Пример #1
0
void system_Process_System_State(void)
{
	switch (system_GetState())
	{
		case SYSTEM_POWER_UP:
			break;
		case SYSTEM_INITIALIZE:
			break;
		case SYSTEM_CALIB_SENSOR:
			break;
		case SYSTEM_SAVE_CALIB_SENSOR:
			break;
		case SYSTEM_ESTIMATE_MOTOR_MODEL:
			ProcessSpeedControl();
			break;
		case SYSTEM_SAVE_MOTOR_MODEL:
			break;
		case SYSTEM_WAIT_TO_RUN:
			break;
		case SYSTEM_RUN_SOLVE_MAZE:
			pid_Wallfollow_process();
			ProcessSpeedControl();
			break;
		case SYSTEM_RUN_IMAGE_PROCESSING:
			LED1_ON();
			ProcessSpeedControl();
			break;
		case SYSTEM_ERROR:
			speed_Enable_Hbridge(false);
			system_Enable_BoostCircuit(false);
			IntMasterDisable();
			while (1)
			{
				LED1_ON();
				LED2_ON();
				LED3_ON();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
				LED1_OFF();
				LED2_OFF();
				LED3_OFF();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
			}
//			break;
	}
}
Пример #2
0
void system_Process_System_State(void)
{
	switch (system_GetState())
	{
		case SYSTEM_POWER_UP:
			break;
		case SYSTEM_INITIALIZE:
			break;
		case SYSTEM_ESTIMATE_MOTOR_MODEL:
			break;
		case SYSTEM_SAVE_MOTOR_MODEL:
			break;
		case SYSTEM_WAIT_TO_RUN:
			break;
		case SYSTEM_RUN_BALANCE:
			loop();
			break;
		case SYSTEM_RUN_IMAGE_PROCESSING:
			LED1_ON();
			break;
		case SYSTEM_ERROR:
			speed_Enable_Hbridge(false);
			system_Enable_BoostCircuit(false);
			IntMasterDisable();
			while (1)
			{
				LED1_ON();
				LED2_ON();
				LED3_ON();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
				LED1_OFF();
				LED2_OFF();
				LED3_OFF();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
			}
	}
}
/**
 * @brief Control speed
 * @param select motor select
 * @param speed motor speed (encoder pulse / 20ms)
 */
void speed_set(MOTOR_SELECT Select, int32_t speed)
{
	//speed_Enable_Hbridge(true);
	if (Select == MOTOR_RIGHT)
	{
		if (SetPoint[0] != speed)
		{
			SetPoint[0] = speed;
			speed_control_runtimeout(20);
		}
	}
	else if (Select == MOTOR_LEFT)
	{
		if (SetPoint[1] != speed)
		{
			SetPoint[1] = speed;
			speed_control_runtimeout(20);
		}
	}
	if (SetPoint[0]==0 && SetPoint[1]==0 )
	{
		speed_Enable_Hbridge(false);
	}
}
Пример #4
0
void ButtonHandler(void)
{
	switch (system_GetState())
	{
		case SYSTEM_INITIALIZE:
			speed_Enable_Hbridge(false);
			system_SetState(SYSTEM_CALIB_SENSOR);
			IR_Calib_Step = 0;
			LED1_ON();
			LED2_ON();
			LED3_ON();
			break;
		case SYSTEM_CALIB_SENSOR:
			speed_Enable_Hbridge(false);
			system_SetState(SYSTEM_SAVE_CALIB_SENSOR);
		case SYSTEM_SAVE_CALIB_SENSOR:
			system_SetState(SYSTEM_ESTIMATE_MOTOR_MODEL);
			speed_Enable_Hbridge(true);
			speed_set(MOTOR_LEFT,500);
			speed_set(MOTOR_RIGHT, 500);
			break;
		case SYSTEM_ESTIMATE_MOTOR_MODEL:
//			system_SetState(SYSTEM_SAVE_MOTOR_MODEL);
			system_SetState(SYSTEM_WAIT_TO_RUN);
			speed_Enable_Hbridge(false);
			break;
		case SYSTEM_WAIT_TO_RUN:
			speed_Enable_Hbridge(true);
			system_SetState(SYSTEM_RUN_SOLVE_MAZE);
			break;
		case SYSTEM_RUN_SOLVE_MAZE:
		case SYSTEM_RUN_IMAGE_PROCESSING:
			system_SetState(SYSTEM_WAIT_TO_RUN);
			speed_Enable_Hbridge(false);
			break;
		default:
			break;
	}
}
Пример #5
0
void pid_Wallfollow_process(void)
{
	if (ControlFlag)
	{
		static int i;
		pid_Runtimeout(&pid_process_callback, ui32_msLoop);
		ControlFlag = false;

		leftError=(float)IR_get_calib_value(IR_CALIB_BASE_LEFT) - (float)IR_GetIrDetectorValue(1);
		rightError=(float)IR_get_calib_value(IR_CALIB_BASE_RIGHT) - (float)IR_GetIrDetectorValue(2);
		isWallLeft = IR_GetIrDetectorValue(1)<IR_get_calib_value(IR_CALIB_MAX_LEFT);
		isWallRight = IR_GetIrDetectorValue(2)<IR_get_calib_value(IR_CALIB_MAX_RIGHT);
		isWallFrontLeft = IR_GetIrDetectorValue(0)<IR_get_calib_value(IR_CALIB_MAX_FRONT_LEFT);
		isWallFrontRight = IR_GetIrDetectorValue(3)<IR_get_calib_value(IR_CALIB_MAX_FRONT_RIGHT);


		switch(eMove)
		{
		case FORWARD:
			switch (moveStage)
			{
			case 1:
				if (Forward())
					moveStage++;
				if (isWallFrontLeft| isWallFrontRight)
				{
					preMove=eMove;
					eMove=getMove(isWallLeft,isWallFrontLeft|isWallFrontRight,isWallRight);
				}
				break;
			case 2:
				posLeftTmp=qei_getPosLeft();
				moveStage++;
				i=1;
				avrSpeedTmp=avrSpeed;
			case 3://slow down
				forwardUpdate();
				if (!isWallLeft)
				{
					rqTurnLeft=true;
				}
				if (!isWallRight)
				{
					rqTurnRight=true;
				}
				if ((abs(qei_getPosLeft()-posLeftTmp)<5000)
						&& (!isWallFrontLeft) && (!isWallFrontRight))
				{
					if ((abs(qei_getPosLeft()-posLeftTmp)>i*500) && (avrSpeed>AVG_SPEED_FWD-40))
					{
						avrSpeed -= 10;
						i++;
					}
					if (isWallLeft|isWallRight)
						pid_wallfollow(leftError,rightError, avrSpeed,WALL_FOLLOW_AUTO);
					else
					{
						pid_reset(&pid_wall_left);
						pid_reset(&pid_wall_right);
						speed_set(MOTOR_RIGHT, avrSpeed);
						speed_set(MOTOR_LEFT, avrSpeed);
					}
				}
				else
				{
#ifdef TEST_FORWARD_MOVE
					speed_Enable_Hbridge(false);
#endif
					preMove=eMove;
					eMove=getMove(!rqTurnLeft,isWallFrontLeft|isWallFrontRight,!rqTurnRight);
					if (eMove==FORWARD)
						avrSpeed=AVG_SPEED_FWD;
					rqTurnLeft=false;
					rqTurnRight=false;
					moveStage=1;
				}
				break;
			}
			break;

		case TURN_LEFT:
			switch (moveStage)
			{
			case 1:
				if (preMove!=FORWARD)//after turning left or right
					//test
					// ____
					// |   |
					// | | |
					fwdPulse=6000;
				else if ((preMove==FORWARD) && (avrSpeed<AVG_SPEED_FWD_FAST))
					//after turning back
					//test
					// ___
					// |__   |
					//    |__|
					fwdPulse=5500;
				else//after moving forward
					//test
					// ___
					// ___  |
					//    | |
					//    |_|
					fwdPulse=4500;
				moveStage++;

			case 2:
				if (TurnLeft(fwdPulse,60,240,7800,1700+CELL_ENC))
				{
					moveStage++;
				}
				break;
			case 3:
				posLeftTmp=qei_getPosLeft();
				moveStage++;
			case 4:
				//go straight a little bit to check wall
				forwardUpdate();
				if (abs(qei_getPosLeft()-posLeftTmp)<2000)
				{
					if (abs(qei_getPosLeft()-posLeftTmp)>1500)
					{
						if (!isWallRight)
							rqTurnRight=1;
						if (!isWallLeft)
							rqTurnLeft=1;
					}
					avrSpeed=AVG_SPEED_FWD_SLOW;
					if (isWallLeft|isWallRight)
						pid_wallfollow(leftError,rightError, avrSpeed,WALL_FOLLOW_AUTO);
					else
					{
						pid_reset(&pid_wall_left);
						pid_reset(&pid_wall_right);
						speed_set(MOTOR_RIGHT, avrSpeed);//left motor is faster
						speed_set(MOTOR_LEFT, avrSpeed);
					}
				}
				else
				{
#ifdef TEST_TURNLEFT_MOVE3
					speed_Enable_Hbridge(false);
#endif
					//time to check front wall
					preMove=eMove;
					eMove=getMove(!rqTurnLeft,isWallFrontLeft|isWallFrontRight,!rqTurnRight);
					rqTurnLeft=false;
					rqTurnRight=false;
					moveStage=1;
					pid_reset(&pid_wall_left);
					pid_reset(&pid_wall_right);
				}
			}
			break;

		case TURN_RIGHT:
			switch (moveStage)
			{
			case 1:
				if (preMove!=FORWARD)//after turning left or right
					//test
					// ____
					// |   |
					// | | |
					fwdPulse=6000;
				else if ((preMove==FORWARD) && (avrSpeed<AVG_SPEED_FWD_FAST))
					//after turning back
					//test
					// 	  ____
					// |  ____
					// |__|
					fwdPulse=5500;
				else//after moving forward
					//test
					//   _____
					// | _____
					// | |
					// |_|
					fwdPulse=4500;
				moveStage++;
			case 2:
				if (TurnRight(fwdPulse,200,40,8000,1700+CELL_ENC))
				{
					moveStage++;
				}
				break;
			case 3:
				posLeftTmp=qei_getPosLeft();
				moveStage++;
			case 4:
				forwardUpdate();
				if (abs(qei_getPosLeft()-posLeftTmp)<1000)
				{
					if (abs(qei_getPosLeft()-posLeftTmp)>500)
					{
						if (!isWallRight)
							rqTurnRight=1;
						if (!isWallLeft)
							rqTurnLeft=1;
					}
					avrSpeed=AVG_SPEED_FWD_SLOW;
					if (isWallLeft|isWallRight)
						pid_wallfollow(leftError,rightError, avrSpeed,WALL_FOLLOW_AUTO);
					else
					{
						pid_reset(&pid_wall_left);
						pid_reset(&pid_wall_right);
						speed_set(MOTOR_RIGHT, avrSpeed);
						speed_set(MOTOR_LEFT, avrSpeed);
					}
				}
				else
				{
#ifdef TEST_TURNRIGHT_MOVE3
					speed_Enable_Hbridge(false);
#endif
					preMove=eMove;
					eMove=getMove(!rqTurnLeft,isWallFrontLeft|isWallFrontRight,!rqTurnRight);
					rqTurnLeft=false;
					rqTurnRight=false;
					moveStage=1;
					pid_reset(&pid_wall_left);
					pid_reset(&pid_wall_right);
				}
			}
			break;
		case TURN_BACK:
			switch (moveStage)
			{
			case 1:
				if (preMove==FORWARD)
					fwdPulse=8000;
				else
					fwdPulse=9000;
				moveStage++;
			case 2:
				if (TurnBack(fwdPulse,-140,60,8000,13000))
				{
					//rotate more if we still detect front wall: do it yourself ;D
					moveStage++;
				}
				break;
			case 3:
				if (move(-9000,-9000,AVG_SPEED_BWD,AVG_SPEED_BWD))
				{
#ifdef TEST_TURNBACK_BACKWARD
					speed_Enable_Hbridge(false);
#endif
					forwardUpdate();
					avrSpeed = AVG_SPEED_FWD_SLOW;
					preMove=eMove;
					eMove=FORWARD;
					moveStage = 1;
				}
			}



			break;
		}
	}
}
Пример #6
0
//*****************************************************************************
//
//! Control two motor to make robot turn back 180 degree.
//!
//! \param fwdPulse is the distance robot will go straight before turn right
//!, the robot will stand between the next cell of maze.
//! \param avrSpeedLeft is the speed of left motor.
//! \param avrSpeedRight is the speed of left motor.
//! \param NumPulse is the total pulse of two encoder after turn
//! \param resetEnc is the reset value for encoder after turning back
//! \return true if finish
//!			false if not
//
static bool TurnBack(int fwdPulse, int avrSpeedLeft,int avrSpeedRight,int turnPulse,
		int resetEnc)
{
	LED1_ON();LED2_ON();LED3_ON();
	switch (CtrlStep)
	{
	case 1:
	{
		posLeftTmp = qei_getPosLeft();
		avrSpeedTmp = avrSpeed;
		CtrlStep++;
	}
	case 2://go forward a litte bit
	{

		if (abs(qei_getPosLeft()-posLeftTmp)<fwdPulse)
		{
			avrSpeed = ((abs(fwdPulse + posLeftTmp - qei_getPosLeft()) / (fwdPulse / avrSpeedTmp)) / 2)
					+ (abs(avrSpeedLeft) + abs(avrSpeedRight)) / 2;
			if (isWallRight)
				pid_wallfollow(leftError,rightError,avrSpeed,WALL_FOLLOW_RIGHT);
			else if (isWallLeft)
				pid_wallfollow(leftError,rightError,avrSpeed,WALL_FOLLOW_LEFT);
			else
			{
				speed_set(MOTOR_RIGHT, avrSpeed);
				speed_set(MOTOR_LEFT, avrSpeed);
			}
		}
		else
		{
			pid_reset(&pid_wall_left);
			pid_reset(&pid_wall_right);
			forwardUpdate();
			CtrlStep++;
			avrSpeed = avrSpeedTmp;
		}
		break;
	}
	case 3:
		posLeftTmp=qei_getPosLeft();
		posRightTmp=qei_getPosRight();
		CtrlStep++;
	case 4://turing 90 degree
	{
#ifdef TEST_TURNBACK_FWD
		speed_Enable_Hbridge(false);
#endif
		if ((abs(qei_getPosLeft()-posLeftTmp)+abs(qei_getPosRight()-posRightTmp))<turnPulse)
		{
			speed_set(MOTOR_RIGHT, avrSpeedRight);
			speed_set(MOTOR_LEFT, avrSpeedLeft);
		}
		else
		{
			currentDir=(currentDir+3)%4;
			CtrlStep++;
		}
		break;
	}
	case 5:
		posLeftTmp=qei_getPosLeft();
		posRightTmp=qei_getPosRight();
		CtrlStep++;
	case 6://turning another 90 degree
	{
#ifdef TEST_TURNBACK_TURN1
		speed_Enable_Hbridge(false);
#endif

		if ((abs(qei_getPosLeft()-posLeftTmp)+abs(qei_getPosRight()-posRightTmp))<turnPulse)
		{
			speed_set(MOTOR_RIGHT, -avrSpeedLeft);
			speed_set(MOTOR_LEFT, -avrSpeedRight);
		}
		else
		{
#ifdef TEST_TURNBACK_TURN2
		speed_Enable_Hbridge(false);
#endif
			currentDir=(currentDir+3)%4;
			clearPosition();
			qei_setPosLeft(resetEnc);
			qei_setPosRight(resetEnc);
			forwardUpdate();
			CtrlStep=1;
			return true;
		}
		break;
	}
	}
	return false;
}
Пример #7
0
//*****************************************************************************
//
//! Control two motor to make robot turn left 90 degree
//!
//! \param fwdPulse is the distance robot will go straight before turn right
//!, the robot will stand between the next cell of maze.
//! \param avrSpeedLeft is the speed of left motor.
//! \param avrSpeedRight is the speed of right motor.
//! \param turnPulse is the total pulse of two encoder after turn
//! \param resetEnc is reset value for encoder after turning 90 degree, ignore this if you don't want to estimate position
//! \return true if finish
//!			false if not
//
//*****************************************************************************
static bool TurnLeft(int fwdPulse,int avrSpeedLeft,int avrSpeedRight,int turnPulse,
		int resetEnc)
{
	static int vt,vp;
	LED1_ON();LED2_OFF();LED3_OFF();
//	bluetooth_print("LS %d\r\n",CtrlStep);
	switch (CtrlStep)
	{
	case 1:
		posLeftTmp=qei_getPosLeft();
		CtrlStep++;
		avrSpeedTmp=avrSpeed;
	case 2://go straight
		if ((abs(qei_getPosLeft()-posLeftTmp)<fwdPulse) ||
				(isWallFrontLeft && isWallFrontRight &&
				(IR_GetIrDetectorValue(3)>IR_get_calib_value(IR_CALIB_BASE_FRONT_RIGHT))&&
				(IR_GetIrDetectorValue(0)>IR_get_calib_value(IR_CALIB_BASE_FRONT_LEFT))))

		{
			if (qei_getPosLeft()<fwdPulse+posLeftTmp)
				avrSpeed = ((abs(fwdPulse + posLeftTmp - qei_getPosLeft()) / (fwdPulse / avrSpeedTmp)) / 2)
					+ (abs(avrSpeedLeft) + abs(avrSpeedRight)) / 2;
			else
				avrSpeed = (abs(avrSpeedLeft) + abs(avrSpeedRight)) / 2;

			if (isWallRight)
				pid_wallfollow(leftError,rightError,avrSpeed,WALL_FOLLOW_RIGHT);
			else
			{
				speed_set(MOTOR_RIGHT, avrSpeed);
				speed_set(MOTOR_LEFT, avrSpeed);
			}
		}
		else
		{
#ifdef TEST_TURNLEFT_MOVE1
		speed_Enable_Hbridge(false);
#endif

			pid_reset(&pid_wall_right);
			pid_reset(&pid_wall_left);
			forwardUpdate();
			CtrlStep++;
			avrSpeed=avrSpeedTmp;
		}
		break;
	case 3:
		posLeftTmp=qei_getPosLeft();
		posRightTmp=qei_getPosRight();
		CtrlStep++;
		vp=1;
		vt=1;
	case 4://turn 90 degree

		if (abs(qei_getPosLeft()-posLeftTmp) + abs(qei_getPosRight()-posRightTmp) < turnPulse)

		{
			speed_set(MOTOR_RIGHT, avrSpeedRight);
			speed_set(MOTOR_LEFT, -avrSpeedLeft);
			if((abs(qei_getPosRight()-posRightTmp)>(turnPulse*0.8*vp/8)) && (vp<9))
			{
				if (avrSpeedRight>=24)
					avrSpeedRight-=24;
				vp++;

			}
			if((abs(qei_getPosLeft()-posLeftTmp)>(turnPulse*0.2*vt/8)) && (vt<9))
			{
				if (avrSpeedLeft>=4)
					avrSpeedLeft-=4;
				vt++;
			}
		}
		else
		{
#ifdef TEST_TURNLEFT_TURN
		speed_Enable_Hbridge(false);
#endif
			currentDir=(currentDir+3)%4;
			clearPosition();
			qei_setPosLeft(resetEnc);
			qei_setPosRight(resetEnc);
			forwardUpdate();
			CtrlStep=1;
			pid_reset(&pid_wall_left);
			pid_reset(&pid_wall_right);
			speed_set(MOTOR_LEFT, avrSpeed);
			speed_set(MOTOR_RIGHT, avrSpeed);
			return true;
		}
		break;
	}
	return false;

}