Пример #1
0
/*
 * Downgrade an unrecursed exclusive lock into a single shared lock.
 */
void
_sx_downgrade(struct sx *sx, const char *file, int line)
{
	uintptr_t x;
	int wakeup_swapper;

	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
	    ("sx_downgrade() of destroyed sx @ %s:%d", file, line));
	_sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line);
#ifndef INVARIANTS
	if (sx_recursed(sx))
		panic("downgrade of a recursed lock");
#endif

	WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line);

	/*
	 * Try to switch from an exclusive lock with no shared waiters
	 * to one sharer with no shared waiters.  If there are
	 * exclusive waiters, we don't need to lock the sleep queue so
	 * long as we preserve the flag.  We do one quick try and if
	 * that fails we grab the sleepq lock to keep the flags from
	 * changing and do it the slow way.
	 *
	 * We have to lock the sleep queue if there are shared waiters
	 * so we can wake them up.
	 */
	x = sx->sx_lock;
	if (!(x & SX_LOCK_SHARED_WAITERS) &&
	    atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) |
	    (x & SX_LOCK_EXCLUSIVE_WAITERS))) {
		LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
		return;
	}

	/*
	 * Lock the sleep queue so we can read the waiters bits
	 * without any races and wakeup any shared waiters.
	 */
	sleepq_lock(&sx->lock_object);

	/*
	 * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single
	 * shared lock.  If there are any shared waiters, wake them up.
	 */
	wakeup_swapper = 0;
	x = sx->sx_lock;
	atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) |
	    (x & SX_LOCK_EXCLUSIVE_WAITERS));
	if (x & SX_LOCK_SHARED_WAITERS)
		wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
		    0, SQ_SHARED_QUEUE);
	sleepq_release(&sx->lock_object);

	LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
	LOCKSTAT_RECORD0(LS_SX_DOWNGRADE_DOWNGRADE, sx);

	if (wakeup_swapper)
		kick_proc0();
}
Пример #2
0
/*
 * This function represents the so-called 'hard case' for sx_xunlock
 * operation.  All 'easy case' failures are redirected to this.  Note
 * that ideally this would be a static function, but it needs to be
 * accessible from at least sx.h.
 */
void
_sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line)
{
	uintptr_t x;
	int queue, wakeup_swapper;

	if (SCHEDULER_STOPPED())
		return;

	MPASS(!(sx->sx_lock & SX_LOCK_SHARED));

	/* If the lock is recursed, then unrecurse one level. */
	if (sx_xlocked(sx) && sx_recursed(sx)) {
		if ((--sx->sx_recurse) == 0)
			atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
		if (LOCK_LOG_TEST(&sx->lock_object, 0))
			CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx);
		return;
	}
	MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS |
	    SX_LOCK_EXCLUSIVE_WAITERS));
	if (LOCK_LOG_TEST(&sx->lock_object, 0))
		CTR2(KTR_LOCK, "%s: %p contested", __func__, sx);

	sleepq_lock(&sx->lock_object);
	x = SX_LOCK_UNLOCKED;

	/*
	 * The wake up algorithm here is quite simple and probably not
	 * ideal.  It gives precedence to shared waiters if they are
	 * present.  For this condition, we have to preserve the
	 * state of the exclusive waiters flag.
	 * If interruptible sleeps left the shared queue empty avoid a
	 * starvation for the threads sleeping on the exclusive queue by giving
	 * them precedence and cleaning up the shared waiters bit anyway.
	 */
	if ((sx->sx_lock & SX_LOCK_SHARED_WAITERS) != 0 &&
	    sleepq_sleepcnt(&sx->lock_object, SQ_SHARED_QUEUE) != 0) {
		queue = SQ_SHARED_QUEUE;
		x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS);
	} else
		queue = SQ_EXCLUSIVE_QUEUE;

	/* Wake up all the waiters for the specific queue. */
	if (LOCK_LOG_TEST(&sx->lock_object, 0))
		CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue",
		    __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" :
		    "exclusive");
	atomic_store_rel_ptr(&sx->sx_lock, x);
	wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0,
	    queue);
	sleepq_release(&sx->lock_object);
	if (wakeup_swapper)
		kick_proc0();
}
Пример #3
0
/*
 * This function represents the so-called 'hard case' for sx_slock
 * operation.  All 'easy case' failures are redirected to this.  Note
 * that ideally this would be a static function, but it needs to be
 * accessible from at least sx.h.
 */
int
_sx_slock_hard(struct sx *sx, int opts, const char *file, int line)
{
	GIANT_DECLARE;
#ifdef ADAPTIVE_SX
	volatile struct thread *owner;
#endif
#ifdef LOCK_PROFILING
	uint64_t waittime = 0;
	int contested = 0;
#endif
	uintptr_t x;
	int error = 0;
#ifdef KDTRACE_HOOKS
	uintptr_t state;
	uint64_t spin_cnt = 0;
	uint64_t sleep_cnt = 0;
	int64_t sleep_time = 0;
	int64_t all_time = 0;
#endif

	if (SCHEDULER_STOPPED())
		return (0);

#ifdef KDTRACE_HOOKS
	state = sx->sx_lock;
	all_time -= lockstat_nsecs(&sx->lock_object);
#endif

	/*
	 * As with rwlocks, we don't make any attempt to try to block
	 * shared locks once there is an exclusive waiter.
	 */
	for (;;) {
#ifdef KDTRACE_HOOKS
		spin_cnt++;
#endif
		x = sx->sx_lock;

		/*
		 * If no other thread has an exclusive lock then try to bump up
		 * the count of sharers.  Since we have to preserve the state
		 * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the
		 * shared lock loop back and retry.
		 */
		if (x & SX_LOCK_SHARED) {
			MPASS(!(x & SX_LOCK_SHARED_WAITERS));
			if (atomic_cmpset_acq_ptr(&sx->sx_lock, x,
			    x + SX_ONE_SHARER)) {
				if (LOCK_LOG_TEST(&sx->lock_object, 0))
					CTR4(KTR_LOCK,
					    "%s: %p succeed %p -> %p", __func__,
					    sx, (void *)x,
					    (void *)(x + SX_ONE_SHARER));
				break;
			}
			continue;
		}
#ifdef HWPMC_HOOKS
		PMC_SOFT_CALL( , , lock, failed);
#endif
		lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
		    &waittime);

#ifdef ADAPTIVE_SX
		/*
		 * If the owner is running on another CPU, spin until
		 * the owner stops running or the state of the lock
		 * changes.
		 */
		if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) {
			x = SX_OWNER(x);
			owner = (struct thread *)x;
			if (TD_IS_RUNNING(owner)) {
				if (LOCK_LOG_TEST(&sx->lock_object, 0))
					CTR3(KTR_LOCK,
					    "%s: spinning on %p held by %p",
					    __func__, sx, owner);
				KTR_STATE1(KTR_SCHED, "thread",
				    sched_tdname(curthread), "spinning",
				    "lockname:\"%s\"", sx->lock_object.lo_name);
				GIANT_SAVE();
				while (SX_OWNER(sx->sx_lock) == x &&
				    TD_IS_RUNNING(owner)) {
#ifdef KDTRACE_HOOKS
					spin_cnt++;
#endif
					cpu_spinwait();
				}
				KTR_STATE0(KTR_SCHED, "thread",
				    sched_tdname(curthread), "running");
				continue;
			}
		}
#endif

		/*
		 * Some other thread already has an exclusive lock, so
		 * start the process of blocking.
		 */
		sleepq_lock(&sx->lock_object);
		x = sx->sx_lock;

		/*
		 * The lock could have been released while we spun.
		 * In this case loop back and retry.
		 */
		if (x & SX_LOCK_SHARED) {
			sleepq_release(&sx->lock_object);
			continue;
		}

#ifdef ADAPTIVE_SX
		/*
		 * If the owner is running on another CPU, spin until
		 * the owner stops running or the state of the lock
		 * changes.
		 */
		if (!(x & SX_LOCK_SHARED) &&
		    (sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) {
			owner = (struct thread *)SX_OWNER(x);
			if (TD_IS_RUNNING(owner)) {
				sleepq_release(&sx->lock_object);
				continue;
			}
		}
#endif

		/*
		 * Try to set the SX_LOCK_SHARED_WAITERS flag.  If we
		 * fail to set it drop the sleep queue lock and loop
		 * back.
		 */
		if (!(x & SX_LOCK_SHARED_WAITERS)) {
			if (!atomic_cmpset_ptr(&sx->sx_lock, x,
			    x | SX_LOCK_SHARED_WAITERS)) {
				sleepq_release(&sx->lock_object);
				continue;
			}
			if (LOCK_LOG_TEST(&sx->lock_object, 0))
				CTR2(KTR_LOCK, "%s: %p set shared waiters flag",
				    __func__, sx);
		}

		/*
		 * Since we have been unable to acquire the shared lock,
		 * we have to sleep.
		 */
		if (LOCK_LOG_TEST(&sx->lock_object, 0))
			CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
			    __func__, sx);

#ifdef KDTRACE_HOOKS
		sleep_time -= lockstat_nsecs(&sx->lock_object);
#endif
		GIANT_SAVE();
		sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
		    SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
		    SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE);
		if (!(opts & SX_INTERRUPTIBLE))
			sleepq_wait(&sx->lock_object, 0);
		else
			error = sleepq_wait_sig(&sx->lock_object, 0);
#ifdef KDTRACE_HOOKS
		sleep_time += lockstat_nsecs(&sx->lock_object);
		sleep_cnt++;
#endif
		if (error) {
			if (LOCK_LOG_TEST(&sx->lock_object, 0))
				CTR2(KTR_LOCK,
			"%s: interruptible sleep by %p suspended by signal",
				    __func__, sx);
			break;
		}
		if (LOCK_LOG_TEST(&sx->lock_object, 0))
			CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
			    __func__, sx);
	}
#ifdef KDTRACE_HOOKS
	all_time += lockstat_nsecs(&sx->lock_object);
	if (sleep_time)
		LOCKSTAT_RECORD4(sx__block, sx, sleep_time,
		    LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0,
		    (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
	if (spin_cnt > sleep_cnt)
		LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time,
		    LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0,
		    (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
#endif
	if (error == 0)
		LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx,
		    contested, waittime, file, line, LOCKSTAT_READER);
	GIANT_RESTORE();
	return (error);
}
Пример #4
0
/*
 * This function represents the so-called 'hard case' for sx_xlock
 * operation.  All 'easy case' failures are redirected to this.  Note
 * that ideally this would be a static function, but it needs to be
 * accessible from at least sx.h.
 */
int
_sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file,
    int line)
{
	GIANT_DECLARE;
#ifdef ADAPTIVE_SX
	volatile struct thread *owner;
	u_int i, spintries = 0;
#endif
	uintptr_t x;
#ifdef LOCK_PROFILING
	uint64_t waittime = 0;
	int contested = 0;
#endif
	int error = 0;
#ifdef	KDTRACE_HOOKS
	uintptr_t state;
	uint64_t spin_cnt = 0;
	uint64_t sleep_cnt = 0;
	int64_t sleep_time = 0;
	int64_t all_time = 0;
#endif

	if (SCHEDULER_STOPPED())
		return (0);

	/* If we already hold an exclusive lock, then recurse. */
	if (sx_xlocked(sx)) {
		KASSERT((sx->lock_object.lo_flags & LO_RECURSABLE) != 0,
	    ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n",
		    sx->lock_object.lo_name, file, line));
		sx->sx_recurse++;
		atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
		if (LOCK_LOG_TEST(&sx->lock_object, 0))
			CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx);
		return (0);
	}

	if (LOCK_LOG_TEST(&sx->lock_object, 0))
		CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__,
		    sx->lock_object.lo_name, (void *)sx->sx_lock, file, line);

#ifdef KDTRACE_HOOKS
	all_time -= lockstat_nsecs(&sx->lock_object);
	state = sx->sx_lock;
#endif
	while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) {
#ifdef KDTRACE_HOOKS
		spin_cnt++;
#endif
#ifdef HWPMC_HOOKS
		PMC_SOFT_CALL( , , lock, failed);
#endif
		lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
		    &waittime);
#ifdef ADAPTIVE_SX
		/*
		 * If the lock is write locked and the owner is
		 * running on another CPU, spin until the owner stops
		 * running or the state of the lock changes.
		 */
		x = sx->sx_lock;
		if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) {
			if ((x & SX_LOCK_SHARED) == 0) {
				x = SX_OWNER(x);
				owner = (struct thread *)x;
				if (TD_IS_RUNNING(owner)) {
					if (LOCK_LOG_TEST(&sx->lock_object, 0))
						CTR3(KTR_LOCK,
					    "%s: spinning on %p held by %p",
						    __func__, sx, owner);
					KTR_STATE1(KTR_SCHED, "thread",
					    sched_tdname(curthread), "spinning",
					    "lockname:\"%s\"",
					    sx->lock_object.lo_name);
					GIANT_SAVE();
					while (SX_OWNER(sx->sx_lock) == x &&
					    TD_IS_RUNNING(owner)) {
						cpu_spinwait();
#ifdef KDTRACE_HOOKS
						spin_cnt++;
#endif
					}
					KTR_STATE0(KTR_SCHED, "thread",
					    sched_tdname(curthread), "running");
					continue;
				}
			} else if (SX_SHARERS(x) && spintries < asx_retries) {
				KTR_STATE1(KTR_SCHED, "thread",
				    sched_tdname(curthread), "spinning",
				    "lockname:\"%s\"", sx->lock_object.lo_name);
				GIANT_SAVE();
				spintries++;
				for (i = 0; i < asx_loops; i++) {
					if (LOCK_LOG_TEST(&sx->lock_object, 0))
						CTR4(KTR_LOCK,
				    "%s: shared spinning on %p with %u and %u",
						    __func__, sx, spintries, i);
					x = sx->sx_lock;
					if ((x & SX_LOCK_SHARED) == 0 ||
					    SX_SHARERS(x) == 0)
						break;
					cpu_spinwait();
#ifdef KDTRACE_HOOKS
					spin_cnt++;
#endif
				}
				KTR_STATE0(KTR_SCHED, "thread",
				    sched_tdname(curthread), "running");
				if (i != asx_loops)
					continue;
			}
		}
#endif

		sleepq_lock(&sx->lock_object);
		x = sx->sx_lock;

		/*
		 * If the lock was released while spinning on the
		 * sleep queue chain lock, try again.
		 */
		if (x == SX_LOCK_UNLOCKED) {
			sleepq_release(&sx->lock_object);
			continue;
		}

#ifdef ADAPTIVE_SX
		/*
		 * The current lock owner might have started executing
		 * on another CPU (or the lock could have changed
		 * owners) while we were waiting on the sleep queue
		 * chain lock.  If so, drop the sleep queue lock and try
		 * again.
		 */
		if (!(x & SX_LOCK_SHARED) &&
		    (sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) {
			owner = (struct thread *)SX_OWNER(x);
			if (TD_IS_RUNNING(owner)) {
				sleepq_release(&sx->lock_object);
				continue;
			}
		}
#endif

		/*
		 * If an exclusive lock was released with both shared
		 * and exclusive waiters and a shared waiter hasn't
		 * woken up and acquired the lock yet, sx_lock will be
		 * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS.
		 * If we see that value, try to acquire it once.  Note
		 * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS
		 * as there are other exclusive waiters still.  If we
		 * fail, restart the loop.
		 */
		if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) {
			if (atomic_cmpset_acq_ptr(&sx->sx_lock,
			    SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS,
			    tid | SX_LOCK_EXCLUSIVE_WAITERS)) {
				sleepq_release(&sx->lock_object);
				CTR2(KTR_LOCK, "%s: %p claimed by new writer",
				    __func__, sx);
				break;
			}
			sleepq_release(&sx->lock_object);
			continue;
		}

		/*
		 * Try to set the SX_LOCK_EXCLUSIVE_WAITERS.  If we fail,
		 * than loop back and retry.
		 */
		if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
			if (!atomic_cmpset_ptr(&sx->sx_lock, x,
			    x | SX_LOCK_EXCLUSIVE_WAITERS)) {
				sleepq_release(&sx->lock_object);
				continue;
			}
			if (LOCK_LOG_TEST(&sx->lock_object, 0))
				CTR2(KTR_LOCK, "%s: %p set excl waiters flag",
				    __func__, sx);
		}

		/*
		 * Since we have been unable to acquire the exclusive
		 * lock and the exclusive waiters flag is set, we have
		 * to sleep.
		 */
		if (LOCK_LOG_TEST(&sx->lock_object, 0))
			CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
			    __func__, sx);

#ifdef KDTRACE_HOOKS
		sleep_time -= lockstat_nsecs(&sx->lock_object);
#endif
		GIANT_SAVE();
		sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
		    SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
		    SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE);
		if (!(opts & SX_INTERRUPTIBLE))
			sleepq_wait(&sx->lock_object, 0);
		else
			error = sleepq_wait_sig(&sx->lock_object, 0);
#ifdef KDTRACE_HOOKS
		sleep_time += lockstat_nsecs(&sx->lock_object);
		sleep_cnt++;
#endif
		if (error) {
			if (LOCK_LOG_TEST(&sx->lock_object, 0))
				CTR2(KTR_LOCK,
			"%s: interruptible sleep by %p suspended by signal",
				    __func__, sx);
			break;
		}
		if (LOCK_LOG_TEST(&sx->lock_object, 0))
			CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
			    __func__, sx);
	}
#ifdef KDTRACE_HOOKS
	all_time += lockstat_nsecs(&sx->lock_object);
	if (sleep_time)
		LOCKSTAT_RECORD4(sx__block, sx, sleep_time,
		    LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0,
		    (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
	if (spin_cnt > sleep_cnt)
		LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time,
		    LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0,
		    (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
#endif
	if (!error)
		LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx,
		    contested, waittime, file, line, LOCKSTAT_WRITER);
	GIANT_RESTORE();
	return (error);
}
Пример #5
0
/*
 * This function represents the so-called 'hard case' for sx_sunlock
 * operation.  All 'easy case' failures are redirected to this.  Note
 * that ideally this would be a static function, but it needs to be
 * accessible from at least sx.h.
 */
void
_sx_sunlock_hard(struct sx *sx, const char *file, int line)
{
	uintptr_t x;
	int wakeup_swapper;

	if (SCHEDULER_STOPPED())
		return;

	for (;;) {
		x = sx->sx_lock;

		/*
		 * We should never have sharers while at least one thread
		 * holds a shared lock.
		 */
		KASSERT(!(x & SX_LOCK_SHARED_WAITERS),
		    ("%s: waiting sharers", __func__));

		/*
		 * See if there is more than one shared lock held.  If
		 * so, just drop one and return.
		 */
		if (SX_SHARERS(x) > 1) {
			if (atomic_cmpset_rel_ptr(&sx->sx_lock, x,
			    x - SX_ONE_SHARER)) {
				if (LOCK_LOG_TEST(&sx->lock_object, 0))
					CTR4(KTR_LOCK,
					    "%s: %p succeeded %p -> %p",
					    __func__, sx, (void *)x,
					    (void *)(x - SX_ONE_SHARER));
				break;
			}
			continue;
		}

		/*
		 * If there aren't any waiters for an exclusive lock,
		 * then try to drop it quickly.
		 */
		if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
			MPASS(x == SX_SHARERS_LOCK(1));
			if (atomic_cmpset_rel_ptr(&sx->sx_lock,
			    SX_SHARERS_LOCK(1), SX_LOCK_UNLOCKED)) {
				if (LOCK_LOG_TEST(&sx->lock_object, 0))
					CTR2(KTR_LOCK, "%s: %p last succeeded",
					    __func__, sx);
				break;
			}
			continue;
		}

		/*
		 * At this point, there should just be one sharer with
		 * exclusive waiters.
		 */
		MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS));

		sleepq_lock(&sx->lock_object);

		/*
		 * Wake up semantic here is quite simple:
		 * Just wake up all the exclusive waiters.
		 * Note that the state of the lock could have changed,
		 * so if it fails loop back and retry.
		 */
		if (!atomic_cmpset_rel_ptr(&sx->sx_lock,
		    SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS,
		    SX_LOCK_UNLOCKED)) {
			sleepq_release(&sx->lock_object);
			continue;
		}
		if (LOCK_LOG_TEST(&sx->lock_object, 0))
			CTR2(KTR_LOCK, "%s: %p waking up all thread on"
			    "exclusive queue", __func__, sx);
		wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
		    0, SQ_EXCLUSIVE_QUEUE);
		sleepq_release(&sx->lock_object);
		if (wakeup_swapper)
			kick_proc0();
		break;
	}
}