging levels in the overall divide and */ /* conquer tree. */ /* CURLVL (input) INTEGER */ /* The current level in the overall merge routine, */ /* 0 <= CURLVL <= TLVLS. */ /* CURPBM (input) INTEGER */ /* The current problem in the current level in the overall */ /* merge routine (counting from upper left to lower right). */ /* D (input/output) REAL array, dimension (N) */ /* On entry, the eigenvalues of the rank-1-perturbed matrix. */ /* On exit, the eigenvalues of the repaired matrix. */ /* Q (input/output) REAL array, dimension (LDQ, N) */ /* On entry, the eigenvectors of the rank-1-perturbed matrix. */ /* On exit, the eigenvectors of the repaired tridiagonal matrix. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= MAX(1,N). */ /* INDXQ (output) INTEGER array, dimension (N) */ /* The permutation which will reintegrate the subproblem just */ /* solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) */ /* will be in ascending order. */ /* RHO (input) REAL */ /* The subdiagonal element used to create the rank-1 */ /* modification. */ /* CUTPNT (input) INTEGER */ /* Contains the location of the last eigenvalue in the leading */ /* sub-matrix. MIN(1,N) <= CUTPNT <= N. */ /* QSTORE (input/output) REAL array, dimension (N**2+1) */ /* Stores eigenvectors of submatrices encountered during */ /* divide and conquer, packed together. QPTR points to */ /* beginning of the submatrices. */ /* QPTR (input/output) INTEGER array, dimension (N+2) */ /* List of indices pointing to beginning of submatrices stored */ /* in QSTORE. The submatrices are numbered starting at the */ /* bottom left of the divide and conquer tree, from left to */ /* right and bottom to top. */ /* PRMPTR (input) INTEGER array, dimension (N lg N) */ /* Contains a list of pointers which indicate where in PERM a */ /* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ /* indicates the size of the permutation and also the size of */ /* the full, non-deflated problem. */ /* PERM (input) INTEGER array, dimension (N lg N) */ /* Contains the permutations (from deflation and sorting) to be */ /* applied to each eigenblock. */ /* GIVPTR (input) INTEGER array, dimension (N lg N) */ /* Contains a list of pointers which indicate where in GIVCOL a */ /* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ /* indicates the number of Givens rotations. */ /* GIVCOL (input) INTEGER array, dimension (2, N lg N) */ /* Each pair of numbers indicates a pair of columns to take place */ /* in a Givens rotation. */ /* GIVNUM (input) REAL array, dimension (2, N lg N) */ /* Each number indicates the S value to be used in the */ /* corresponding Givens rotation. */ /* WORK (workspace) REAL array, dimension (3*N+QSIZ*N) */ /* IWORK (workspace) INTEGER array, dimension (4*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = 1, an eigenvalue did not converge */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --indxq; --qstore; --qptr; --prmptr; --perm; --givptr; givcol -= 3; givnum -= 3; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*icompq == 1 && *qsiz < *n) { *info = -4; } else if (*ldq < MAX(1,*n)) { *info = -9; } else if (MIN(1,*n) > *cutpnt || *n < *cutpnt) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("SLAED7", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* The following values are for bookkeeping purposes only. They are */ /* int pointers which indicate the portion of the workspace */ /* used by a particular array in SLAED8 and SLAED9. */ if (*icompq == 1) { ldq2 = *qsiz; } else { ldq2 = *n; } iz = 1; idlmda = iz + *n; iw = idlmda + *n; iq2 = iw + *n; is = iq2 + *n * ldq2; indx = 1; indxc = indx + *n; coltyp = indxc + *n; indxp = coltyp + *n; /* Form the z-vector which consists of the last row of Q_1 and the */ /* first row of Q_2. */ ptr = pow_ii(&c__2, tlvls) + 1; i__1 = *curlvl - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *tlvls - i__; ptr += pow_ii(&c__2, &i__2); /* L10: */ } curr = ptr + *curpbm; slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz + *n], info); /* When solving the final problem, we no longer need the stored data, */ /* so we will overwrite the data from this level onto the previously */ /* used storage space. */ if (*curlvl == *tlvls) { qptr[curr] = 1; prmptr[curr] = 1; givptr[curr] = 1; } /* Sort and Deflate eigenvalues. */ slaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho, cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], & perm[prmptr[curr]], &givptr[curr + 1], &givcol[(givptr[curr] << 1) + 1], &givnum[(givptr[curr] << 1) + 1], &iwork[indxp], &iwork[ indx], info); prmptr[curr + 1] = prmptr[curr] + *n; givptr[curr + 1] += givptr[curr]; /* Solve Secular Equation. */ if (k != 0) { slaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda], &work[iw], &qstore[qptr[curr]], &k, info); if (*info != 0) { goto L30; } if (*icompq == 1) { sgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[ qptr[curr]], &k, &c_b11, &q[q_offset], ldq); } /* Computing 2nd power */ i__1 = k; qptr[curr + 1] = qptr[curr] + i__1 * i__1; /* Prepare the INDXQ sorting permutation. */ n1 = k; n2 = *n - k; slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); } else { qptr[curr + 1] = qptr[curr]; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indxq[i__] = i__; /* L20: */ } } L30: return 0; /* End of SLAED7 */ } /* slaed7_ */
/* Subroutine */ int slaed7_(integer *icompq, integer *n, integer *qsiz, integer *tlvls, integer *curlvl, integer *curpbm, real *d__, real *q, integer *ldq, integer *indxq, real *rho, integer *cutpnt, real * qstore, integer *qptr, integer *prmptr, integer *perm, integer * givptr, integer *givcol, real *givnum, real *work, integer *iwork, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ static integer indx, curr, i__, k, indxc; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static integer indxp, n1, n2; extern /* Subroutine */ int slaed8_(integer *, integer *, integer *, integer *, real *, real *, integer *, integer *, real *, integer * , real *, real *, real *, integer *, real *, integer *, integer *, integer *, real *, integer *, integer *, integer *), slaed9_( integer *, integer *, integer *, integer *, real *, real *, integer *, real *, real *, real *, real *, integer *, integer *), slaeda_(integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, real *, real *, integer *, real * , real *, integer *); static integer idlmda, is, iw, iz; extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_( integer *, integer *, real *, integer *, integer *, integer *); static integer coltyp, iq2, ptr, ldq2; #define givcol_ref(a_1,a_2) givcol[(a_2)*2 + a_1] #define givnum_ref(a_1,a_2) givnum[(a_2)*2 + a_1] /* -- LAPACK routine (instrumented to count operations, version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Common block to return operation count and iteration count ITCNT is unchanged, OPS is only incremented Purpose ======= SLAED7 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and optionally eigenvectors of a dense symmetric matrix that has been reduced to tridiagonal form. SLAED1 handles the case in which all eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired. T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) where Z = Q'u, u is a vector of length N with ones in the CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues are in D. The algorithm consists of three stages: The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the Z vector. For each such occurence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine SLAED8. The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine SLAED4 (as called by SLAED9). This routine also calculates the eigenvectors of the current problem. The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem. Arguments ========= ICOMPQ (input) INTEGER = 0: Compute eigenvalues only. = 1: Compute eigenvectors of original dense symmetric matrix also. On entry, Q contains the orthogonal matrix used to reduce the original matrix to tridiagonal form. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. QSIZ (input) INTEGER The dimension of the orthogonal matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. TLVLS (input) INTEGER The total number of merging levels in the overall divide and conquer tree. CURLVL (input) INTEGER The current level in the overall merge routine, 0 <= CURLVL <= TLVLS. CURPBM (input) INTEGER The current problem in the current level in the overall merge routine (counting from upper left to lower right). D (input/output) REAL array, dimension (N) On entry, the eigenvalues of the rank-1-perturbed matrix. On exit, the eigenvalues of the repaired matrix. Q (input/output) REAL array, dimension (LDQ, N) On entry, the eigenvectors of the rank-1-perturbed matrix. On exit, the eigenvectors of the repaired tridiagonal matrix. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). INDXQ (output) INTEGER array, dimension (N) The permutation which will reintegrate the subproblem just solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) will be in ascending order. RHO (input) REAL The subdiagonal element used to create the rank-1 modification. CUTPNT (input) INTEGER Contains the location of the last eigenvalue in the leading sub-matrix. min(1,N) <= CUTPNT <= N. QSTORE (input/output) REAL array, dimension (N**2+1) Stores eigenvectors of submatrices encountered during divide and conquer, packed together. QPTR points to beginning of the submatrices. QPTR (input/output) INTEGER array, dimension (N+2) List of indices pointing to beginning of submatrices stored in QSTORE. The submatrices are numbered starting at the bottom left of the divide and conquer tree, from left to right and bottom to top. PRMPTR (input) INTEGER array, dimension (N lg N) Contains a list of pointers which indicate where in PERM a level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) indicates the size of the permutation and also the size of the full, non-deflated problem. PERM (input) INTEGER array, dimension (N lg N) Contains the permutations (from deflation and sorting) to be applied to each eigenblock. GIVPTR (input) INTEGER array, dimension (N lg N) Contains a list of pointers which indicate where in GIVCOL a level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) indicates the number of Givens rotations. GIVCOL (input) INTEGER array, dimension (2, N lg N) Each pair of numbers indicates a pair of columns to take place in a Givens rotation. GIVNUM (input) REAL array, dimension (2, N lg N) Each number indicates the S value to be used in the corresponding Givens rotation. WORK (workspace) REAL array, dimension (3*N+QSIZ*N) IWORK (workspace) INTEGER array, dimension (4*N) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, an eigenvalue did not converge Further Details =============== Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA ===================================================================== Test the input parameters. Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --indxq; --qstore; --qptr; --prmptr; --perm; --givptr; givcol -= 3; givnum -= 3; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*icompq == 1 && *qsiz < *n) { *info = -4; } else if (*ldq < max(1,*n)) { *info = -9; } else if (min(1,*n) > *cutpnt || *n < *cutpnt) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("SLAED7", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* The following values are for bookkeeping purposes only. They are integer pointers which indicate the portion of the workspace used by a particular array in SLAED8 and SLAED9. */ if (*icompq == 1) { ldq2 = *qsiz; } else { ldq2 = *n; } iz = 1; idlmda = iz + *n; iw = idlmda + *n; iq2 = iw + *n; is = iq2 + *n * ldq2; indx = 1; indxc = indx + *n; coltyp = indxc + *n; indxp = coltyp + *n; /* Form the z-vector which consists of the last row of Q_1 and the first row of Q_2. */ ptr = pow_ii(&c__2, tlvls) + 1; i__1 = *curlvl - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *tlvls - i__; ptr += pow_ii(&c__2, &i__2); /* L10: */ } curr = ptr + *curpbm; slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz + *n], info); /* When solving the final problem, we no longer need the stored data, so we will overwrite the data from this level onto the previously used storage space. */ if (*curlvl == *tlvls) { qptr[curr] = 1; prmptr[curr] = 1; givptr[curr] = 1; } /* Sort and Deflate eigenvalues. */ slaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho, cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], & perm[prmptr[curr]], &givptr[curr + 1], &givcol_ref(1, givptr[curr] ), &givnum_ref(1, givptr[curr]), &iwork[indxp], &iwork[indx], info); prmptr[curr + 1] = prmptr[curr] + *n; givptr[curr + 1] += givptr[curr]; /* Solve Secular Equation. */ if (k != 0) { slaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda], &work[iw], &qstore[qptr[curr]], &k, info); if (*info != 0) { goto L30; } if (*icompq == 1) { latime_1.ops += (real) (*qsiz) * 2 * k * k; sgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[ qptr[curr]], &k, &c_b11, &q[q_offset], ldq); } /* Computing 2nd power */ i__1 = k; qptr[curr + 1] = qptr[curr] + i__1 * i__1; /* Prepare the INDXQ sorting permutation. */ n1 = k; n2 = *n - k; slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); } else { qptr[curr + 1] = qptr[curr]; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indxq[i__] = i__; /* L20: */ } } L30: return 0; /* End of SLAED7 */ } /* slaed7_ */