void curve25519_free(void *curvep) { struct curve25519_struct *curve = curvep; memset(curve->enc_buf, 0, curve->enc_buf_size); memset(curve->dec_buf, 0, curve->dec_buf_size); xfree(curve->enc_buf); xfree(curve->dec_buf); spinlock_destroy(&curve->enc_lock); spinlock_destroy(&curve->dec_lock); }
void curve25519_free(void *vc) { struct curve25519_struct *c = vc; if (!c) return; memset(c->enc_buf, 0, c->enc_buf_size); memset(c->dec_buf, 0, c->dec_buf_size); xfree(c->enc_buf); xfree(c->dec_buf); spinlock_destroy(&c->enc_lock); spinlock_destroy(&c->dec_lock); }
void tprintf_cleanup(void) { spinlock_lock(&buffer_lock); tprintf_flush(); spinlock_unlock(&buffer_lock); spinlock_destroy(&buffer_lock); }
void cleanup_pcap_sg(void) { unsigned long i; spinlock_destroy(&lock); for (i = 0; i < IOVSIZ; ++i) xfree(iov[i].iov_base); pcap_ops_group_unregister(PCAP_OPS_SG); }
/// Niszczy zamek. void mutex_destroy(mutex_t *m) { KASSERT( m->mtx_flags & MUTEX_USER || list_length(&m->mtx_locking) == 0 ); if (m->mtx_flags & MUTEX_CONDVAR) KASSERT( m->mtx_flags & MUTEX_USER || list_length(&m->mtx_waiting) == 0 ); spinlock_destroy(&m->mtx_slock); }
void xfs_refcache_destroy(void) { if (xfs_refcache) { kmem_free(xfs_refcache, XFS_REFCACHE_SIZE_MAX * sizeof(xfs_inode_t *)); xfs_refcache = NULL; } spinlock_destroy(&xfs_refcache_lock); }
void allocator_destroy(void) { size_t i; for (i = 0; i < _s_allocator.chunk_count; ++i) free(_s_allocator.chunk_list[i]); free(_s_allocator.chunk_list); spinlock_destroy(&_s_allocator.spinlock); }
/* Destruction is not thread-safe */ void List_Destroy(list_t *list) { list_node *old_node = list->head; list_node *current_node = list->head; while(current_node) { old_node = current_node; current_node = current_node->next; free(old_node); } list->head = NULL; spinlock_destroy(&list->lock); }
static void aio_client_release(aio_client_t* client) { if (0 == atomic_decrement32(&client->ref)) { assert(AIO_NONE == client->state); assert(invalid_aio_socket == client->socket); assert(RW_NONE == client->data[RECV].state); assert(RW_NONE == client->data[SEND].state); if (client->handler.ondestroy) client->handler.ondestroy(client->param); spinlock_destroy(&client->locker); #if defined(DEBUG) || defined(_DEBUG) memset(client, 0xCC, sizeof(*client)); #endif free(client); } }
error_t barrier_destroy(struct barrier_s *barrier) { register uint_t cntr; kmem_req_t req; if(barrier->signature != BARRIER_ID) return EINVAL; if((barrier->owner != NULL) && (barrier->owner != current_task)) return EINVAL; req.type = KMEM_PAGE; #if ARCH_HAS_BARRIERS (void) arch_barrier_destroy(barrier->cluster, barrier->hwid); #else if(barrier->owner == NULL) cntr = barrier->index; else cntr = atomic_get(&barrier->waiting); if(cntr != 0) return EBUSY; #endif /* ARCH_HAS_BARRIERS */ barrier->signature = 0; cpu_wbflush(); for(cntr = 0; cntr < BARRIER_WQDB_NR; cntr++) { req.ptr = barrier->pages_tbl[cntr]; kmem_free(&req); } if(barrier->owner == NULL) spinlock_destroy(&barrier->lock); return 0; }
/* * ktrace_free() * * Free up the ktrace header and buffer. It is up to the caller * to ensure that no-one is referencing it. */ void ktrace_free(ktrace_t *ktp) { int entries_size; if (ktp == (ktrace_t *)NULL) return; spinlock_destroy(&ktp->kt_lock); /* * Special treatment for the Vnode trace buffer. */ if (ktp->kt_nentries == ktrace_zentries) { kmem_zone_free(ktrace_ent_zone, ktp->kt_entries); } else { entries_size = (int)(ktp->kt_nentries * sizeof(ktrace_entry_t)); kmem_free(ktp->kt_entries, entries_size); } kmem_zone_free(ktrace_hdr_zone, ktp); }
void waitobject_destroy(WaitObject* obj) { spinlock_destroy(&obj->lock); list_destroy(&obj->wait_queue); }
void workqueue_destroy(struct workqueue *wq) { heap_destroy(&wq->tasks); spinlock_destroy(&wq->lock); KOBJ_DESTROY(wq, WORKQUEUE_KMALLOC); }
void cleanup_pcap_mmap(void) { spinlock_destroy(&lock); pcap_ops_group_unregister(PCAP_OPS_MMAP); }
void ticker_destroy(struct ticker *ticker) { heap_destroy(&ticker->heap); spinlock_destroy(&ticker->lock); KOBJ_DESTROY(ticker, TICKER_KMALLOC); }
void stack_destroy(struct stack *stack) { spinlock_destroy(&stack->lock); KOBJ_DESTROY(stack, STACK_KMALLOC); }
int dm_add_fsys_entry( vfs_t *vfsp, dm_tokevent_t *tevp) { dm_fsreg_t *fsrp; int msgsize; void *msg; int lc; /* lock cookie */ /* Allocate and initialize a dm_fsreg_t structure for the filesystem. */ msgsize = tevp->te_allocsize - offsetof(dm_tokevent_t, te_event); msg = kmem_alloc(msgsize, KM_SLEEP); bcopy(&tevp->te_event, msg, msgsize); fsrp = kmem_zalloc(sizeof(*fsrp), KM_SLEEP); fsrp->fr_vfsp = vfsp; fsrp->fr_tevp = tevp; fsrp->fr_fsid = *vfsp->vfs_altfsid; fsrp->fr_msg = msg; fsrp->fr_msgsize = msgsize; fsrp->fr_state = DM_STATE_MOUNTING; sv_init(&fsrp->fr_dispq, SV_DEFAULT, "fr_dispq"); sv_init(&fsrp->fr_queue, SV_DEFAULT, "fr_queue"); spinlock_init(&fsrp->fr_lock, "fr_lock"); /* If no other mounted DMAPI filesystem already has this same fsid_t, then add this filesystem to the list. */ lc = mutex_spinlock(&dm_reg_lock); if (!dm_find_fsreg(vfsp->vfs_altfsid)) { fsrp->fr_next = dm_registers; dm_registers = fsrp; dm_fsys_cnt++; #ifdef CONFIG_PROC_FS { char buf[100]; struct proc_dir_entry *entry; sprintf(buf, DMAPI_DBG_PROCFS "/fsreg/0x%p", fsrp); entry = create_proc_read_entry(buf, 0, 0, fsreg_read_pfs, fsrp); entry->owner = THIS_MODULE; } #endif mutex_spinunlock(&dm_reg_lock, lc); return(0); } /* A fsid_t collision occurred, so prevent this new filesystem from mounting. */ mutex_spinunlock(&dm_reg_lock, lc); sv_destroy(&fsrp->fr_dispq); sv_destroy(&fsrp->fr_queue); spinlock_destroy(&fsrp->fr_lock); kmem_free(fsrp->fr_msg, fsrp->fr_msgsize); kmem_free(fsrp, sizeof(*fsrp)); return(EBUSY); }
void atomic64_destroy(atomic64_t *v) { spinlock_destroy(&v->spinlock); }
void dm_remove_fsys_entry( vfs_t *vfsp) { dm_fsreg_t **fsrpp; dm_fsreg_t *fsrp; int lc; /* lock cookie */ /* Find the filesystem referenced by the vfsp's fsid_t and dequeue it after verifying that the fr_state shows a filesystem that is either mounting or unmounted. */ lc = mutex_spinlock(&dm_reg_lock); fsrpp = &dm_registers; while ((fsrp = *fsrpp) != NULL) { if (!bcmp(&fsrp->fr_fsid, vfsp->vfs_altfsid, sizeof(fsrp->fr_fsid))) break; fsrpp = &fsrp->fr_next; } if (fsrp == NULL) { mutex_spinunlock(&dm_reg_lock, lc); panic("dm_remove_fsys_entry: can't find DMAPI fsrp for " "vfsp %p\n", vfsp); } nested_spinlock(&fsrp->fr_lock); /* Verify that it makes sense to remove this entry. */ if (fsrp->fr_state != DM_STATE_MOUNTING && fsrp->fr_state != DM_STATE_UNMOUNTED) { nested_spinunlock(&fsrp->fr_lock); mutex_spinunlock(&dm_reg_lock, lc); panic("dm_remove_fsys_entry: DMAPI sequence error: old state " "%d, fsrp %p\n", fsrp->fr_state, fsrp); } *fsrpp = fsrp->fr_next; dm_fsys_cnt--; nested_spinunlock(&dm_reg_lock); /* Since the filesystem is about to finish unmounting, we must be sure that no vnodes are being referenced within the filesystem before we let this event thread continue. If the filesystem is currently in state DM_STATE_MOUNTING, then we know by definition that there can't be any references. If the filesystem is DM_STATE_UNMOUNTED, then any application threads referencing handles with DM_NO_TOKEN should have already been awakened by dm_change_fsys_entry and should be long gone by now. Just in case they haven't yet left, sleep here until they are really gone. */ while (fsrp->fr_hdlcnt) { fsrp->fr_unmount++; sv_wait(&fsrp->fr_queue, 1, &fsrp->fr_lock, lc); lc = mutex_spinlock(&fsrp->fr_lock); fsrp->fr_unmount--; } mutex_spinunlock(&fsrp->fr_lock, lc); /* Release all memory. */ #ifdef CONFIG_PROC_FS { char buf[100]; sprintf(buf, DMAPI_DBG_PROCFS "/fsreg/0x%p", fsrp); remove_proc_entry(buf, NULL); } #endif sv_destroy(&fsrp->fr_dispq); sv_destroy(&fsrp->fr_queue); spinlock_destroy(&fsrp->fr_lock); kmem_free(fsrp->fr_msg, fsrp->fr_msgsize); kmem_free(fsrp, sizeof(*fsrp)); }
void dm_uninit(void) { int lc; dm_session_t *s; static void unlink_session( dm_session_t *s); if(dm_sessions_active) { printk(KERN_ERR "xfs dmapi is being unloaded while there are active sessions\n"); while( dm_sessions_active ) { /* this for-loop mostly from dm_find_session_and_lock() */ for (;;) { s = dm_sessions; lc = mutex_spinlock(&dm_session_lock); if (nested_spintrylock(&s->sn_qlock)) { nested_spinunlock(&dm_session_lock); break; /* success */ } mutex_spinunlock(&dm_session_lock, lc); }/* for */ /* this cleanup stuff mostly from dm_destroy_session() */ if (s->sn_newq.eq_head || s->sn_readercnt || s->sn_delq.eq_head) { /* busy session */ printk(KERN_ERR " sessid %d (%s) is busy\n", s->sn_sessid, s->sn_info); nested_spinunlock(&s->sn_qlock); mutex_spinunlock(&dm_session_lock, lc); break; /* do not continue */ } else { unlink_session(s); nested_spinunlock(&s->sn_qlock); mutex_spinunlock(&dm_session_lock, lc); dm_clear_fsreg(s); spinlock_destroy(&s->sn_qlock); sv_destroy(&s->sn_readerq); sv_destroy(&s->sn_writerq); kmem_free(s, sizeof *s); printk(KERN_ERR " sessid %d (%s) destroyed\n", s->sn_sessid, s->sn_info); } }/*while*/ } /* If any of these are still locked, then we should not allow * an unload. * XXX can any of these be held when no sessions exist? * - yes, dm_session_lock is acquired prior to adding a new session * - no, dm_token_lock is only held when a session is locked * - ?, dm_reg_lock (XXX lookup this one) */ if( spin_is_locked(&dm_session_lock) ) printk(KERN_ERR "xfs dmapi is being unloaded while dm_session_lock is held\n"); if( spin_is_locked(&dm_token_lock) ) printk(KERN_ERR "xfs dmapi is being unloaded while dm_token_lock is held\n"); if( spin_is_locked(&dm_reg_lock) ) printk(KERN_ERR "xfs dmapi is being unloaded while dm_reg_lock is held\n"); spinlock_destroy(&dm_session_lock); spinlock_destroy(&dm_token_lock); spinlock_destroy(&dm_reg_lock); }