Пример #1
0
/* Private function for carrying out the noisy bolometer masking */
void smf__noisymask( ThrWorkForce *wf, smfData *data, smfArray **noisemaps,
                     double noisecliphigh, double noisecliplow,
                     int zeropad, struct timeval *tv1,
                     struct timeval *tv2, int *status ) {

  smfData *noisemap=NULL;   /* Individual noisemap */

  if( *status != SAI__OK ) return;

  msgOutif( MSG__VERB, "", FUNC_NAME ": masking noisy bolometers", status );
  smf_mask_noisy( wf, data,
                  (noisemaps && *noisemaps) ? (&noisemap) : NULL,
                  noisecliphigh, noisecliplow, 1, zeropad, status );

  if( noisemaps && *noisemaps && noisemap ) {
    smf_addto_smfArray( *noisemaps, noisemap, status );
  }

  /*** TIMER ***/
  msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s masking noisy",
             status, smf_timerupdate(tv1,tv2,status) );


}
Пример #2
0
static void smf1_calcmodel_smo_job( void *job_data, int *status ) {
/*
*  Name:
*     smf1_calcmodel_smo_job

*  Purpose:
*     Smooth each bolometer.

*  Invocation:
*     void smf1_calcmodel_smo_job( void *job_data, int *status )

*  Arguments:
*     job_data = void * (Given)
*        Pointer to the data needed by the job. Should be a pointer to a
*        smfCalcmodelSmoJobData structure.
*     status = int * (Given and Returned)
*        Pointer to global status.

*  Description:
*     This routine runs in a worker thread to smooth the specified bolometer
*     time streams using the specified filter.

*/

/* Local Variables: */
   dim_t b1;
   dim_t b2;
   dim_t i;
   dim_t nbolo;
   dim_t ntslice;
   double *boldata = NULL;
   double *model_data;
   double *res_data;
   double *w1 = NULL;
   int *w3 = NULL;
   smf_filt_t filter_type;
   size_t boxcar;
   size_t bstride;
   size_t tstride;
   size_t *w2 = NULL;
   smfCalcmodelSmoJobData *pdata;
   smf_qual_t *bolqua = NULL;
   smf_qual_t *qua_data;
   struct timeval tv1;
   struct timeval tv2;

   /* Check inherited status */
   if( *status != SAI__OK ) return;

   /* Get a pointer to the job data, and then extract its contents into a
      set of local variables. */
   pdata = (smfCalcmodelSmoJobData *) job_data;

   b1 = pdata->b1;
   b2 = pdata->b2;
   boxcar = pdata->boxcar;
   bstride = pdata->bstride;
   filter_type = pdata->filter_type;
   model_data = pdata->model_data;
   nbolo = pdata->nbolo;
   ntslice = pdata->ntslice;
   qua_data = pdata->qua_data;
   res_data = pdata->res_data;
   tstride = pdata->tstride;

   /* Check we have something to do. */
   if( b1 < nbolo ) {

      /* Debugging message indicating thread started work */
      msgOutiff( SMF__TIMER_MSG, "", "smf_calcmodel_smo: thread starting on bolos %" DIM_T_FMT
                 " -- %" DIM_T_FMT,
                 status, b1, b2 );
      smf_timerinit( &tv1, &tv2, status);

      /* Allocate work space */
      boldata = astMalloc( ntslice*sizeof( *boldata ) );
      bolqua  = astMalloc( ntslice*sizeof( *bolqua ) );
      if( filter_type == SMF__FILT_MEDIAN ) {
        w1 = astMalloc( boxcar*sizeof( *w1 ) );
        w2 = astMalloc( boxcar*sizeof( *w2 ) );
        w3 = astMalloc( boxcar*sizeof( *w3 ) );
      }

      /* Loop round all the bolometers to be processed by this thread. */
      for( i = b1; i <= b2 && *status == SAI__OK; i++ ) {

        /* Smooth the data and subtract it from res */
        size_t j;
        size_t boloff = i*bstride;

        /* Copy the data for this bolometer into a temporary buffer */
        for (j=0; j<ntslice; j++) {
          size_t thisidx = boloff+j*tstride;
          boldata[j] = res_data[thisidx];
          bolqua[j] = qua_data[thisidx];
        }

        /* Smooth that bolometer time series */
        if( filter_type == SMF__FILT_MEDIAN ) {
           smf_median_smooth( (dim_t) boxcar, SMF__FILT_MEDIAN, 0.0, ntslice,
                              res_data+boloff, qua_data+boloff, 1, SMF__Q_FIT,
                              boldata, w1, w2, w3, status );
        } else {
           smf_tophat1D( boldata, ntslice, boxcar, bolqua, SMF__Q_FIT,
                         0.0, status );
        }

        /* Remove this model from the residual data and copy the data to the model */
        for (j=0; j<ntslice; j++) {
          size_t thisidx = boloff+j*tstride;

          /* Modify RES if this section has smoothable quality */
          if (! (qua_data[thisidx] & SMF__Q_FIT) ) {
            if (boldata[j] == VAL__BADD) {
              /* Need to set to bad quality but since SMO can not
                 introduce bad values we shouldn't get here. For now
                 we use the COM quality bit just in case. */
              qua_data[thisidx] |= SMF__Q_COM;
            } else if (res_data[thisidx] != VAL__BADD) {
              res_data[thisidx] -= boldata[j];
            }
            /* Store the model */
            model_data[thisidx] = boldata[j];
          } else {
            /* store bad value in the model */
            model_data[thisidx] = VAL__BADD;
          }
        }
      }

/* Free work space. */
      w1 = astFree( w1 );
      w2 = astFree( w2 );
      w3 = astFree( w3 );
      boldata = astFree( boldata );
      bolqua = astFree( bolqua );

/* Report the time taken in this thread. */
      msgOutiff( SMF__TIMER_MSG, "",
                 "smf_calcmodel_smo: thread finishing bolos %" DIM_T_FMT
                 " -- %" DIM_T_FMT "(%.3f sec)",
                 status, b1, b2, smf_timerupdate( &tv1, &tv2, status ) );
   }
}
Пример #3
0
void smf_mapbounds( int fast, Grp *igrp,  int size, const char *system,
                    AstFrameSet *spacerefwcs, int alignsys, int *lbnd_out,
                    int *ubnd_out, AstFrameSet **outframeset, int *moving,
                    smfBox ** boxes, fts2Port fts_port, int *status ) {

  /* Local Variables */
  AstSkyFrame *abskyframe = NULL; /* Output Absolute SkyFrame */
  int actval;           /* Number of parameter values supplied */
  AstMapping *bolo2map = NULL; /* Combined mapping bolo->map
                                  coordinates, WCS->GRID Mapping from
                                  input WCS FrameSet */
  smfBox *box = NULL;          /* smfBox for current file */
  smfData *data = NULL;        /* pointer to  SCUBA2 data struct */
  double dlbnd[ 2 ];    /* Floating point lower bounds for output map */
  drcntrl_bits drcntrl_mask = 0;/* Mask to use for DRCONTROL on this instrument */
  double dubnd[ 2 ];    /* Floating point upper bounds for output map */
  AstMapping *fast_map = NULL; /* Mapping from tracking to absolute map coords */
  smfFile *file = NULL;        /* SCUBA2 data file information */
  int first;                   /* Is this the first good subscan ? */
  AstFitsChan *fitschan = NULL;/* Fits channels to construct WCS header */
  AstFrameSet *fs = NULL;      /* A general purpose FrameSet pointer */
  smfHead *hdr = NULL;         /* Pointer to data header this time slice */
  int i;                       /* Loop counter */
  dim_t j;                     /* Loop counter */
  AstSkyFrame *junksky = NULL; /* Unused SkyFrame argument */
  dim_t k;                     /* Loop counter */
  int lbnd0[ 2 ];              /* Defaults for LBND parameter */
  double map_pa=0;             /* Map PA in output coord system (rads) */
  dim_t maxloop;               /* Number of times to go round the time slice loop */
  dim_t nbadt  = 0;            /* Number of bad time slices */
  dim_t ngoodt = 0;            /* Number of good time slices */
  double par[7];               /* Projection parameters */
  double shift[ 2 ];           /* Shifts from PIXEL to GRID coords */
  AstMapping *oskymap = NULL;  /* Mapping celestial->map coordinates,
                                  Sky <> PIXEL mapping in output
                                  FrameSet */
  AstSkyFrame *oskyframe = NULL;/* Output SkyFrame */
  char *refsys = NULL;         /* Sky system from supplied reference FrameSet */
  dim_t textreme[4];           /* Time index corresponding to minmax TCS posn */
  AstFrame *skyin = NULL;      /* Sky Frame in input FrameSet */
  double skyref[ 2 ];          /* Values for output SkyFrame SkyRef attribute */
  struct timeval tv1;          /* Timer */
  struct timeval tv2;          /* Timer */
  AstMapping *tmap;            /* Temporary Mapping */
  int trim;                    /* Trim borders of bad pixels from o/p image? */
  int ubnd0[ 2 ];              /* Defaults for UBND parameter */
  double x_array_corners[4];   /* X-Indices for corner bolos in array */
  double x_map[4];             /* Projected X-coordinates of corner bolos */
  double y_array_corners[4];   /* Y-Indices for corner pixels in array */
  double y_map[4];             /* Projected X-coordinates of corner bolos */

  /* Main routine */
  if (*status != SAI__OK) return;

  /* Start a timer to see how long this takes */
  smf_timerinit( &tv1, &tv2, status );

  /* Initialize pointer to output FrameSet and moving-source flag */
  *outframeset = NULL;
  *moving = 0;

  /* initialize double precision output bounds and the proj pars */
  for( i = 0; i < 7; i++ ) par[ i ] = AST__BAD;
  dlbnd[ 0 ] = VAL__MAXD;
  dlbnd[ 1 ] = VAL__MAXD;
  dubnd[ 0 ] = VAL__MIND;
  dubnd[ 1 ] = VAL__MIND;

  /* If we have a supplied reference WCS we can use that directly
     without having to calculate it from the data. Replace the requested
     system with the system from the reference FrameSet (take a copy of the
     string since astGetC may re-use its buffer). */
  if (spacerefwcs) {
     oskyframe = astGetFrame( spacerefwcs, AST__CURRENT );
     int nc = 0;
     refsys = astAppendString( NULL, &nc, astGetC( oskyframe, "System" ) );
     system = refsys;
  }

  /* Create array of returned smfBox structures and store a pointer
     to the next one to be initialised. */
  *boxes = astMalloc( sizeof( smfBox ) * size );
  box = *boxes;

  astBegin;

  /* Loop over all files in the Grp */
  first = 1;
  for( i=1; i<=size; i++, box++ ) {

    /* Initialise the spatial bounds of section of the the output cube that is
       contributed to by the current ionput file. */
    box->lbnd[ 0 ] = VAL__MAXD;
    box->lbnd[ 1 ] = VAL__MAXD;
    box->ubnd[ 0 ] = VAL__MIND;
    box->ubnd[ 1 ] = VAL__MIND;

    /* Read data from the ith input file in the group */
    smf_open_file( NULL, igrp, i, "READ", SMF__NOCREATE_DATA, &data, status );

    if (*status != SAI__OK) {
      msgSeti( "I", i );
      errRep( "smf_mapbounds", "Could not open data file no ^I.", status );
      break;
    } else {
      if( *status == SAI__OK ) {
        if( data->file == NULL ) {
          *status = SAI__ERROR;
          errRep( FUNC_NAME, "No smfFile associated with smfData.",
                  status );
          break;

        } else if( data->hdr == NULL ) {
          *status = SAI__ERROR;
          errRep( FUNC_NAME, "No smfHead associated with smfData.",
                  status );
          break;

        } else if( data->hdr->fitshdr == NULL ) {
          *status = SAI__ERROR;
          errRep( FUNC_NAME, "No FITS header associated with smfHead.",
                  status );
          break;

        }
      }
    }

    /* convenience pointers */
    file = data->file;
    hdr = data->hdr;

    /* report name of the input file */
    smf_smfFile_msg( file, "FILE", 1, "<unknown>" );
    msgSeti("I", i);
    msgSeti("N", size);
    msgOutif(MSG__VERB, " ",
             "SMF_MAPBOUNDS: Processing ^I/^N ^FILE",
             status);

/* Check that there are 3 pixel axes. */
    if( data->ndims != 3 ) {
      smf_smfFile_msg( file, "FILE", 1, "<unknown>" );
      msgSeti( "NDIMS", data->ndims );
      *status = SAI__ERROR;
      errRep( FUNC_NAME, "^FILE has ^NDIMS pixel axes, should be 3.",
              status );
      break;
    }

    /* Check that the data dimensions are 3 (for time ordered data) */
    if( *status == SAI__OK ) {

      /* If OK Decide which detectors (GRID coord) to use for
         checking bounds, depending on the instrument in use. */

      switch( hdr->instrument ) {

      case INST__SCUBA2:
        drcntrl_mask = DRCNTRL__POSITION;
        /* 4 corner bolometers of the subarray */
        x_array_corners[0] = 1;
        x_array_corners[1] = 1;
        x_array_corners[2] = (data->dims)[0];
        x_array_corners[3] = (data->dims)[0];

        y_array_corners[0] = 1;
        y_array_corners[1] = (data->dims)[1];
        y_array_corners[2] = 1;
        y_array_corners[3] = (data->dims)[1];
        break;

      case INST__AZTEC:
        /* Rough guess for extreme bolometers around the edge */
        x_array_corners[0] = 22;
        x_array_corners[1] = 65;
        x_array_corners[2] = 73;
        x_array_corners[3] = 98;

        y_array_corners[0] = 1; /* Always 1 for AzTEC */
        y_array_corners[1] = 1;
        y_array_corners[2] = 1;
        y_array_corners[3] = 1;
        break;

      case INST__ACSIS:
        smf_find_acsis_corners( data, x_array_corners, y_array_corners,
                                status);
        break;

      default:
        *status = SAI__ERROR;
        errRep(FUNC_NAME, "Don't know how to calculate mapbounds for data created with this instrument", status);
      }
    }

    if( *status == SAI__OK) {
      size_t goodidx = SMF__BADSZT;

      /* Need to build up a frameset based on good telescope position.
         We can not assume that we the first step will be a good TCS position
         so we look for one. If we can not find anything we skip to the
         next file. */
      maxloop = (data->dims)[2];
      for (j=0; j<maxloop; j++) {
        JCMTState state = (hdr->allState)[j];
        if (state.jos_drcontrol >= 0 && state.jos_drcontrol & drcntrl_mask ) {
          /* bad TCS - so try again */
        } else {
          /* Good tcs */
          goodidx = j;
          break;
        }
      }

      if (goodidx == SMF__BADSZT) {
        smf_smfFile_msg( data->file, "FILE", 1, "<unknown>");
        msgOutif( MSG__QUIET, "", "No good telescope positions found in file ^FILE. Ignoring",
                  status );
        smf_close_file( NULL, &data, status );
        continue;
      }

      /* If we are dealing with the first good file, create the output
         SkyFrame. */
      if( first ) {
        first = 0;

        /* Create output SkyFrame if it has not come from a reference */
        if ( oskyframe == NULL ) {

          /* smf_tslice_ast only needs to get called once to set up framesets */
          if( hdr->wcs == NULL ) {
            smf_tslice_ast( data, goodidx, 1, fts_port, status);
          }

          /* Retrieve input SkyFrame */
          skyin = astGetFrame( hdr->wcs, AST__CURRENT );

          smf_calc_skyframe( skyin, system, hdr, alignsys, &oskyframe, skyref,
                             moving, status );

          /* Get the orientation of the map vertical within the output celestial
             coordinate system. This is derived form the MAP_PA FITS header, which
             gives the orientation of the map vertical within the tracking system. */
          map_pa = smf_calc_mappa( hdr, system, skyin, status );

          /* Provide a sensible default for the pixel size based on wavelength */
          par[4] = smf_calc_telres( hdr->fitshdr, status );
          par[4] *= AST__DD2R/3600.0;
          par[5] = par[4];

          /* Calculate the projection parameters. We do not enable autogrid determination
             for SCUBA-2 so we do not need to obtain all the data before calculating
             projection parameters. */
          smf_get_projpar( oskyframe, skyref, *moving, 0, 0, NULL, 0,
                           map_pa, par, NULL, NULL, status );

          if (skyin) skyin = astAnnul( skyin );

        /* If the output skyframe has been supplied, we still need to
           determine whether the source is moving or not, and set the
           reference position. */
        } else {

          /* smf_tslice_ast only needs to get called once to set up framesets */
          if( hdr->wcs == NULL ) {
            smf_tslice_ast( data, goodidx, 1, fts_port, status);
          }

          /* Retrieve input SkyFrame */
          skyin = astGetFrame( hdr->wcs, AST__CURRENT );
          smf_calc_skyframe( skyin, system, hdr, alignsys, &junksky, skyref,
                             moving, status );

          /* Store the sky reference position. If the target is moving,
             ensure the returned SkyFrame represents offsets from the
             reference position rather than absolute coords. */
          astSetD( oskyframe, "SkyRef(1)", skyref[ 0 ] );
          astSetD( oskyframe, "SkyRef(2)", skyref[ 1 ] );
          if( *moving ) astSet( oskyframe, "SkyRefIs=Origin" );

          /* Ensure the Epoch attribute in the map is set to the date of
             the first data in the map, rather than the date in supplied
             reference WCS. */
          astSetD( oskyframe, "Epoch", astGetD( junksky, "Epoch" ) );
        }

        if ( *outframeset == NULL && oskyframe != NULL && (*status == SAI__OK)){
          /* Now created a spatial Mapping. Use the supplied reference frameset
             if supplied */
          if (spacerefwcs) {
            oskymap = astGetMapping( spacerefwcs, AST__BASE, AST__CURRENT );
          } else {
            /* Now populate a FitsChan with FITS-WCS headers describing
               the required tan plane projection. The longitude and
               latitude axis types are set to either (RA,Dec) or (AZ,EL)
               to get the correct handedness. */
            fitschan = astFitsChan ( NULL, NULL, " " );
            smf_makefitschan( astGetC( oskyframe, "System"), &(par[0]),
                              &(par[2]), &(par[4]), par[6], fitschan, status );
            astClear( fitschan, "Card" );
            fs = astRead( fitschan );

            /* Extract the output PIXEL->SKY Mapping. */
            oskymap = astGetMapping( fs, AST__BASE, AST__CURRENT );

            /* Tidy up */
            fs = astAnnul( fs );
          }

          /* Create the output FrameSet */
          *outframeset = astFrameSet( astFrame(2, "Domain=GRID"), " " );

          /* Now add the SkyFrame to it */
          astAddFrame( *outframeset, AST__BASE, oskymap, oskyframe );

          /* Now add a POLANAL Frame if required (i.e. if the input time
             series are POL-2 Q/U values). */
          smf_addpolanal( *outframeset, hdr, status );

          /* Invert the oskymap mapping */
          astInvert( oskymap );

        } /* End WCS FrameSet construction */
      }

      /* Get a copy of the output SkyFrame and ensure it represents
         absolute coords rather than offset coords. */
      abskyframe = astCopy( oskyframe );
      astClear( abskyframe, "SkyRefIs" );
      astClear( abskyframe, "AlignOffset" );

      maxloop = (data->dims)[2];
      if (fast) {
        /* For scan map we scan through looking for largest telescope moves.
           For dream/stare we just look at the start and end time slices to
           account for sky rotation. */

        if (hdr->obsmode != SMF__OBS_SCAN) {
          textreme[0] = 0;
          textreme[1] = (data->dims)[2] - 1;
          maxloop = 2;

        } else {
          const char *tracksys;
          double *ac1list, *ac2list, *bc1list, *bc2list, *p1, *p2, *p3, *p4;
          double flbnd[4], fubnd[4];
          JCMTState state;

          /* If the output and tracking systems are different, get a
             Mapping between them. */
          tracksys = sc2ast_convert_system( (hdr->allState)[goodidx].tcs_tr_sys,
                                            status );
          if( strcmp( system, tracksys ) ) {
             AstSkyFrame *tempsf = astCopy( abskyframe );
             astSetC( tempsf, "System", tracksys );
             AstFrameSet *tempfs = astConvert( tempsf, abskyframe, "" );
             tmap = astGetMapping( tempfs, AST__BASE, AST__CURRENT );
             fast_map = astSimplify( tmap );
             tmap = astAnnul( tmap );
             tempsf = astAnnul( tempsf );
             tempfs = astAnnul( tempfs );
          } else {
             fast_map = NULL;
          }

          /* Copy all ac1/2 positions into two array, and transform them
             from tracking to absolute output sky coords. */
          ac1list = astMalloc( maxloop*sizeof( *ac1list ) );
          ac2list = astMalloc( maxloop*sizeof( *ac2list ) );
          if( *status == SAI__OK ) {
             p1 = ac1list;
             p2 = ac2list;
             for( j = 0; j < maxloop; j++ ) {
                state = (hdr->allState)[ j ];
                *(p1++) = state.tcs_tr_ac1;
                *(p2++) = state.tcs_tr_ac2;
             }
             if( fast_map ) astTran2( fast_map, maxloop, ac1list, ac2list, 1,
                                      ac1list, ac2list );
          }

          /* If the target is moving, we need to adjust these ac1/2 values
             to represent offsets from the base position. */
          if( *moving ) {

          /* Copy all bc1/2 positions into two arrays. */
             bc1list = astMalloc( maxloop*sizeof( *bc1list ) );
             bc2list = astMalloc( maxloop*sizeof( *bc2list ) );
             if( *status == SAI__OK ) {
                p1 = bc1list;
                p2 = bc2list;

                for( j = 0; j < maxloop; j++ ) {
                   state = (hdr->allState)[ j ];
                   *(p1++) = state.tcs_tr_bc1;
                   *(p2++) = state.tcs_tr_bc2;
                }

                /* Transform them from tracking to absolute output sky coords. */
                if( fast_map ) astTran2( fast_map, maxloop, bc1list, bc2list,
                                         1, bc1list, bc2list );

                /* Replace each ac1/2 position with the offsets from the
                   corresponding base position. */
                p1 = bc1list;
                p2 = bc2list;
                p3 = ac1list;
                p4 = ac2list;
                for( j = 0; j < maxloop; j++ ) {
                  smf_offsets( *(p1++), *(p2++), p3++, p4++, status );
                }
             }

             /* We no longer need the base positions. */
             bc1list = astFree( bc1list );
             bc2list = astFree( bc2list );
          }

          /* Transform the ac1/2 position from output sky coords to
             output pixel coords. */
          astTran2( oskymap, maxloop, ac1list, ac2list, 1, ac1list, ac2list );

          /* Find the bounding box containing these pixel coords and the
             time slices at which the boresight touches each edge of this
             box. */
          flbnd[ 0 ] = VAL__MAXD;
          flbnd[ 1 ] = VAL__MAXD;
          fubnd[ 0 ] = VAL__MIND;
          fubnd[ 1 ] = VAL__MIND;
          for( j = 0; j < 4; j++ ) textreme[ j ] = (dim_t) VAL__BADI;

          if( *status == SAI__OK ) {
             p1 = ac1list;
             p2 = ac2list;
             for( j = 0; j < maxloop; j++,p1++,p2++ ) {
                if( *p1 != VAL__BADD && *p2 != VAL__BADD ){

                   if ( *p1 < flbnd[0] ) { flbnd[0] = *p1; textreme[0] = j; }
                   if ( *p2 < flbnd[1] ) { flbnd[1] = *p2; textreme[1] = j; }
                   if ( *p1 > fubnd[0] ) { fubnd[0] = *p1; textreme[2] = j; }
                   if ( *p2 > fubnd[1] ) { fubnd[1] = *p2; textreme[3] = j; }
                }
             }
          }

          maxloop = 4;
          msgSetd("X1", textreme[0]);
          msgSetd("X2", textreme[1]);
          msgSetd("X3", textreme[2]);
          msgSetd("X4", textreme[3]);
          msgOutif( MSG__DEBUG, " ",
                    "Extrema time slices are ^X1, ^X2, ^X3 and ^X4",
                    status);

          ac1list = astFree( ac1list );
          ac2list = astFree( ac2list );

        }
      }

      /* Get the astrometry for all the relevant time slices in this data file */
      for( j=0; j<maxloop; j++ ) {
        dim_t ts;  /* Actual time slice to use */

        /* if we are doing the fast loop, we need to read the time slice
           index from textreme. Else we just use the index */
        if (fast) {
          /* get the index but make sure it is good */
          ts = textreme[j];
          if (ts == (dim_t)VAL__BADI) continue;
        } else {
          ts = j;
        }
        /* Calculate the bolo to map-pixel transformation for this tslice */
        bolo2map = smf_rebin_totmap( data, ts, abskyframe, oskymap,
                                     *moving, fts_port, status );

        if ( *status == SAI__OK ) {
          /* skip if we did not get a mapping this time round */
          if (!bolo2map) continue;

          /* Check corner pixels in the array for their projected extent
             on the sky to set the pixel bounds */
          astTran2( bolo2map, 4, x_array_corners, y_array_corners, 1,
                    x_map, y_map );

          /* Update min/max for this time slice */
          for( k=0; k<4; k++ ) {

            if( x_map[k] != AST__BAD && y_map[k] != AST__BAD ) {
              if( x_map[k] < dlbnd[0] ) dlbnd[0] = x_map[k];
              if( y_map[k] < dlbnd[1] ) dlbnd[1] = y_map[k];
              if( x_map[k] > dubnd[0] ) dubnd[0] = x_map[k];
              if( y_map[k] > dubnd[1] ) dubnd[1] = y_map[k];

              if( x_map[k] < box->lbnd[0] ) box->lbnd[0] = x_map[k];
              if( y_map[k] < box->lbnd[1] ) box->lbnd[1] = y_map[k];
              if( x_map[k] > box->ubnd[0] ) box->ubnd[0] = x_map[k];
              if( y_map[k] > box->ubnd[1] ) box->ubnd[1] = y_map[k];

            } else if( *status == SAI__OK ) {
              *status = SAI__ERROR;
              errRep( FUNC_NAME, "Extreme positions are bad.", status );
              break;
            }
          }
        }
        /* Explicitly annul these mappings each time slice for reduced
           memory usage */
        if (bolo2map) bolo2map = astAnnul( bolo2map );
        if (fs) fs = astAnnul( fs );

        /* Break out of loop over time slices if bad status */
        if (*status != SAI__OK) goto CLEANUP;
      }

      /* Annul any remaining Ast objects before moving on to the next file */
      if (fs) fs = astAnnul( fs );
      if (bolo2map) bolo2map = astAnnul( bolo2map );
    }

    /* Close the data file */
    smf_close_file( NULL, &data, status);

    /* Break out of loop over data files if bad status */
    if (*status != SAI__OK) goto CLEANUP;
  }

  /* make sure we got values - should not be possible with good status */
  if (dlbnd[0] == VAL__MAXD || dlbnd[1] == VAL__MAXD) {
    if (*status == SAI__OK) {
      *status = SAI__ERROR;
      errRep( " ", "Unable to find any valid map bounds", status );
    }
  }

  if (nbadt > 0) {
    msgOutf( "", "   Processed %zu time slices to calculate bounds,"
             " of which %zu had bad telescope data and were skipped",
             status, (size_t)(ngoodt+nbadt), (size_t)nbadt );
  }

  /* If spatial reference wcs was supplied, store par values that result in
     no change to the pixel origin. */
  if( spacerefwcs ){
    par[ 0 ] = 0.5;
    par[ 1 ] = 0.5;
  }

  /* Need to re-align with the interim GRID coordinates */
  lbnd_out[0] = ceil( dlbnd[0] - par[0] + 0.5 );
  ubnd_out[0] = ceil( dubnd[0] - par[0] + 0.5 );
  lbnd_out[1] = ceil( dlbnd[1] - par[1] + 0.5 );
  ubnd_out[1] = ceil( dubnd[1] - par[1] + 0.5 );

  /* Do the same with the individual input file bounding boxes */
  box = *boxes;
  for (i = 1; i <= size; i++, box++) {
    box->lbnd[0] = ceil( box->lbnd[0] - par[0] + 0.5);
    box->ubnd[0] = ceil( box->ubnd[0] - par[0] + 0.5);
    box->lbnd[1] = ceil( box->lbnd[1] - par[1] + 0.5);
    box->ubnd[1] = ceil( box->ubnd[1] - par[1] + 0.5);
  }

  /* Apply a ShiftMap to the output FrameSet to re-align the GRID
     coordinates */
  shift[0] = 2.0 - par[0] - lbnd_out[0];
  shift[1] = 2.0 - par[1] - lbnd_out[1];
  astRemapFrame( *outframeset, AST__BASE, astShiftMap( 2, shift, " " ) );

  /* Set the dynamic defaults for lbnd/ubnd */
  lbnd0[ 0 ] = lbnd_out[ 0 ];
  lbnd0[ 1 ] = lbnd_out[ 1 ];
  parDef1i( "LBND", 2, lbnd0, status );

  ubnd0[ 0 ] = ubnd_out[ 0 ];
  ubnd0[ 1 ] = ubnd_out[ 1 ];
  parDef1i( "UBND", 2, ubnd0, status );

  parGet1i( "LBND", 2, lbnd_out, &actval, status );
  if( actval == 1 ) lbnd_out[ 1 ] = lbnd_out[ 0 ];

  parGet1i( "UBND", 2, ubnd_out, &actval, status );
  if( actval == 1 ) ubnd_out[ 1 ] = ubnd_out[ 0 ];

  /* Ensure the bounds are the right way round. */
  if( lbnd_out[ 0 ] > ubnd_out[ 0 ] ) {
    int itmp = lbnd_out[ 0 ];
    lbnd_out[ 0 ] = ubnd_out[ 0 ];
    ubnd_out[ 0 ] = itmp;
  }

  if( lbnd_out[ 1 ] > ubnd_out[ 1 ] ) {
    int itmp = lbnd_out[ 1 ];
    lbnd_out[ 1 ] = ubnd_out[ 1 ];
    ubnd_out[ 1 ] = itmp;
  }

  /* If borders of bad pixels are being trimmed from the output image,
     then do not allow the user-specified bounds to extend outside the
     default bounding box (since we know that the default bounding box
     encloses all available data). */
  parGet0l( "TRIM", &trim, status );
  if( trim ) {
     if( lbnd_out[ 0 ] < lbnd0[ 0 ] ) lbnd_out[ 0 ] = lbnd0[ 0 ];
     if( lbnd_out[ 1 ] < lbnd0[ 1 ] ) lbnd_out[ 1 ] = lbnd0[ 1 ];
     if( ubnd_out[ 0 ] > ubnd0[ 0 ] ) ubnd_out[ 0 ] = ubnd0[ 0 ];
     if( ubnd_out[ 1 ] > ubnd0[ 1 ] ) ubnd_out[ 1 ] = ubnd0[ 1 ];
  }

  /* Modify the returned FrameSet to take account of the new pixel origin. */
  shift[ 0 ] = lbnd0[ 0 ] - lbnd_out[ 0 ];
  shift[ 1 ] = lbnd0[ 1 ] - lbnd_out[ 1 ];
  if( shift[ 0 ] != 0.0 || shift[ 1 ] != 0.0 ) {
    astRemapFrame( *outframeset, AST__BASE, astShiftMap( 2, shift, " " ) );
  }

/* Report the pixel bounds of the cube. */
  if( *status == SAI__OK ) {
    msgOutif( MSG__NORM, " ", " ", status );
    msgSeti( "XL", lbnd_out[ 0 ] );
    msgSeti( "YL", lbnd_out[ 1 ] );
    msgSeti( "XU", ubnd_out[ 0 ] );
    msgSeti( "YU", ubnd_out[ 1 ] );
    msgOutif( MSG__NORM, " ", "   Output map pixel bounds: ( ^XL:^XU, ^YL:^YU )",
              status );

    if( ( ubnd_out[ 0 ] - lbnd_out[ 0 ] + 1 ) > MAX_DIM ||
        ( ubnd_out[ 1 ] - lbnd_out[ 1 ] + 1 ) > MAX_DIM ) {
      *status = SAI__ERROR;
      errRep( "", FUNC_NAME ": The map is too big. Check your list of input "
              "data files does not include widely separated observations.",
              status );
    }
  }

  /* If no error has occurred, export the returned FrameSet pointer from the
     current AST context so that it will not be annulled when the AST
     context is ended. Otherwise, ensure a null pointer is returned. */
  if( *status == SAI__OK ) {
    astExport( *outframeset );
  } else {
    *outframeset = astAnnul( *outframeset );
  }

  msgOutiff( SMF__TIMER_MSG, "",
             "Took %.3f s to calculate map bounds",
             status, smf_timerupdate( &tv1, &tv2, status ) );

  /* Clean Up */
 CLEANUP:
  if (*status != SAI__OK) {
    errRep(FUNC_NAME, "Unable to determine map bounds", status);
  }
  if (oskymap) oskymap  = astAnnul( oskymap );
  if (bolo2map) bolo2map = astAnnul( bolo2map );
  if (fitschan) fitschan = astAnnul( fitschan );

  if( data != NULL )
    smf_close_file( NULL, &data, status );

  refsys = astFree( refsys );

  astEnd;

}
Пример #4
0
void smfCalcMapcoordPar( void *job_data_ptr, int *status ) {
  AstSkyFrame *abskyfrm=NULL;
  smfData *data=NULL;
  fts2Port fts_port;
  int *lbnd_out=NULL;
  int *lut=NULL;
  int moving;
  int *ubnd_out=NULL;
  dim_t nbolo;             /* number of bolometers */
  dim_t ntslice;           /* number of time slices */
  smfCalcMapcoordData *pdata=NULL; /* Pointer to job data */
  AstMapping *sky2map=NULL;
  double *theta = NULL;
  struct timeval tv1;      /* Timer */
  struct timeval tv2;      /* Timer */

  if( *status != SAI__OK ) return;

  /* Pointer to the data that this thread will process */
  pdata = job_data_ptr;

  /* Check for valid inputs */
  if( !pdata ) {
    *status = SAI__ERROR;
    errRep( "", "smfCalcMapcoordPar: No job data supplied", status );
    return;
  }

  /* Extract values from pdata */
  abskyfrm = pdata->abskyfrm;
  data = pdata->data;
  lut = pdata->lut;
  theta = pdata->theta;
  lbnd_out = pdata->lbnd_out;
  moving = pdata->moving;
  sky2map = pdata->sky2map;
  ubnd_out = pdata->ubnd_out;
  fts_port = pdata->fts_port;

  smf_get_dims( data,  NULL, NULL, &nbolo, &ntslice, NULL, NULL, NULL, status );

  /* if t1 past end of the work, nothing to do so we return */
  if( pdata->t1 >= ntslice ) {
    msgOutif( SMF__TIMER_MSG, "",
               "smfCalcMapcoordPar: nothing for thread to do, returning",
               status);
    return;
  }

  /* Debugging message indicating thread started work */
  msgOutiff( SMF__TIMER_MSG, "",
             "smfCalcMapcoordPar: thread starting on tslices %zu -- %zu",
             status, pdata->t1, pdata->t2 );
  smf_timerinit( &tv1, &tv2, status );

  /* Lock the supplied AST object pointers for exclusive use by this
     thread.  The invoking thread should have unlocked them before
     starting this job. */
  astLock( abskyfrm, 0 );
  astLock( sky2map, 0 );
  smf_lock_data( data, 1, status );

  /* Calculate and store the LUT values for the range of time slices
     being processed by this thread. A generic algorithm is used for
     moving targets, but a faster algorithm can be used for stationary
     targets. */
  smf_coords_lut( data, pdata->tstep, pdata->t1, pdata->t2,
                  abskyfrm, sky2map, moving, lbnd_out, ubnd_out, fts_port,
                  lut + pdata->t1*nbolo, theta + pdata->t1,
                  pdata->lon_ptr, pdata->lat_ptr, status );

  /* Unlock the supplied AST object pointers so that other threads can use
     them. */
  smf_lock_data( data, 0, status );
  astUnlock( abskyfrm, 1 );
  astUnlock( sky2map, 1 );

  msgOutiff( SMF__TIMER_MSG, "",
             "smfCalcMapcoordPar: thread finishing tslices %zu -- "
             "%zu (%.3f sec)", status, pdata->t1, pdata->t2,
             smf_timerupdate(&tv1, &tv2, status) );
}
Пример #5
0
void smf__calc_wvm_job( void *job_data, int *status ) {

  struct timeval tv1;
  struct timeval tv2;
  smfData * curdata = NULL;
  smfArray * thesedata;
  double prevtime = VAL__BADD;
  double prevtau = VAL__BADD;
  double lastgoodtau = VAL__BADD;   /* most recent good tau */
  size_t lastgoodidx = SMF__BADSZT; /* index of most recent good value */
  size_t nbadidx = 0;    /* number of time slices in the current gap */
  size_t maxgap;
  dim_t t1;
  dim_t t2;
  size_t nrelated;

  double * taudata = NULL;
  size_t ngood = 0;
  dim_t i;
  smfCalcWvmJobData *pdata;
  double amprev;
  AstKeyMap * extpars;

  if (*status != SAI__OK) return;

  pdata = (smfCalcWvmJobData *)job_data;
  t1 = pdata->t1;
  t2 = pdata->t2;
  amprev = pdata->airmass;
  thesedata = pdata->thesedata;
  taudata = pdata->taudata;
  nrelated = thesedata->ndat;
  extpars = pdata->extpars;
  maxgap = pdata->maxgap;

  /* Lock the AST pointers to this thread */
  astLock( extpars, 0 );
  for (i=0;i<thesedata->ndat;i++) {
    smf_lock_data( (thesedata->sdata)[i], 1, status );
  }

/* Debugging message indicating thread started work */
  msgOutiff( SMF__TIMER_MSG, "", "smfCalcSmoothedWVM: thread starting on slices %" DIM_T_FMT
             " -- %" DIM_T_FMT,
             status, t1, t2 );
  smf_timerinit( &tv1, &tv2, status);

  for (i=t1; i<=t2; i++) {

    if (!curdata) {
      SELECT_DATA( thesedata, curdata, VAL__BADD, wvm_time, i );
    }

    if (curdata) smf_tslice_ast( curdata, i, 0, NO_FTS, status );

    if ( !curdata || curdata->hdr->state->wvm_time == VAL__BADD ) {
      /* Try the other datas */
      SELECT_DATA( thesedata, curdata, VAL__BADD, wvm_time, i );
    }
    if (*status != SAI__OK) break;

    /* if we have no good data we store a bad value */
    if (!curdata) {
      prevtau = VAL__BADD;
    } else {
      const JCMTState * state = NULL;
      state = curdata->hdr->state;

      /* if we have old values from the WVM or no value we don't trust them */
      if ( state->wvm_time != VAL__BADD &&
           (fabs(state->wvm_time - state->rts_end) * SPD) < 60.0 ) {
        /* Only calculate a tau when we have new values */
        if ( prevtime != state->wvm_time ) {
          double thistau = VAL__BADD;
          double airmass = VAL__BADD;

          prevtime = state->wvm_time;

          airmass = state->tcs_airmass;
          if (airmass == VAL__BADD) {
            airmass = amprev;
          } else {
            amprev = airmass;
          }

          thistau = smf_calc_wvm( curdata->hdr, airmass, extpars, status );

          /* Check status and/or value of tau */
          if ( thistau == VAL__BADD ) {
            if ( *status == SAI__OK ) {
              *status = SAI__ERROR;
              errRepf("", "Error calculating tau from WVM temperatures at time slice %" DIM_T_FMT,
                      status, i);
            }
          } else if ( thistau < 0.0 ) {
            msgOutiff( MSG__QUIET, "", "WARNING: Negative WVM tau calculated (%g). Ignoring.",
                       status, thistau );
            prevtau = VAL__BADD;
          } else {
            prevtau = thistau;
          }
        } else {
          /* We use the previous tau since we should have calculated it earlier */
        }
      } else {
        /* No good reading so tau is bad */
        prevtau = VAL__BADD;
      }
    }

    /* Prevtau is the tau that should be assigned to the current position */

    /* see about gaps */
    if (prevtau == VAL__BADD) {
      nbadidx++;
    } else {
      /* we have a good value so we now have to see if there is a gap to fill */
      if (i > 0 && lastgoodidx != (i-1) ) {
        /* the previous value was bad so we may have to patch up if small */
        if ( nbadidx < maxgap ) {
          size_t j;
          if (lastgoodidx == SMF__BADSZT) {
            /* gap is at the start so fill with current value */
            for (j=t1; j<i;j++) {
              taudata[j] = prevtau;
              ngood++;
            }
          } else {
            /* replace with mean value */
            double meantau = (lastgoodtau + prevtau) / 2.0;
            for (j=lastgoodidx+1; j<i; j++) {
              taudata[j] = meantau;
              ngood++;
            }
          }
        }
      }

      /* we know this index was good */
      lastgoodidx = i;
      lastgoodtau = prevtau;
      nbadidx = 0;
      ngood++;

    }

    /* Store the current tau value */
    taudata[i] = prevtau;

  }

  /* if the last value in the time series was bad we need to see about
     filling with the last good value */
  if (*status == SAI__OK && nbadidx > 0 && nbadidx < maxgap) {
    for (i=lastgoodidx+1; i<=t2; i++) {
      taudata[i] = lastgoodtau;
      ngood++;
    }
  }

/* Report the time taken in this thread. */
  msgOutiff( SMF__TIMER_MSG, "",
             "smfCalcSmoothedWVM: thread finishing slices %" DIM_T_FMT
             " -- %" DIM_T_FMT " (%zu good) (%.3f sec)",
             status, t1, t2, ngood, smf_timerupdate( &tv1, &tv2, status ) );

  /* Store number of good values */
  pdata->ngood = ngood;

  /* Unlock the AST pointers from this thread */
  astUnlock( extpars, 1 );
  for (i=0;i<thesedata->ndat;i++) {
    smf_lock_data( (thesedata->sdata)[i], 0, status );
  }

}
Пример #6
0
void smf_calc_smoothedwvm ( ThrWorkForce *wf, const smfArray * alldata,
                            const smfData * adata, AstKeyMap* extpars, double **wvmtau,
                            size_t *nelems, size_t *ngoodvals, int * status ) {
  size_t i;
  size_t nrelated = 0;          /* Number of entries in smfArray */
  size_t nframes = 0;           /* Number of timeslices */
  size_t ngood = 0;             /* Number of elements with good tau */
  double *taudata = NULL;       /* Local version of WVM tau */
  const smfArray * thesedata = NULL;  /* Collection of smfDatas to analyse */
  smfArray * tmpthesedata = NULL; /* Local version of adata in a smfArray */

  if (*status != SAI__OK) return;

  if (alldata && adata) {
    *status = SAI__ERROR;
    errRep("", "smf_calc_smoothedwvm can not be given non-NULL alldata and non-NULL adata arguments"
           " (possible programming error)", status );
    return;
  }

  if (!alldata && !adata) {
    *status = SAI__ERROR;
    errRep("", "smf_calc_smoothedwvm: One of alldata or adata must be non-NULL",
           status);
    return;
  }

  if (!wvmtau) {
    *status = SAI__ERROR;
    errRep("", "Must supply a non-NULL pointer for wvmtau argument"
           " (possible programming error)", status );
    return;
  }

  /* if we have a single smfData put it in a smfArray */
  if (alldata) {
    if (alldata->ndat == 0 ) {
      *status = SAI__ERROR;
      errRep("", "No smfDatas present in supplied smfArray for WVM smoothing"
             " (possible programming error)", status );
      return;
    }
    thesedata = alldata;
  } else {
    tmpthesedata = smf_create_smfArray( status );
    if (tmpthesedata) {
      tmpthesedata->owndata = 0; /*not owned by the smfArray */

      /* we know that the smfData here will not be touched in this
         function so we do the BAD thing of casting const to non-const */
      smf_addto_smfArray( tmpthesedata, (smfData *)adata, status );
    }
    thesedata = tmpthesedata;
  }

  /* Check that we have headers and that the smfData are the same length */
  nrelated = thesedata->ndat;

  for (i = 0; i < nrelated; i++ ) {
    smfData * data = (thesedata->sdata)[i];
    smfHead * hdr = data->hdr;
    dim_t thisframes = 0;
    if ( !hdr) {
      *status = SAI__ERROR;
      errRepf( "", "smfData %zu has no header. Aborting WVM smoothing",
               status, i );
      return;
    }

    smf_get_dims( data, NULL, NULL, NULL, &thisframes, NULL, NULL, NULL, status );
    if (!nframes) nframes = thisframes;
    if (thisframes != nframes) {
      *status = SAI__ERROR;
      errRepf( "", "smfData %zu has different length. Aborting WVM smoothing",
               status, i );
      return;
    }
  }

  /* We will need the earliest and last airmass value in order
     to calculate a zenith tau */

  /* As a first step, just fill the time series with calculated WVM
     tau values even though we know there are about 240 fewer tau
     readings in reality. This initial approach will make it easier to
     use the smoothed data directly rather than having to interpolate
     from the 1.2 second data back into the 200 Hz data. */

  taudata = astCalloc( nframes, sizeof(*taudata) );

  if (*status == SAI__OK) {
    double amprev = VAL__BADD;
    double steptime;
    size_t maxgap;
    struct timeval tv1;
    struct timeval tv2;
    smfCalcWvmJobData *job_data = NULL;
    int nworker;

    /* We need to know the steptime so we can define the max good gap
       in seconds and convert it to steps*/

    steptime = (thesedata->sdata)[0]->hdr->steptime;
    maxgap = (size_t)( 5.0 / steptime );  /* 5 seconds is just larger than 2 WVM readings */

    /* Assume all files have the same airmass information */
    smf_find_airmass_interval( (thesedata->sdata)[0]->hdr, &amprev, NULL, NULL, NULL, status );

    smf_timerinit( &tv1, &tv2, status );


    /* Create structures used to pass information to the worker threads. */
    nworker = wf ? wf->nworker : 1;
     job_data = astMalloc( nworker*sizeof( *job_data ) );

    if (*status == SAI__OK) {
      dim_t tstep;
      int iworker;
      smfCalcWvmJobData *pdata = NULL;

      /* Get the number of time slices to process in each thread. */
      if( nworker > (int) nframes ) {
        tstep = 1;
      } else {
        tstep = nframes/nworker;
      }

      /* to return the same values for one thread and multiple threads
         we need to break the threads on wvm sample boundaries wherever
         possible. We make an initial estimate of the number of WVM measurements
         by assuming one every two seconds. */
      {
        smfData * curdata = NULL;
        size_t nwvm = 0;
        double prevtime = VAL__BADD;
        double curtime;
        size_t *boundaries = astGrow(NULL, nframes*(size_t)(steptime/2.0), sizeof(*boundaries));
        for (i=0; i<nframes; i++) {
          if (!curdata) {
            SELECT_DATA( thesedata, curdata, VAL__BADD, wvm_time, i );
          }

          if (curdata) smf_tslice_ast( curdata, i, 0, NO_FTS, status );

          if ( !curdata || curdata->hdr->state->wvm_time == VAL__BADD ) {
            /* Try the other datas */
            SELECT_DATA( thesedata, curdata, VAL__BADD, wvm_time, i );
          }
          if (*status != SAI__OK) break;

          if (!curdata) {
            curtime = VAL__BADD;
          } else {
            curtime = curdata->hdr->state->wvm_time;
          }

          if (curtime != prevtime || nwvm == 0 ) {
            /* Store the index in the boundaries array */
            nwvm++;
            boundaries = astGrow(boundaries, nwvm, sizeof(*boundaries));
            if (!boundaries) { /* this is serious */
              if (*status == SAI__OK) *status = SAI__ERROR;
              errRep("", "Error allocating temporary memory for WVM calculation\n",
                     status );
              break;
            }
            boundaries[nwvm-1] = i;
            prevtime = curtime;
          }
        }

        /* No point using too many threads */
        if (*status == SAI__OK) {
          if (nworker >= (int)nwvm) {
            nworker = nwvm;

            /* Allocate a measurement per thread */
            for( iworker = 0; iworker < nworker; iworker++ ) {
              pdata = job_data + iworker;
              pdata->t1 = boundaries[iworker];
              if (iworker+1 < nworker) pdata->t2 = boundaries[iworker+1]-1;
            }

            /* Ensure that the last thread picks up any left-over time slices */
            pdata->t2 = nframes - 1;

          } else {
            /* Allocate the workers to slices of approximate size tstep */
            size_t prevend = 0; /* End of previous slice */
            size_t prevbnd = 0; /* Index into previous boundaries[] array selection */
            for( iworker = 0; iworker < nworker; iworker++ ) {
              size_t belowidx = prevend+1;
              size_t aboveidx = nframes;
              size_t lbnd;
              size_t ubnd;
              size_t j;
              size_t guess;

              pdata = job_data + iworker;

              if (iworker == 0) { /* always start at the beginning */
                pdata->t1 = 0;
              } else { /* Start one after the previous block */
                pdata->t1 = prevend + 1;
              }

              /* Now we have to find the end of this slice */
              guess = (iworker*tstep) + tstep - 1;
              if (guess <= pdata->t1) guess = pdata->t1 + tstep;

              /* find nearest boundaries */
              for (j=prevbnd; j<nwvm; j++) {
                if ( boundaries[j] > guess ) {
                  aboveidx = boundaries[j];
                  ubnd = j;
                  if (j>0) {
                    belowidx = boundaries[j-1];
                    lbnd = j -1 ;
                  } else {
                    lbnd = 0;
                  }
                  break;
                }
              }

              /* Choose the closest, making sure that we are not choosing t1 */
              if ( (guess - belowidx < aboveidx - guess) && belowidx > pdata->t1 ) {
                pdata->t2 = belowidx - 1;
                prevbnd = lbnd;
              } else {
                pdata->t2 = aboveidx - 1;
                prevbnd = ubnd;
              }

              prevend = pdata->t2;

              if (prevend == nframes - 1 && iworker < nworker-1 ) {
                /* we have run out of slices so just use fewer workers */
                nworker = iworker + 1;
                break;
              }

            }

            /* Ensure that the last thread picks up any left-over time slices */
            pdata->t2 = nframes - 1;

          }

          /* Tidy up */
          boundaries = astFree( boundaries );
        }
      }

      /* Store all the other info needed by the worker threads, and submit the
         jobs to fix the steps in each bolo, and then wait for them to complete. */
      for( iworker = 0; iworker < nworker; iworker++ ) {
        smfArray *thrdata = NULL;
        pdata = job_data + iworker;

        pdata->nframes = nframes;
        pdata->airmass = amprev; /* really need to get it from the start of each chunk */
        pdata->taudata = taudata;
        pdata->maxgap = maxgap;

        /* Need to copy the smfDatas and create a new smfArray for each
           thread */
        thrdata = smf_create_smfArray( status );
        for (i=0;i<nrelated;i++) {
          smfData *tmpdata = NULL;
          tmpdata = smf_deepcopy_smfData( wf, (thesedata->sdata)[i], 0, SMF__NOCREATE_FILE |
                                          SMF__NOCREATE_DA |
                                          SMF__NOCREATE_FTS |
                                          SMF__NOCREATE_DATA |
                                          SMF__NOCREATE_VARIANCE |
                                          SMF__NOCREATE_QUALITY, 0, 0,
                                          status );
          smf_lock_data( tmpdata, 0, status );
          smf_addto_smfArray( thrdata, tmpdata, status );
        }
        pdata->thesedata = thrdata;

        /* Need to do a deep copy of ast data and unlock them */
        pdata->extpars = astCopy(extpars);
        astUnlock( pdata->extpars, 1 );

        /* Pass the job to the workforce for execution. */
        thrAddJob( wf, THR__REPORT_JOB, pdata, smf__calc_wvm_job, 0, NULL,
                   status );
      }

      /* Wait for the workforce to complete all jobs. */
      thrWait( wf, status );

      /* Now free the resources we allocated during job creation
         and calculate the number of good values */
      for( iworker = 0; iworker < nworker; iworker++ ) {
        smfArray * thrdata;
        pdata = job_data + iworker;
        astLock( pdata->extpars, 0 );
        pdata->extpars = astAnnul( pdata->extpars );
        thrdata = pdata->thesedata;
        for (i=0;i<thrdata->ndat;i++) {
          smf_lock_data( (thrdata->sdata)[i], 1, status );
        }
        smf_close_related( wf, &thrdata, status );
        ngood += pdata->ngood;
      }
    }
    job_data = astFree( job_data );

    msgOutiff( MSG__NORM, "", FUNC_NAME ": %f s to calculate unsmoothed WVM tau values",
               status, smf_timerupdate(&tv1,&tv2,status) );

  }




  if (*status == SAI__OK && extpars) {
    /* Read extpars to see if we need to smooth */
    double smoothtime = VAL__BADD;

    if (astMapGet0D( extpars, "SMOOTHWVM", &smoothtime ) ) {
      if (smoothtime != VAL__BADD && smoothtime > 0.0) {
        smfData * data = (thesedata->sdata)[0];
        double steptime = data->hdr->steptime;
        dim_t boxcar = (dim_t)( smoothtime / steptime );

        msgOutiff( MSG__VERB, "",
                   "Smoothing WVM data with %f s tophat function",
                   status, smoothtime );

        smf_tophat1D( taudata, nframes, boxcar, NULL, 0, 0.0, status );

        /* The tophat smoothing puts a bad value at the start and end of
           the time series so we replace that with the adjacent value since
           the step time is much smaller than WVM readout time. If more than
           one value is bad we do not try to find the good value. */
        taudata[0] = taudata[1];
        taudata[nframes-1] = taudata[nframes-2];
      }
    }
  }

  /* Use this to get the raw WVM output for debugging */
  /*
  if (*status == SAI__OK) {
    smfData *data = (thesedata->sdata)[0];
    smfHead *hdr = data->hdr;
    printf("# IDX TAU RTS_NUM RTS_END WVM_TIME\n");
    for (i=0; i<nframes;i++) {
      JCMTState * state;
      state = &(hdr->allState)[i];
      printf("%zu %.*g %d %.*g %.*g\n", i, DBL_DIG, taudata[i], state->rts_num,
             DBL_DIG, state->rts_end, DBL_DIG, state->wvm_time);
    }
  } */

  /* Free resources */
  if (tmpthesedata) smf_close_related( wf, &tmpthesedata, status );

  if (*status != SAI__OK) {
    if (taudata) taudata = astFree( taudata );
    *nelems = 0;
    *ngoodvals = 0;
  } else {
    *wvmtau = taudata;
    *nelems = nframes;
    *ngoodvals = ngood;
  }

}
Пример #7
0
void smf_find_science(const Grp * ingrp, Grp **outgrp, int reverttodark,
                      Grp **darkgrp, Grp **flatgrp, int reducedark,
                      int calcflat, smf_dtype darktype, smfArray ** darks,
                      smfArray **fflats, AstKeyMap ** heateffmap,
                      double * meanstep, int * status ) {

  smfSortInfo *alldarks; /* array of sort structs for darks */
  smfSortInfo *allfflats; /* array of fast flat info */
  Grp * dgrp = NULL;  /* Internal dark group */
  double duration_darks = 0.0; /* total duration of all darks */
  double duration_sci = 0.0;  /* Duration of all science observations */
  size_t dkcount = 0; /* Dark counter */
  size_t ffcount = 0; /* Fast flat counter */
  Grp * fgrp = NULL;  /* Fast flat group */
  size_t i;           /* loop counter */
  smfData *infile = NULL; /* input file */
  size_t insize;     /* number of input files */
  size_t nsteps_dark = 0;    /* Total number of steps for darks */
  size_t nsteps_sci = 0;     /* Total number of steps for science */
  AstKeyMap * heatermap = NULL; /* Heater efficiency map */
  AstKeyMap * obsmap = NULL; /* Info from all observations */
  AstKeyMap * objmap = NULL; /* All the object names used */
  AstKeyMap * scimap = NULL; /* All non-flat obs indexed by unique key */
  Grp *ogrp = NULL;   /* local copy of output group */
  size_t sccount = 0; /* Number of accepted science files */
  struct timeval tv1;  /* Timer */
  struct timeval tv2;  /* Timer */

  if (meanstep) *meanstep = VAL__BADD;
  if (outgrp) *outgrp = NULL;
  if (darkgrp) *darkgrp = NULL;
  if (darks) *darks = NULL;
  if (fflats) *fflats = NULL;
  if (heateffmap) *heateffmap = NULL;

  if (*status != SAI__OK) return;

  /* Sanity check to make sure we return some information */
  if ( outgrp == NULL && darkgrp == NULL && darks == NULL && fflats == NULL) {
    *status = SAI__ERROR;
    errRep( " ", FUNC_NAME ": Must have some non-NULL arguments"
            " (possible programming error)", status);
    return;
  }

  /* Start a timer to see how long this takes */
  smf_timerinit( &tv1, &tv2, status );

  /* Create new group for output files */
  ogrp = smf_grp_new( ingrp, "Science", status );

  /* and a new group for darks */
  dgrp =  smf_grp_new( ingrp, "DarkFiles", status );

  /* and for fast flats */
  fgrp =  smf_grp_new( ingrp, "FastFlats", status );

  /* and also create a keymap for the observation description */
  obsmap = astKeyMap( "KeyError=1" );

  /* and an object map */
  objmap = astKeyMap( "KeyError=1" );

  /* This keymap contains the sequence counters for each related
     subarray/obsidss/heater/shutter combination and is used to decide
     if a bad flat is relevant */
  scimap = astKeyMap( "KeyError=1,KeyCase=0" );

  /* This keymap is used to contain relevant heater efficiency data */
  heatermap = astKeyMap( "KeyError=1,KeyCase=0" );

  /* Work out how many input files we have and allocate sufficient sorting
     space */
  insize = grpGrpsz( ingrp, status );
  alldarks = astCalloc( insize, sizeof(*alldarks) );
  allfflats = astCalloc( insize, sizeof(*allfflats) );

  /* check each file in turn */
  for (i = 1; i <= insize; i++) {
    int seqcount = 0;
    char keystr[100];  /* Key for scimap entry */

    /* open the file but just to get the header */
    smf_open_file( ingrp, i, "READ", SMF__NOCREATE_DATA, &infile, status );
    if (*status != SAI__OK) break;

    /* Fill in the keymap with observation details */
    smf_obsmap_fill( infile, obsmap, objmap, status );

    /* Find the heater efficiency map if required */
    if (*status == SAI__OK && heateffmap) {
      char arrayidstr[32];
      smf_fits_getS( infile->hdr, "ARRAYID", arrayidstr, sizeof(arrayidstr),
                     status );
      if (!astMapHasKey( heatermap, arrayidstr ) ) {
        smfData * heateff = NULL;
        dim_t nbolos = 0;
        smf_flat_params( infile, "RESIST", NULL, NULL, NULL, NULL, NULL,
                         NULL, NULL, NULL, NULL, NULL, &heateff, status );
        smf_get_dims( heateff, NULL, NULL, &nbolos, NULL, NULL, NULL, NULL,
                      status );
        if (heateff) astMapPut0P( heatermap, arrayidstr, heateff, NULL );
      }
    }

    /* Get the sequence counter for the file. We do not worry about
       duplicate sequence counters (at the moment) */
    smf_find_seqcount( infile->hdr, &seqcount, status );

    /* The key identifying this subarray/obsidss/heater/shutter combo */
    smf__calc_flatobskey( infile->hdr, keystr, sizeof(keystr), status );

    if (smf_isdark( infile, status )) {
      /* Store the sorting information */
      dkcount = smf__addto_sortinfo( infile, alldarks, i, dkcount, "Dark", status );
      smf__addto_durations( infile, &duration_darks, &nsteps_dark, status );
      astMapPutElemI( scimap, keystr, -1, seqcount );
    } else {
      /* compare sequence type with observation type and drop it (for now)
         if they differ */
      if ( infile->hdr->obstype == infile->hdr->seqtype ) {
        /* Sanity check the header for corruption. Compare RTS_NUM with SEQSTART
           and SEQEND. The first RTS_NUM must either be SEQSTART or else between
           SEQSTART and SEQEND (if someone has giving us a section) */
        int seqstart = 0;
        int seqend = 0;
        int firstnum = 0;
        JCMTState *tmpState = NULL;
        smf_getfitsi( infile->hdr, "SEQSTART", &seqstart, status );
        smf_getfitsi( infile->hdr, "SEQEND", &seqend, status );
        tmpState = infile->hdr->allState;

        if( tmpState ) {
          firstnum = (tmpState[0]).rts_num;
          smf_smfFile_msg( infile->file, "F", 1, "<unknown file>");
          if ( firstnum >= seqstart && firstnum <= seqend ) {
            /* store the file in the output group */
            ndgCpsup( ingrp, i, ogrp, status );
            msgOutif(MSG__DEBUG, " ", "Non-dark file: ^F",status);
            smf__addto_durations( infile, &duration_sci, &nsteps_sci, status );
            astMapPutElemI( scimap, keystr, -1, seqcount );
            sccount++;
          } else {
            msgOutif( MSG__QUIET, "",
                      "File ^F has a corrupt FITS header. Ignoring it.",
                      status );
          }
        } else {
          smf_smfFile_msg( infile->file, "F", 1, "<unknown file>");
          /* store the file in the output group */
          ndgCpsup( ingrp, i, ogrp, status );
          msgOutif( MSG__DEBUG, " ",
                    "File ^F lacks JCMTState: assuming it is non-dark",status);
          smf__addto_durations( infile, &duration_sci, &nsteps_sci, status );
          astMapPutElemI( scimap, keystr, -1, seqcount );
          sccount++;
        }

      } else if (infile->hdr->seqtype == SMF__TYP_FASTFLAT ) {
        ffcount = smf__addto_sortinfo( infile, allfflats, i, ffcount, "Fast flat", status );
      } else {
        smf_smfFile_msg( infile->file, "F", 1, "<unknown file>");
        msgOutif(MSG__DEBUG, " ", "Sequence type mismatch with observation type: ^F",status);
      }
    }

    /* close the file */
    smf_close_file( &infile, status );
  }

  /* Store output group in return variable or else free it */
  if (outgrp) {
    *outgrp = ogrp;
  } else {
    grpDelet( &ogrp, status );
  }

  /* process flatfields if necessary */
  if (ffcount > 0 && fflats ) {
    smfArray * array = NULL;

    /* sort flats into order */
    qsort( allfflats, ffcount, sizeof(*allfflats), smf_sort_bydouble);

    if (fflats) array = smf_create_smfArray( status );

    /* now open the flats and store them if requested */
    if (*status == SAI__OK && array && ffcount) {
      size_t start_ffcount = ffcount;
      AstKeyMap * flatmap = NULL;

      if (calcflat) {
        /* Use AgeUp so that we get the keys out in the sorted order
           that allfflats used */
        flatmap = astKeyMap( "KeyCase=0,KeyError=1,SortBy=AgeDown" );
      }

      /* Read each flatfield. Calculate a responsivity image and a flatfield
         solution. Store these in a keymap along with related information
         which is itself stored in a keymap indexed by a string made of
         OBSIDSS, reference heater value, shutter and subarray.
      */

      for (i = 0; i < start_ffcount; i++ ) {
        size_t ori_index =  (allfflats[i]).index;
        smfData * outfile = NULL;
        char keystr[100];
        AstKeyMap * infomap = astKeyMap( "KeyError=1" );
        int oplen = 0;
        char thisfile[MSG__SZMSG];
        int seqcount = 0;

        /* read filename from group */
        infile = NULL;
        smf_open_file( ingrp, ori_index, "READ", 0, &infile, status );
        if ( *status != SAI__OK ) {
          /* This should not happen because we have already opened
             the file. If it does happen we abort with error. */
          if (infile) smf_close_file( &infile, status );
          break;
        }

        /* Calculate the key for this observation */
        smf__calc_flatobskey( infile->hdr, keystr, sizeof(keystr), status );

        /* Get the file name for error messages */
        smf_smfFile_msg( infile->file, "F", 1, "<unknown file>" );
        msgLoad( "", "^F", thisfile, sizeof(thisfile), &oplen, status );

        /* And the sequence counter to link against science observations */
        smf_find_seqcount( infile->hdr, &seqcount, status );

        /* Prefill infomap */
        astMapPut0C( infomap, "FILENAME", thisfile, "");
        astMapPut0I( infomap, "SEQCOUNT", seqcount, "");

        /* Collapse it */
        if (*status == SAI__OK) {
          smf_flat_fastflat( infile, &outfile, status );
          if (*status == SMF__BADFLAT) {
            errFlush( status );

            if (calcflat) {
              /* Need to generate an outfile like smf_flat_fastflat
                 and one heater setting will force smf_flat_calcflat to fail */
              smf_flat_malloc( 1, infile, NULL, &outfile, status );
            } else {
              if (outfile) smf_close_file( &outfile, status );
              if (infile) smf_close_file( &infile, status );
              infomap = astAnnul( infomap );
              ffcount--;
              continue;
            }
          }
        }

        if (outfile && *status == SAI__OK) {
          smf_close_file( &infile, status );
          infile = outfile;

          if (calcflat) {
            size_t ngood = 0;
            smfData * curresp = NULL;
            int utdate;

            if (*status == SAI__OK) {
              ngood = smf_flat_calcflat( MSG__VERB, NULL, "RESIST",
                                         "FLATMETH", "FLATORDER", NULL, "RESPMASK",
                                         "FLATSNR", NULL, infile, &curresp, status );
              if (*status != SAI__OK) {
                /* if we failed to calculate a flatfield we continue but force the
                   flatfield to be completely bad. This will force the science data associated
                   with the flatfield to be correctly blanked. We do not annul though
                   if we have a SUBPAR error telling us that we have failed to define
                   our parameters properly. */
                if (*status != SUBPAR__NOPAR) errAnnul(status);

                /* parameters of flatfield */
                ngood = 0;

                /* Generate a blank flatfield and blank responsivity image */
                smf_flat_badflat( infile, &curresp, status );
              }

              /* Retrieve the UT date so we can decide whether to compare
                 flatfields */
              smf_getfitsi( infile->hdr, "UTDATE", &utdate, status );

              /* Store the responsivity data for later on and the processed
                 flatfield until we have vetted it */
              astMapPut0P( infomap, "CALCFLAT", infile, "" );
              astMapPut0P( infomap, "RESP", curresp, "" );
              astMapPut0I( infomap, "UTDATE", utdate, "" );
              astMapPut0I( infomap, "ISGOOD", 1, "" );
              astMapPut0I( infomap, "NGOOD", ngood, "" );
              astMapPut0I( infomap, "GRPINDEX", ori_index, "" );
              astMapPut0I( infomap, "SMFTYP", infile->hdr->obstype, "" );
              astMapPutElemA( flatmap, keystr, -1, infomap );

            }

          } else { /* if (calcflat) */
            /* Store the collapsed flatfield  - the processed flat is not stored here yet */
            smf_addto_smfArray( array, infile, status );

            /* Copy the group info */
            ndgCpsup( ingrp, ori_index, fgrp, status );

          }

        } /* if (outfile) */

        /* Annul the keymap (will be fine if it is has been stored in another keymap) */
        infomap = astAnnul( infomap );

      } /* End loop over flatfields */

      /* Now we have to loop over the related flatfields to disable
         bolometers that are not good and also decide whether we
         need to set status to bad. */
      if (*status == SAI__OK && calcflat ) {
        size_t nkeys = astMapSize( flatmap );
        for (i = 0; i < nkeys; i++ ) {
          const char *key = astMapKey( flatmap, i );
          int nf = 0;
          AstKeyMap ** kmaps = NULL;
          int nelem = astMapLength( flatmap, key );
          kmaps = astMalloc( sizeof(*kmaps) * nelem );
          astMapGet1A( flatmap, key, nelem, &nelem, kmaps );

          for ( nf = 0; nf < nelem && *status == SAI__OK; nf++ ) {
            AstKeyMap * infomap = kmaps[nf];
            int isgood = 0;

            astMapGet0I( infomap, "ISGOOD", &isgood );

            if (isgood) {
              /* The flatfield worked */
              size_t ngood = 0;
              int itemp;
              int utdate = 0;
              int ratioFlats = 0;

              /* Get the UT date - we do not compare flatfields after
                 the time we enabled heater tracking at each sequence. */
              astMapGet0I( infomap, "UTDATE", &utdate );

              /* Get the number of good bolometers at this point */
              astMapGet0I( infomap, "NGOOD", &itemp );
              ngood = itemp;

              /* Decide if we want to do the ratio test. We default to
                 not doing it between 20110901 and 20120827 which is
                 the period when we did mini-heater tracks before each
                 flat. ! indicates that we choose based on date. */
              if (*status == SAI__OK) {
                parGet0l( "FLATUSENEXT", &ratioFlats, status );
                if ( *status == PAR__NULL ) {
                  errAnnul( status );
                  if (utdate >= 20110901 || utdate <= 20120827 ) {
                    ratioFlats = 0;
                  } else {
                    ratioFlats = 1;
                  }
                }
              }

              /* Can we compare with the next flatfield? */
              if (ngood < SMF__MINSTATSAMP || !ratioFlats ) {
                /* no point doing all the ratio checking for this */
              } else if ( nelem - nf >= 2 ) {
                AstKeyMap * nextmap = kmaps[nf+1];
                const char *nextfname = NULL;
                const char *fname = NULL;
                smfData * curresp = NULL;
                smfData * nextresp = NULL;
                smfData * curflat = NULL;
                void *tmpvar = NULL;
                size_t bol = 0;
                smfData * ratio = NULL;
                double *in1 = NULL;
                double *in2 = NULL;
                double mean = VAL__BADD;
                size_t nbolo;
                double *out = NULL;
                double sigma = VAL__BADD;
                float clips[] = { 5.0, 5.0 }; /* 5.0 sigma iterative clip */
                size_t ngoodz = 0;

                astMapGet0C( nextmap, "FILENAME", &nextfname );
                astMapGet0C( infomap, "FILENAME", &fname );

                /* Retrieve the responsivity images from the keymap */
                astMapGet0P( infomap, "RESP", &tmpvar );
                curresp = tmpvar;
                astMapGet0P( nextmap, "RESP", &tmpvar );
                nextresp = tmpvar;
                astMapGet0P( infomap, "CALCFLAT", &tmpvar );
                curflat = tmpvar;

                nbolo = (curresp->dims)[0] * (curresp->dims)[1];

                /* get some memory for the ratio if we have not already.
                   We could get some memory once assuming each flat has the
                   same number of bolometers... */
                ratio = smf_deepcopy_smfData( curresp, 0, 0, 0, 0, status );
                if( *status == SAI__OK ) {

                  /* divide: smf_divide_smfData ? */
                  in1 = (curresp->pntr)[0];
                  in2 = (nextresp->pntr)[0];
                  out = (ratio->pntr)[0];

                  for (bol=0; bol<nbolo;bol++) {
                    if ( in1[bol] != VAL__BADD && in1[bol] != 0.0 &&
                         in2[bol] != VAL__BADD && in2[bol] != 0.0 ) {
                      out[bol] = in1[bol] / in2[bol];
                    } else {
                      out[bol] = VAL__BADD;
                    }
                  }
                }

                /* find some statistics */
                smf_clipped_stats1D( out, 2, clips, 1, nbolo, NULL, 0, 0, &mean,
                                     &sigma, NULL, 0, &ngoodz, status );

                if (*status == SMF__INSMP) {
                  errAnnul(status);
                  msgOutiff( MSG__QUIET, "",
                            "Flatfield ramp ratio of %s with %s had too few bolometers (%zu < %d).",
                             status, fname, nextfname, ngoodz, SMF__MINSTATSAMP );
                  ngood = ngoodz; /* Must be lower or equal to original ngood */

                } else if (*status == SAI__OK && mean != VAL__BADD && sigma != VAL__BADD && curflat->da) {
                  /* Now flag the flatfield as bad for bolometers that have changed
                     more than n%. We expect the variation to be 1+/-a small bit */
                  const double pmrange = 0.10;
                  double thrlo = 1.0 - pmrange;
                  double thrhi = 1.0 + pmrange;
                  size_t nmasked = 0;
                  double *flatcal = curflat->da->flatcal;

                  msgOutiff( MSG__DEBUG, "", "Flatfield fast ramp ratio mean = %g +/- %g (%zu bolometers)",
                             status, mean, sigma, ngood);

                  /* we can just set the first slice of the flatcal to bad. That should
                     be enough to disable the entire bolometer. We have just read these
                     data so they should be in ICD order. */
                  for (bol=0; bol<nbolo;bol++) {
                    if ( out[bol] != VAL__BADD &&
                         (out[bol] < thrlo || out[bol] > thrhi ) ) {
                      flatcal[bol] = VAL__BADD;
                      nmasked++;
                    } else if ( in1[bol] != VAL__BADD && in2[bol] == VAL__BADD ) {
                      /* A bolometer is bad next time but good now so we must set it bad now */
                      flatcal[bol] = VAL__BADD;
                      nmasked++;
                    }
                  }

                  if ( nmasked > 0 ) {
                    msgOutiff( MSG__NORM, "", "Masked %zu bolometers in %s from unstable flatfield",
                               status, nmasked, fname );

                    /* update ngood to take into account the masking */
                    ngood -= nmasked;
                  }

                }

                smf_close_file( &ratio, status );

              } /* End of flatfield responsivity comparison */

              /* if we only have a few bolometers left we now consider this
                 a bad flat unless it is actually an engineering measurement
                 where expect some configurations to give zero bolometers */
              if (ngood < SMF__MINSTATSAMP) {
                const char *fname = NULL;
                void * tmpvar = NULL;
                int smftyp = 0;
                smfData * curflat = NULL;
                astMapGet0I( infomap, "SMFTYP", &smftyp );
                astMapGet0C( infomap, "FILENAME", &fname );
                if (smftyp != SMF__TYP_NEP) {
                  msgOutiff( MSG__QUIET, "",
                            "Flatfield %s has %zu good bolometer%s.%s",
                             status, fname, ngood, (ngood == 1 ? "" : "s"),
                             ( ngood == 0 ? "" : " Keeping none.") );
                  isgood = 0;

                  /* Make sure that everything is blanked. */
                  if (ngood > 0) {
                    astMapGet0P( infomap, "CALCFLAT", &tmpvar );
                    curflat = tmpvar;
                    if (curflat && curflat->da) {
                      size_t bol;
                      size_t nbolo = (curflat->dims)[0] * (curflat->dims)[1];
                      double *flatcal = curflat->da->flatcal;
                      for (bol=0; bol<nbolo; bol++) {
                        /* Just need to set the first element to bad */
                        flatcal[bol] = VAL__BADD;
                      }
                    }
                  }

                } else {
                  msgOutiff( MSG__NORM, "",
                            "Flatfield ramp file %s has %zu good bolometer%s. Eng mode.",
                             status, fname, ngood, (ngood == 1 ? "" : "s") );
                }
              }

              /* We do not need the responsivity image again */
              {
                void *tmpvar = NULL;
                smfData * resp = NULL;
                astMapGet0P( infomap, "RESP", &tmpvar );
                resp = tmpvar;
                if (resp) smf_close_file( &resp, status );
                astMapRemove( infomap, "RESP" );
              }

            } /* End of isgood comparison */

            /* We are storing flats even if they failed. Let the downstream
               software worry about it */
            {
              int ori_index;
              smfData * flatfile = NULL;
              void *tmpvar = NULL;

              /* Store in the output group */
              astMapGet0I( infomap, "GRPINDEX", &ori_index );
              ndgCpsup( ingrp, ori_index, fgrp, status );

              /* And store in the smfArray */
              astMapGet0P( infomap, "CALCFLAT", &tmpvar );
              astMapRemove( infomap, "CALCFLAT" );
              flatfile = tmpvar;
              smf_addto_smfArray( array, flatfile, status );
            }

            /* Free the object as we go */
            kmaps[nf] = astAnnul( kmaps[nf] );
          } /* End of loop over this obsidss/subarray/heater */

          kmaps = astFree( kmaps );

        }
      }

      if (array->ndat) {
        if (fflats) *fflats = array;
      } else {
        smf_close_related(&array, status );
        if (fflats) *fflats = NULL;
      }
    }
  }

  /* no need to do any more if neither darks nor darkgrp are defined or we might
     be wanting to revert to darks. */
  if (dkcount > 0 && (darks || darkgrp || reverttodark ) ) {
    smfArray * array = NULL;

    /* sort darks into order */
    qsort( alldarks, dkcount, sizeof(*alldarks), smf_sort_bydouble);

    if (darks) array = smf_create_smfArray( status );

    /* now open the darks and store them if requested */
    if (*status == SAI__OK) {
      for (i = 0; i < dkcount; i++ ) {
        size_t ori_index =  (alldarks[i]).index;

         /* Store the entry in the output group */
        ndgCpsup( ingrp, ori_index, dgrp, status );

        if (darks) {

          /* read the value from the new group */
          smf_open_file( dgrp, i+1, "READ", 0, &infile, status );

          /* do we have to process these darks? */
          if (reducedark) {
            smfData *outfile = NULL;
            smf_reduce_dark( infile, darktype, &outfile, status );
            if (outfile) {
              smf_close_file( &infile, status );
              infile = outfile;
            }
          }

          smf_addto_smfArray( array, infile, status );
        }
      }
      if (darks) *darks = array;
    }
  }

  /* free memory */
  alldarks = astFree( alldarks );
  allfflats = astFree( allfflats );

  if( reverttodark && outgrp && (grpGrpsz(*outgrp,status)==0) &&
      (grpGrpsz(dgrp,status)>0) ) {
    /* If outgrp requested but no science observations were found, and
       dark observations were found, return darks in outgrp and set
       flatgrp and darkgrp to NULL. This is to handle cases where we
       want to process data taken in the dark like normal science
       data. To activate this behaviour set reverttodark */

    msgOutiff( MSG__NORM, "", "Treating the dark%s as science data",
               status, ( dkcount > 1 ? "s" : "" ) );

    *outgrp = dgrp;

    if( darkgrp ){
      *darkgrp = NULL;
    }

    if( flatgrp ) {
      *flatgrp = NULL;
    }

    grpDelet( &ogrp, status);
    grpDelet( &fgrp, status);

    if (meanstep && nsteps_dark > 0) *meanstep = duration_darks / nsteps_dark;

    /* Have to clear the darks smfArray as well */
    if (darks) smf_close_related( darks, status );

  } else {
    /* Store the output groups in the return variable or free it */
    if (darkgrp) {
      *darkgrp = dgrp;
    } else {
      grpDelet( &dgrp, status);
    }
    if (flatgrp) {
      *flatgrp = fgrp;
    } else {
      grpDelet( &fgrp, status);
    }

    if (meanstep && nsteps_sci > 0) *meanstep = duration_sci / nsteps_sci;
  }

  msgSeti( "ND", sccount );
  msgSeti( "DK", dkcount );
  msgSeti( "FF", ffcount );
  msgSeti( "TOT", insize );
  if ( insize == 1 ) {
    if (dkcount == 1) {
      msgOutif( MSG__VERB, " ", "Single input file was a dark",
                status);
    } else if (ffcount == 1) {
      msgOutif( MSG__VERB, " ", "Single input file was a fast flatfield",
                status);
    } else if (sccount == 1) {
      msgOutif( MSG__VERB, " ", "Single input file was accepted (observation type same as sequence type)",
                status);
    } else {
      msgOutif( MSG__VERB, " ", "Single input file was not accepted.",
                status);
    }

  } else {
    if (dkcount == 1) {
      msgSetc( "DKTXT", "was a dark");
    } else {
      msgSetc( "DKTXT", "were darks");
    }
    if (ffcount == 1) {
      msgSetc( "FFTXT", "was a fast flat");
    } else {
      msgSetc( "FFTXT", "were fast flats");
    }
    if (sccount == 1) {
      msgSetc( "NDTXT", "was science");
    } else {
      msgSetc( "NDTXT", "were science");
    }

    /* This might be a useful message */
    msgOutif( MSG__NORM, " ", "Out of ^TOT input files, ^DK ^DKTXT, ^FF ^FFTXT "
              "and ^ND ^NDTXT", status );
  }

  if (meanstep && *meanstep != VAL__BADD) {
    msgOutiff( MSG__VERB, "", "Mean step time for input files = %g sec",
             status, *meanstep );
  }

  /* Store the heater efficiency map */
  if (*status != SAI__OK) heatermap = smf_free_effmap( heatermap, status );
  if (heateffmap) *heateffmap = heatermap;

  /* Now report the details of the observation */
  smf_obsmap_report( MSG__NORM, obsmap, objmap, status );

  obsmap = astAnnul( obsmap );
  objmap = astAnnul( objmap );
  scimap = astAnnul( scimap );

  msgOutiff( SMF__TIMER_MSG, "",
             "Took %.3f s to find science observations",
             status, smf_timerupdate( &tv1, &tv2, status ) );

  return;
}
Пример #8
0
void smf_clean_smfArray( ThrWorkForce *wf, smfArray *array,
                         smfArray **noisemaps, smfArray **com, smfArray **gai,
                         AstKeyMap *keymap, int *status ) {

  /* Local Variables */
  double badfrac;           /* Fraction of bad samples to flag bad bolo */
  smfData *data=NULL;       /* Pointer to individual smfData */
  int compreprocess;        /* COMmon-mode cleaning as pre-processing step */
  dim_t dcfitbox;           /* width of box for measuring DC steps */
  int dclimcorr;            /* Min number of correlated steps */
  int dcmaxsteps;           /* number of DC steps/min. to flag bolo bad */
  dim_t dcsmooth;           /* median filter width before finding DC steps */
  double dcthresh;          /* n-sigma threshold for primary DC steps */
  int dofft;                /* are we doing a freq.-domain filter? */
  int dkclean;              /* Flag for dark squid cleaning */
  smfFilter *filt=NULL;     /* Frequency domain filter */
  double flagfast;          /* Threshold for flagging slow slews */
  double flagslow;          /* Threshold for flagging slow slews */
  dim_t idx;                /* Index within subgroup */
  size_t nflag;             /* Number of elements flagged */
  double noisecliphigh = 0; /* Sigma clip high-noise outlier bolos */
  double noisecliplow = 0;  /* Sigma clip low-noise outlier bolos */
  int noiseclipprecom = 0;  /* Noise clipping before common-mode cleaning? */
  const char *opteff=NULL;  /* Pointer to optical efficiency NDF file name*/
  int opteffdiv;            /* Divide data by the optical efficiencies? */
  int order;                /* Order of polynomial for baseline fitting */
  char param[ 20 ];         /* Buffer for config parameter name */
  dim_t pcalen;             /* Chunk length for PCA cleaning */
  double pcathresh;         /* n-sigma threshold for PCA cleaning */
  double spikethresh;       /* Threshold for finding spikes */
  dim_t spikebox=0;         /* Box size for spike finder */
  struct timeval tv1, tv2;  /* Timers */
  int whiten;               /* Apply whitening filter? */
  int zeropad;              /* Pad with zeros? */

  /* Main routine */
  if (*status != SAI__OK) return;

  /*** TIMER ***/
  smf_timerinit( &tv1, &tv2, status );

  /* Check for valid inputs */

  if( !array || (array->ndat < 1) ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": No data supplied", status );
  }

  if( array->sdata[0]->ndims != 3 ) {
    *status = SMF__WDIM;
    errRepf( "", FUNC_NAME ": Supplied smfData has %zu dims, needs 3", status,
             data->ndims );
    return;
  }

  if( !keymap ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": NULL AstKeyMap supplied", status );
    return;
  }

  /* Get cleaning parameters */
  smf_get_cleanpar( keymap, array->sdata[0], &badfrac, &dcfitbox, &dcmaxsteps,
                    &dcthresh, &dcsmooth, &dclimcorr, &dkclean,
                    NULL, &zeropad, NULL, NULL, NULL, NULL, NULL,
                    NULL, NULL, NULL, &flagslow, &flagfast, &order,
                    &spikethresh, &spikebox, &noisecliphigh, &noisecliplow,
                    NULL, &compreprocess, &pcalen, &pcathresh, NULL, NULL, NULL,
                    &noiseclipprecom, status );

  /* Loop over subarray */
  for( idx=0; (idx<array->ndat)&&(*status==SAI__OK); idx++ ) {
    data = array->sdata[idx];

    /* Update quality by synchronizing to the data array VAL__BADD values */
    msgOutif(MSG__VERB,"", FUNC_NAME ": update quality", status);
    smf_update_quality( data, 1, NULL, 0, badfrac, status );

    /*** TIMER ***/
    msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s updating quality",
               status, smf_timerupdate(&tv1,&tv2,status) );

    /* Fix DC steps */
    if( dcthresh && dcfitbox ) {
      msgOutiff(MSG__VERB, "", FUNC_NAME
                ": Flagging bolos with %lf-sigma DC steps in %" DIM_T_FMT " "
                "samples as bad, using %" DIM_T_FMT
                "-sample median filter and max %d "
                "DC steps per min before flagging entire bolo bad...", status,
                dcthresh, dcfitbox, dcsmooth, dcmaxsteps);

      smf_fix_steps( wf, data, dcthresh, dcsmooth, dcfitbox, dcmaxsteps,
                     dclimcorr, 0, &nflag, NULL, NULL, status );

      msgOutiff(MSG__VERB, "", FUNC_NAME": ...%zd flagged\n", status, nflag);

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s fixing DC steps",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }

    /* Flag Spikes */
    if( spikethresh ) {
      msgOutif(MSG__VERB," ", FUNC_NAME ": flag spikes...", status);
      smf_flag_spikes( wf, data, SMF__Q_FIT, spikethresh, spikebox,
                       &nflag, status );
      msgOutiff(MSG__VERB,"", FUNC_NAME ": ...found %zd", status, nflag );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s flagging spikes",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }

    /*  Flag periods of stationary pointing, and update scanspeed to more
        accurate value */
    if( flagslow || flagfast ) {
      if( data->hdr && data->hdr->allState ) {
        double scanvel=0;

        if( flagslow ) {
          msgOutiff( MSG__VERB, "", FUNC_NAME
                     ": Flagging regions with slew speeds < %.2lf arcsec/sec",
                     status, flagslow );
        }

        if( flagfast ) {
          msgOutiff( MSG__VERB, "", FUNC_NAME
                     ": Flagging regions with slew speeds > %.2lf arcsec/sec",
                     status, flagfast );


          /* Check to see if this was a sequence type that involved
             motion.  If not, skip this section */
          if( data && data->hdr && (
                                    (data->hdr->seqtype==SMF__TYP_SCIENCE) ||
                                    (data->hdr->seqtype==SMF__TYP_POINTING) ||
                                    (data->hdr->seqtype==SMF__TYP_FOCUS) ||
                                    (data->hdr->seqtype==SMF__TYP_SKYDIP))
                                 && (data->hdr->obsmode!=SMF__OBS_STARE) ) {

            smf_flag_slewspeed( data, flagslow, flagfast, &nflag, &scanvel,
                              status );
            msgOutiff( MSG__VERB,"", "%zu new time slices flagged", status,
                       nflag);

            if( msgIflev( NULL, status ) >= MSG__VERB ) {
              msgOutf( "", FUNC_NAME ": mean SCANVEL=%.2lf arcsec/sec"
                       " (was %.2lf)", status, scanvel, data->hdr->scanvel );
            }

            data->hdr->scanvel = scanvel;

            /*** TIMER ***/
            msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME
                       ":   ** %f s flagging outlier slew speeds",
                       status, smf_timerupdate(&tv1,&tv2,status) );
          } else {
            msgOutif( MSG__VERB, "", FUNC_NAME
                      ": not a moving sequence or missing header, "
                      "skipping slew speed flagging", status );
          }
        }
      } else {
        msgOutif( MSG__DEBUG, "", FUNC_NAME
                  ": Skipping flagslow/flagfast because no header present",
                  status );
      }
    }

    /* Clean out the dark squid signal */
    if( dkclean ) {
      msgOutif(MSG__VERB, "", FUNC_NAME
               ": Cleaning dark squid signals from data.", status);
      smf_clean_dksquid( data, 0, 100, NULL, 0, 0, 0, status );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s DKSquid cleaning",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }

    /* Apply optical efficiency corrections. */
    one_strlcpy( param, "OPTEFF", sizeof(param), status );
    smf_find_subarray( data->hdr, param + strlen(param),
                       sizeof(param) - strlen(param), NULL, status );
    astChrCase( NULL, param, 1, 0 );
    if( astMapHasKey( keymap, param ) ) {
      astMapGet0I( keymap, "OPTEFFDIV", &opteffdiv );
      if ( astMapGet0C( keymap, param, &opteff ) ) {
        msgOutiff( MSG__VERB,"", FUNC_NAME ": %s bolometer values "
                   "by factors read from NDF %s", status,
                   opteffdiv ? "Dividing" : "Multiplying", opteff );
        smf_scale_bols( wf, data, NULL, opteff, param, opteffdiv, status );
      }
    }

    /* Remove baselines */
    if( order >= 0 ) {
      msgOutiff( MSG__VERB,"", FUNC_NAME
                 ": Fitting and removing %i-order polynomial baselines",
                 status, order );

      smf_fit_poly( wf, data, order, 1, NULL, status );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME
                 ":   ** %f s removing poly baseline",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }
  }

  /* Mask noisy bolos here if happening before common-mode cleaning */
  if( (*status == SAI__OK) && ((noisecliphigh>0.0) || (noisecliplow>0.0)) &&
      noiseclipprecom ) {

    smf__noisymask( wf, data, noisemaps, noisecliphigh, noisecliplow,
                    zeropad, &tv1, &tv2, status );
  }


  /* Optionally call smf_calcmodel_com to perform a subset of the following
     tasks as a pre-processing step:

       - remove the common-mode
       - flag outlier data using common-mode rejection
       - determine relative flatfields using amplitude of common-mode

     In order to do this we need to set up some temporary model container
     files so that the routine can be called properly. All of the same
     COMmon-mode and GAIn model parameters (e.g. com.* and gai.*) will be
     used here. However, in addition the "compreprocess" flag must be set
     for this operation to be performed. */

  if( compreprocess ) {
    smfArray *comdata = NULL;
    smfGroup *comgroup = NULL;
    smfDIMMData dat;
    smfArray *gaidata = NULL;
    smfGroup *gaigroup = NULL;
    smfArray *quadata = NULL;
    smfData *thisqua=NULL;

    msgOutif(MSG__VERB," ", FUNC_NAME ": Remove common-mode", status);

    /* Create model containers for COM, GAI */
    smf_model_create( wf, NULL, &array, NULL, NULL, NULL, NULL, NULL, 1, SMF__COM,
                      0, NULL, 0, NULL, NULL, &comgroup, &comdata, keymap,
                      status );

    smf_model_create( wf, NULL, &array, NULL, NULL, NULL, NULL, NULL, 1, SMF__GAI,
                      0, NULL, 0, NULL, NULL, &gaigroup, &gaidata, keymap,
                      status );

    /* Manually create quadata to share memory with the quality already
       stored in array */

    quadata = smf_create_smfArray( status );
    for( idx=0; (*status==SAI__OK) && (idx<array->ndat); idx++ ) {
      /* Create several new smfDatas, but they will all be freed
         properly when we close quadata */
      thisqua = smf_create_smfData( SMF__NOCREATE_DA | SMF__NOCREATE_HEAD |
                                    SMF__NOCREATE_FILE, status );

      /* Probably only need pntr->[0], but fill in the dimensionality
         information to be on the safe side */
      thisqua->dtype = SMF__QUALTYPE;
      thisqua->ndims = array->sdata[idx]->ndims;
      thisqua->isTordered = array->sdata[idx]->isTordered;
      memcpy( thisqua->dims, array->sdata[idx]->dims, sizeof(thisqua->dims) );
      memcpy( thisqua->lbnd, array->sdata[idx]->lbnd, sizeof(thisqua->lbnd) );
      thisqua->pntr[0] = smf_select_qualpntr( array->sdata[idx], NULL, status );

      smf_addto_smfArray( quadata, thisqua, status );
    }

    /* Set up the smfDIMMData and call smf_calcmodel_com */
    memset( &dat, 0, sizeof(dat) );
    dat.res = &array;
    dat.gai = &gaidata;
    dat.qua = &quadata;
    dat.noi = NULL;

    smf_calcmodel_com( wf, &dat, 0, keymap, &comdata, SMF__DIMM_FIRSTITER,
                       status );

    /*** TIMER ***/
    msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME
               ":   ** %f s removing common-mode",
               status, smf_timerupdate(&tv1,&tv2,status) );

    /* Clean up and/or return values */
    if( com ) {
      *com = comdata;
    } else {
      if( comdata ) smf_close_related( &comdata, status );
    }

    if( gai ) {
      *gai = gaidata;
    } else {
      if( gaidata ) smf_close_related( &gaidata, status );
    }

    if( comgroup ) smf_close_smfGroup( &comgroup, status );
    if( gaigroup ) smf_close_smfGroup( &gaigroup, status );

    /* Before closing quadata unset all the pntr[0] since this is shared
       memory with the quality associated with array */
    if( quadata ) {
      for( idx=0; idx<quadata->ndat; idx++ ) {
        quadata->sdata[idx]->pntr[0] = NULL;
      }
      if( quadata ) smf_close_related( &quadata, status );
    }
  }

  /* PCA cleaning */
  if( pcathresh ) {
    /* Loop over subarray */
    for( idx=0; (idx<array->ndat)&&(*status==SAI__OK); idx++ ) {
      data = array->sdata[idx];

      smf_clean_pca_chunks( wf, data, pcalen, pcathresh, keymap, status );
    }

    /*** TIMER ***/
    msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s PCA cleaning",
               status, smf_timerupdate(&tv1,&tv2,status) );
  }

  /* Allocate space for noisemaps if required */

  if( noisemaps ) {
    *noisemaps = smf_create_smfArray( status );
  }

  /* Loop over subarray */

  for( idx=0; (idx<array->ndat)&&(*status==SAI__OK); idx++ ) {
    data = array->sdata[idx];

    /* Filter the data. Note that we call smf_filter_execute to apply
       a per-bolometer whitening filter even if there is no
       explicitly requested smfFilter (in which case the
       smf_filter_fromkeymap call will leave the real/imaginary parts
       of the filter as NULL pointers and they will get ignored inside
       smf_filter_execute). */

    filt = smf_create_smfFilter( data, status );
    smf_filter_fromkeymap( filt, keymap, data->hdr, &dofft, &whiten, status );

    if( (*status == SAI__OK) && dofft ) {
      msgOutif( MSG__VERB, "", FUNC_NAME ": frequency domain filter", status );
      smf_filter_execute( wf, data, filt, 0, whiten, status );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s filtering data",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }
    filt = smf_free_smfFilter( filt, status );

    /* Mask noisy bolos here if happening after common-mode cleaning */
    if( (*status == SAI__OK) && ((noisecliphigh>0.0) || (noisecliplow>0.0)) &&
        !noiseclipprecom ) {

      smf__noisymask( wf, data, noisemaps, noisecliphigh, noisecliplow,
                      zeropad, &tv1, &tv2, status );
    }

  }
}
Пример #9
0
void smurf_sc2threadtest( int *status ) {

  /* Local Variables */
  smfArray **res=NULL;       /* array of smfArrays of test data */
  smfData *data=NULL;        /* Pointer to SCUBA2 data struct */
  dim_t datalen;             /* Number of data points */
  smfFilter *filt=NULL;      /* Frequency domain filter */
  size_t i;                  /* Loop counter */
  size_t j;                  /* Loop counter */
  smfTimeChunkData *job_data=NULL; /* Array of pointers for job data */
  size_t joblen;             /* Number of chunks per job */
  size_t k;                  /* Loop counter */
  size_t nchunks;            /* Number of chunks */
  size_t nsub;               /* Number of subarrays */
  int nthread;               /* Number of threads */
  smfTimeChunkData *pdata=NULL; /* Pointer to data for single job */
  int temp;                  /* Temporary integer */
  size_t tsteps;             /* How many time steps in chunk */
  struct timeval tv1, tv2;   /* Timers */
  ThrWorkForce *wf = NULL;   /* Pointer to a pool of worker threads */

  double *dat=NULL;
  dim_t nbolo;
  dim_t ntslice;
  dim_t ndata;
  size_t bstride;
  size_t tstride;
  dim_t offset;

  if (*status != SAI__OK) return;

  /* Get input parameters */
  parGdr0i( "NTHREAD", 1, 1, NUM__MAXI, 1, &nthread, status );
  parGdr0i( "TSTEPS", 6000, 0, NUM__MAXI, 1, &temp, status );
  tsteps = (size_t) temp;
  parGdr0i( "NCHUNKS", 1, 1, NUM__MAXI, 1, &temp, status );
  nchunks = (size_t) temp;
  parGdr0i( "NSUB", 1, 1, 4, 1, &temp, status );
  nsub = (size_t) temp;

  msgSeti("N",nthread);
  msgOut( "", TASK_NAME ": Running test with ^N threads", status );

  /*** TIMER ***/
  smf_timerinit( &tv1, &tv2, status );

  /* Create some fake test data in the form of an array of smfArrays */

  msgSeti("T",tsteps);
  msgSeti("C",nchunks);
  msgSeti("NS",nsub);
  msgOut( "", TASK_NAME
          ": Creating ^NS subarrays of data with ^C chunks * ^T samples",
          status );

  res = astCalloc( nchunks, sizeof(*res) );

  for( k=0; (*status==SAI__OK)&&(k<nchunks); k++ ) {

    res[k] = smf_create_smfArray( status );

    for( i=0; (*status==SAI__OK)&&(i<nsub); i++ ) {
      /* Create individual smfDatas and add to array */
      data = smf_create_smfData( SMF__NOCREATE_FILE |
                                 SMF__NOCREATE_DA |
                                 SMF__NOCREATE_FTS, status );

      if( *status==SAI__OK ) {
        data->dtype=SMF__DOUBLE;
        data->ndims=3;
        data->dims[0]=40;
        data->dims[1]=32;
        data->dims[2]=(dim_t) tsteps;
        datalen=1;
        data->isFFT=-1;
        for( j=0; j<data->ndims; j++ ) datalen *= data->dims[j];

        data->hdr->steptime = 0.005;

        data->pntr[0] = astCalloc( datalen, smf_dtype_sz(data->dtype,status) );
        data->qual = astCalloc( datalen, sizeof(*data->qual) );
      }

      smf_addto_smfArray( res[k], data, status );
    }
  }

  /*** TIMER ***/
  msgOutf( "", "** %f seconds generating data", status,
           smf_timerupdate(&tv1,&tv2,status) );

  msgOut( "", TASK_NAME
          ": Starting test 1 __parallel time: dataOrder__", status );

  /* Create a pool of threads. */
  wf = thrGetWorkforce( nthread, status );

  /* Work out number of chunks per thread */
  joblen = nchunks/nthread;
  if( joblen == 0 ) joblen = 1; /* At least one chunk per thread */

  /* The first test will process separate time chunks of data in
     parallel, re-ordering each to bolo-ordered format. All subarrays
     and an integer number of input file chunks all go into a single
     thread. Start by allocating and initializing a number of
     smfTimeChunkData's that hold the information required for each
     thread */

  job_data = astCalloc( nthread, sizeof(*job_data) );

  for( i=0; (i<(size_t)nthread) && (*status==SAI__OK); i++ ) {
    pdata = job_data + i;

    pdata->type = 0;                /* Start with a data re-order */
    pdata->data = res;              /* Pointer to main data array */
    pdata->chunk1 = i*joblen;       /* Index of first chunk for job */
    pdata->nchunks = nchunks;       /* Total number of time chunks in data */
    pdata->ijob = -1;               /* Flag job as available to do work */

    /* The last thread has to pick up the remainder of chunks */
    if( i==(size_t)(nthread-1) ) pdata->chunk2=nchunks-1;
    else pdata->chunk2 = (i+1)*joblen-1; /* Index of last chunk for job */

    /* Ensure a valid chunk range, or set to a length that we know to ignore */
    if( pdata->chunk1 >= nchunks ) {
      pdata->chunk1 = nchunks;
      pdata->chunk2 = nchunks;
    } else if( pdata->chunk2 >= nchunks ) {
      pdata->chunk2 = nchunks-1;
    }

    if( pdata->chunk1 >= nchunks ) {
      /* Nothing for this thread to do */
      msgSeti( "W", i+1);
      msgOutif( MSG__DEBUG, "",
                "-- parallel time: skipping thread ^W, nothing to do",
                status);
    } else {
      /* Since we know there is one job_data per thread, just submit jobs
         immediately */
      pdata->ijob = thrAddJob( wf, THR__REPORT_JOB, pdata, smfParallelTime,
                                 0, NULL, status );
    }
  }

  /* Wait until all of the submitted jobs have completed */
  thrWait( wf, status );

  /* Annul the bad status that we set in smfParallelTime */
  if( *status == SMF__INSMP ) {
    errAnnul( status );
    msgOut( "", " *** Annulled SMF__INSMP set in smfParallelTime *** ",
            status );
  } else {
    msgOut( "", " *** Flushing good status *** ", status );
    errFlush( status );
  }

  /*** TIMER ***/
  msgOutf( "", "** %f seconds to complete test", status,
           smf_timerupdate(&tv1,&tv2,status) );

  /* The second test will boxcar smooth bolometers from time chunks in
     parallel */

  msgOut( "", TASK_NAME
          ": Starting test 2 __parallel time: boxcar smooth__", status );

  for( i=0; (i<(size_t)nthread) && (*status==SAI__OK); i++ ) {
    pdata = job_data + i;

    pdata->type = 1;                /* Boxcar smooth */

    if( pdata->chunk1 >= nchunks ) {
      /* Nothing for this thread to do */
      msgSeti( "W", i+1);
      msgOutif( MSG__DEBUG, "",
                "-- parallel time: skipping thread ^W, nothing to do",
                status);
    } else {
      /* Since we know there is one job_data per thread, just submit jobs
         immediately */
      pdata->ijob = thrAddJob( wf, THR__REPORT_JOB, pdata, smfParallelTime,
                                 0, NULL, status );
    }
  }

  /* Wait until all of the submitted jobs have completed */
  thrWait( wf, status );

  /*** TIMER ***/
  msgOutf( "", "** %f seconds to complete test", status,
           smf_timerupdate(&tv1,&tv2,status) );

  msgOut( "", TASK_NAME
          ": *** Next 2 tests will be done twice due to FFTW planning *****",
          status );

  for( k=0; k<2; k++ ) {

    /* The third test will FFT filter bolometers from time chunks in
       parallel */

    msgOut( "", TASK_NAME
            ": Starting test 3 __parallel time: FFT filter__", status );

    for( i=0; (i<(size_t)nthread) && (*status==SAI__OK); i++ ) {
      pdata = job_data + i;

      pdata->type = 2;                /* FFT filter */

      if( pdata->chunk1 >= nchunks ) {
        /* Nothing for this thread to do */
        msgSeti( "W", i+1);
        msgOutif( MSG__DEBUG, "",
                  "-- parallel time: skipping thread ^W, nothing to do",
                  status);
      } else {
        /* Since we know there is one job_data per thread, just submit jobs
           immediately */
        pdata->ijob = thrAddJob( wf, THR__REPORT_JOB, pdata, smfParallelTime,
                                 0, NULL, status );
      }
    }

    /* Wait until all of the submitted jobs have completed */
    thrWait( wf, status );

    /*** TIMER ***/
    msgOutf( "", "** %f seconds to complete test", status,
             smf_timerupdate(&tv1,&tv2,status) );

    msgOut( "", TASK_NAME
            ": Starting test 4 __FFTW filter using internal threading__",
            status );

    for( i=0; (*status==SAI__OK)&&(i<nchunks); i++ ) {
      filt = smf_create_smfFilter( res[i]->sdata[0], status );
      smf_filter_ident( filt, 1, status );

      for( j=0; (*status==SAI__OK)&&(j<nsub); j++ ) {
        msgOutiff( MSG__DEBUG, "", "  filter chunk %zu/%zu, bolo %zu/%zu",
                   status, i+1, nchunks, j+1, nsub );
        smf_filter_execute( wf, res[i]->sdata[j], filt, 0, 0, status );
      }

      if( filt ) filt = smf_free_smfFilter( filt, status );
    }
    /*** TIMER ***/
    msgOutf( "", "** %f seconds to complete test", status,
             smf_timerupdate(&tv1,&tv2,status) );
  }

  msgOut( "", TASK_NAME
          ": **************************************************************",
          status );

  /* Series of short single-thread array index tests */
  data = res[0]->sdata[0];
  dat = data->pntr[0];

  smf_get_dims( data, NULL, NULL, &nbolo, &ntslice, &ndata, &bstride,
                &tstride, status );

  msgOut("","Array index test #1: two multiplies in inner loop",status);
  smf_timerinit( &tv1, &tv2, status );
  for( i=0; i<nbolo; i++ ) {
    for( j=0; j<ntslice; j++ ) {
      dat[i*bstride + j*tstride] += 5;
    }
  }
  msgOutf( "", "** %f seconds to complete test", status,
           smf_timerupdate(&tv1,&tv2,status) );

  msgOut("","Array index test #2: only index increments",status);
  smf_timerinit( &tv1, &tv2, status );
  for( i=0; i<nbolo*bstride; i+=bstride ) {
    for( j=i; j<(i+ntslice*tstride); j+=tstride ) {
      dat[j] += 5;
    }
  }
  msgOutf( "", "** %f seconds to complete test", status,
           smf_timerupdate(&tv1,&tv2,status) );

  msgOut("","Array index test #3: one multiply in outer loop",status);
  smf_timerinit( &tv1, &tv2, status );
  offset = 0;
  for( i=0; i<nbolo; i++ ) {
    offset = i*bstride;
    for( j=0; j<ntslice; j++ ) {
      dat[offset] += 5;
      offset += tstride;
    }
  }
  msgOutf( "", "** %f seconds to complete test", status,
           smf_timerupdate(&tv1,&tv2,status) );

  /* Clean up */
  if( res ) {
    for( i=0; i<nchunks; i++ ) {
      if( res[i] ) {
        smf_close_related( &res[i], status );
      }
    }
    res = astFree( res );
  }
  job_data = astFree( job_data );

  /* Ensure that FFTW doesn't have any used memory kicking around */
  fftw_cleanup();

}