void _SplinePatchFullQuality(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType, int patch_cap) { // Full (mostly) correct tessellation of spline patches. // Not very fast. // First, generate knot vectors. int n = spatch.count_u - 1; int m = spatch.count_v - 1; float *knot_u = new float[n + 5]; float *knot_v = new float[m + 5]; spline_knot(n, spatch.type_u, knot_u); spline_knot(m, spatch.type_v, knot_v); // Increase tesselation based on the size. Should be approximately right? // JPCSP is wrong at least because their method results in square loco roco. int patch_div_s = (spatch.count_u - 3) * gstate.getPatchDivisionU() / 3; int patch_div_t = (spatch.count_v - 3) * gstate.getPatchDivisionV() / 3; if (patch_div_s <= 0) patch_div_s = 1; if (patch_div_t <= 0) patch_div_t = 1; // TODO: Remove this cap when spline_s has been optimized. if (patch_div_s > patch_cap) patch_div_s = patch_cap; if (patch_div_t > patch_cap) patch_div_t = patch_cap; // First compute all the vertices and put them in an array SimpleVertex *vertices = new SimpleVertex[(patch_div_s + 1) * (patch_div_t + 1)]; float tu_width = 1.0f + (spatch.count_u - 4) * 1.0f / 3.0f; float tv_height = 1.0f + (spatch.count_v - 4) * 1.0f / 3.0f; bool computeNormals = gstate.isLightingEnabled(); for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) { float v = ((float)tile_v * (float)(m - 2) / (float)(patch_div_t + 0.00001f)); // epsilon to prevent division by 0 in spline_s if (v < 0.0f) v = 0.0f; for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) { float u = ((float)tile_u * (float)(n - 2) / (float)(patch_div_s + 0.00001f)); if (u < 0.0f) u = 0.0f; SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u]; vert->pos.SetZero(); if (origVertType & GE_VTYPE_NRM_MASK) { vert->nrm.SetZero(); } else { vert->nrm.SetZero(); vert->nrm.z = 1.0f; } if (origVertType & GE_VTYPE_COL_MASK) { memset(vert->color, 0, 4); } else { memcpy(vert->color, spatch.points[0]->color, 4); } if (origVertType & GE_VTYPE_TC_MASK) { vert->uv[0] = 0.0f; vert->uv[1] = 0.0f; } else { vert->uv[0] = tu_width * ((float)tile_u / (float)patch_div_s); vert->uv[1] = tv_height * ((float)tile_v / (float)patch_div_t); } // Collect influences from surrounding control points. float u_weights[4]; float v_weights[4]; int iu = (int)u; int iv = (int)v; spline_n_4(iu, u, knot_u, u_weights); spline_n_4(iv, v, knot_v, v_weights); // Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points. int patch_w = std::min(spatch.count_u, 4); int patch_h = std::min(spatch.count_v, 4); for (int ii = 0; ii < patch_w; ++ii) { for (int jj = 0; jj < patch_h; ++jj) { float u_spline = u_weights[ii]; float v_spline = v_weights[jj]; float f = u_spline * v_spline; if (f > 0.0f) { int idx = spatch.count_u * (iv + jj) + (iu + ii); SimpleVertex *a = spatch.points[idx]; vert->pos += a->pos * f; if (origVertType & GE_VTYPE_TC_MASK) { vert->uv[0] += a->uv[0] * f; vert->uv[1] += a->uv[1] * f; } if (origVertType & GE_VTYPE_COL_MASK) { vert->color[0] += a->color[0] * f; vert->color[1] += a->color[1] * f; vert->color[2] += a->color[2] * f; vert->color[3] += a->color[3] * f; } if (origVertType & GE_VTYPE_NRM_MASK) { vert->nrm += a->nrm * f; } } } } if (origVertType & GE_VTYPE_NRM_MASK) { vert->nrm.Normalize(); } } } delete[] knot_u; delete[] knot_v; // Hacky normal generation through central difference. if (gstate.isLightingEnabled() && (origVertType & GE_VTYPE_NRM_MASK) == 0) { for (int v = 0; v < patch_div_t + 1; v++) { for (int u = 0; u < patch_div_s + 1; u++) { int l = std::max(0, u - 1); int t = std::max(0, v - 1); int r = std::min(patch_div_s, u + 1); int b = std::min(patch_div_t, v + 1); const Vec3Packedf &right = vertices[v * (patch_div_s + 1) + r].pos - vertices[v * (patch_div_s + 1) + l].pos; const Vec3Packedf &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos; vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized(); if (gstate.patchfacing & 1) { vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f; } } } } // Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six. for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) { for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) { float u = ((float)tile_u / (float)patch_div_s); float v = ((float)tile_v / (float)patch_div_t); SimpleVertex *v0 = &vertices[tile_v * (patch_div_s + 1) + tile_u]; SimpleVertex *v1 = &vertices[tile_v * (patch_div_s + 1) + tile_u + 1]; SimpleVertex *v2 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u]; SimpleVertex *v3 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u + 1]; CopyQuad(dest, v0, v1, v2, v3); count += 6; } } delete[] vertices; }
static void SplinePatchFullQuality(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { // Full (mostly) correct tessellation of spline patches. // Not very fast. float *knot_u = new float[spatch.count_u + 4]; float *knot_v = new float[spatch.count_v + 4]; spline_knot(spatch.count_u - 1, spatch.type_u, knot_u); spline_knot(spatch.count_v - 1, spatch.type_v, knot_v); // Increase tesselation based on the size. Should be approximately right? int patch_div_s = (spatch.count_u - 3) * spatch.tess_u; int patch_div_t = (spatch.count_v - 3) * spatch.tess_v; if (quality > 1) { patch_div_s /= quality; patch_div_t /= quality; } // Downsample until it fits, in case crazy tesselation factors are sent. while ((patch_div_s + 1) * (patch_div_t + 1) > maxVertices) { patch_div_s /= 2; patch_div_t /= 2; } if (patch_div_s < 2) patch_div_s = 2; if (patch_div_t < 2) patch_div_t = 2; // First compute all the vertices and put them in an array SimpleVertex *&vertices = (SimpleVertex*&)dest; float tu_width = (float)spatch.count_u - 3.0f; float tv_height = (float)spatch.count_v - 3.0f; // int max_idx = spatch.count_u * spatch.count_v; bool computeNormals = spatch.computeNormals; float one_over_patch_div_s = 1.0f / (float)(patch_div_s); float one_over_patch_div_t = 1.0f / (float)(patch_div_t); for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) { float v = (float)tile_v * (float)(spatch.count_v - 3) * one_over_patch_div_t; if (v < 0.0f) v = 0.0f; for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) { float u = (float)tile_u * (float)(spatch.count_u - 3) * one_over_patch_div_s; if (u < 0.0f) u = 0.0f; SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u]; Vec4f vert_color(0, 0, 0, 0); Vec3f vert_pos; vert_pos.SetZero(); Vec3f vert_nrm; if (origNrm) { vert_nrm.SetZero(); } if (origCol) { vert_color.SetZero(); } else { memcpy(vert->color, spatch.points[0]->color, 4); } if (origTc) { vert->uv[0] = 0.0f; vert->uv[1] = 0.0f; } else { vert->uv[0] = tu_width * ((float)tile_u * one_over_patch_div_s); vert->uv[1] = tv_height * ((float)tile_v * one_over_patch_div_t); } // Collect influences from surrounding control points. float u_weights[4]; float v_weights[4]; int iu = (int)u; int iv = (int)v; // TODO: Would really like to fix the surrounding logic somehow to get rid of these but I can't quite get it right.. // Without the previous epsilons and with large count_u, we will end up doing an out of bounds access later without these. if (iu >= spatch.count_u - 3) iu = spatch.count_u - 4; if (iv >= spatch.count_v - 3) iv = spatch.count_v - 4; spline_n_4(iu, u, knot_u, u_weights); spline_n_4(iv, v, knot_v, v_weights); // Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points. int patch_w = std::min(spatch.count_u - iu, 4); int patch_h = std::min(spatch.count_v - iv, 4); for (int ii = 0; ii < patch_w; ++ii) { for (int jj = 0; jj < patch_h; ++jj) { float u_spline = u_weights[ii]; float v_spline = v_weights[jj]; float f = u_spline * v_spline; if (f > 0.0f) { #ifdef _M_SSE Vec4f fv(_mm_set_ps1(f)); #else Vec4f fv = Vec4f::AssignToAll(f); #endif int idx = spatch.count_u * (iv + jj) + (iu + ii); /* if (idx >= max_idx) { char temp[512]; snprintf(temp, sizeof(temp), "count_u: %d count_v: %d patch_w: %d patch_h: %d ii: %d jj: %d iu: %d iv: %d patch_div_s: %d patch_div_t: %d\n", spatch.count_u, spatch.count_v, patch_w, patch_h, ii, jj, iu, iv, patch_div_s, patch_div_t); OutputDebugStringA(temp); DebugBreak(); }*/ SimpleVertex *a = spatch.points[idx]; AccumulateWeighted(vert_pos, a->pos, fv); if (origTc) { vert->uv[0] += a->uv[0] * f; vert->uv[1] += a->uv[1] * f; } if (origCol) { Vec4f a_color = Vec4f::FromRGBA(a->color_32); AccumulateWeighted(vert_color, a_color, fv); } if (origNrm) { AccumulateWeighted(vert_nrm, a->nrm, fv); } } } } vert->pos = vert_pos; if (origNrm) { #ifdef _M_SSE const __m128 normalize = SSENormalizeMultiplier(useSSE4, vert_nrm.vec); vert_nrm.vec = _mm_mul_ps(vert_nrm.vec, normalize); #else vert_nrm.Normalize(); #endif vert->nrm = vert_nrm; } else { vert->nrm.SetZero(); vert->nrm.z = 1.0f; } if (origCol) { vert->color_32 = vert_color.ToRGBA(); } } } delete[] knot_u; delete[] knot_v; // Hacky normal generation through central difference. if (spatch.computeNormals && !origNrm) { #ifdef _M_SSE const __m128 facing = spatch.patchFacing ? _mm_set_ps1(-1.0f) : _mm_set_ps1(1.0f); #endif for (int v = 0; v < patch_div_t + 1; v++) { Vec3f vl_pos = vertices[v * (patch_div_s + 1)].pos; Vec3f vc_pos = vertices[v * (patch_div_s + 1)].pos; for (int u = 0; u < patch_div_s + 1; u++) { const int l = std::max(0, u - 1); const int t = std::max(0, v - 1); const int r = std::min(patch_div_s, u + 1); const int b = std::min(patch_div_t, v + 1); const Vec3f vr_pos = vertices[v * (patch_div_s + 1) + r].pos; #ifdef _M_SSE const __m128 right = _mm_sub_ps(vr_pos.vec, vl_pos.vec); const Vec3f vb_pos = vertices[b * (patch_div_s + 1) + u].pos; const Vec3f vt_pos = vertices[t * (patch_div_s + 1) + u].pos; const __m128 down = _mm_sub_ps(vb_pos.vec, vt_pos.vec); const __m128 crossed = SSECrossProduct(right, down); const __m128 normalize = SSENormalizeMultiplier(useSSE4, crossed); Vec3f finalNrm = _mm_mul_ps(normalize, _mm_mul_ps(crossed, facing)); vertices[v * (patch_div_s + 1) + u].nrm = finalNrm; #else const Vec3Packedf &right = vr_pos - vl_pos; const Vec3Packedf &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos; vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized(); if (spatch.patchFacing) { vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f; } #endif // Rotate for the next one to the right. vl_pos = vc_pos; vc_pos = vr_pos; } } } GEPatchPrimType prim_type = spatch.primType; // Tesselate. for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) { for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) { int idx0 = tile_v * (patch_div_s + 1) + tile_u; int idx1 = tile_v * (patch_div_s + 1) + tile_u + 1; int idx2 = (tile_v + 1) * (patch_div_s + 1) + tile_u; int idx3 = (tile_v + 1) * (patch_div_s + 1) + tile_u + 1; CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3); count += 6; } } }
void TesselateSplinePatch(u8 *&dest, int &count, const SplinePatch &spatch, u32 origVertType) { const float third = 1.0f / 3.0f; if (g_Config.bLowQualitySplineBezier) { // Fast and easy way - just draw the control points, generate some very basic normal vector substitutes. // Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast. const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1; const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1; const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2; const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2; for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { int point_index = tile_u + tile_v * spatch.count_u; SimpleVertex v0 = *spatch.points[point_index]; SimpleVertex v1 = *spatch.points[point_index+1]; SimpleVertex v2 = *spatch.points[point_index+spatch.count_u]; SimpleVertex v3 = *spatch.points[point_index+spatch.count_u+1]; // Generate UV. TODO: Do this even if UV specified in control points? if ((origVertType & GE_VTYPE_TC_MASK) == 0) { float u = tile_u * third; float v = tile_v * third; v0.uv[0] = u; v0.uv[1] = v; v1.uv[0] = u + third; v1.uv[1] = v; v2.uv[0] = u; v2.uv[1] = v + third; v3.uv[0] = u + third; v3.uv[1] = v + third; } // Generate normal if lighting is enabled (otherwise there's no point). // This is a really poor quality algorithm, we get facet normals. if (gstate.isLightingEnabled()) { Vec3f norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos); norm.Normalize(); if (gstate.patchfacing & 1) norm *= -1.0f; v0.nrm = norm; v1.nrm = norm; v2.nrm = norm; v3.nrm = norm; } CopyQuad(dest, &v0, &v1, &v2, &v3); count += 6; } } } else { // Full correct tessellation of spline patches. // Does not yet generate normals and is atrociously slow (see spline_s...) // First, generate knot vectors. int n = spatch.count_u - 1; int m = spatch.count_v - 1; float *knot_u = new float[n + 5]; float *knot_v = new float[m + 5]; spline_knot(n, spatch.type_u, knot_u); spline_knot(m, spatch.type_v, knot_v); int patch_div_s = gstate.getPatchDivisionU(); int patch_div_t = gstate.getPatchDivisionV(); // Increase tesselation based on the size. Should be approximately right? // JPCSP is wrong at least because their method results in square loco roco. patch_div_s = (spatch.count_u - 3) * patch_div_s / 3; patch_div_t = (spatch.count_v - 3) * patch_div_t / 3; if (patch_div_s == 0) patch_div_s = 1; if (patch_div_t == 0) patch_div_t = 1; // TODO: Remove this cap when spline_s has been optimized. if (patch_div_s > 64) patch_div_s = 64; if (patch_div_t > 64) patch_div_t = 64; // First compute all the vertices and put them in an array SimpleVertex *vertices = new SimpleVertex[(patch_div_s + 1) * (patch_div_t + 1)]; float tu_width = 1.0f + (spatch.count_u - 4) * 1.0f/3.0f; float tv_height = 1.0f + (spatch.count_v - 4) * 1.0f/3.0f; bool computeNormals = gstate.isLightingEnabled(); for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) { float v = ((float)tile_v * (float)(m - 2) / (float)(patch_div_t + 0.00001f)); // epsilon to prevent division by 0 in spline_s for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) { float u = ((float)tile_u * (float)(n - 2) / (float)(patch_div_s + 0.00001f)); SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u]; vert->pos.SetZero(); if (origVertType & GE_VTYPE_NRM_MASK) { vert->nrm.SetZero(); } else { vert->nrm.SetZero(); vert->nrm.z = 1.0f; } if (origVertType & GE_VTYPE_COL_MASK) { memset(vert->color, 0, 4); } else { memcpy(vert->color, spatch.points[0]->color, 4); } if (origVertType & GE_VTYPE_TC_MASK) { vert->uv[0] = 0.0f; vert->uv[1] = 0.0f; } else { vert->uv[0] = tu_width * ((float)tile_u / (float)patch_div_s); vert->uv[1] = tv_height * ((float)tile_v / (float)patch_div_t); } // Collect influences from surrounding control points. float u_weights[4]; float v_weights[4]; int iu = (int)u; int iv = (int)v; spline_n_4(iu, u, knot_u, u_weights); spline_n_4(iv, v, knot_v, v_weights); for (int ii = 0; ii < 4; ++ii) { for (int jj = 0; jj < 4; ++jj) { float u_spline = u_weights[ii]; float v_spline = v_weights[jj]; float f = u_spline * v_spline; if (f > 0.0f) { SimpleVertex *a = spatch.points[spatch.count_u * (iv + jj) + (iu + ii)]; vert->pos += a->pos * f; if (origVertType & GE_VTYPE_TC_MASK) { vert->uv[0] += a->uv[0] * f; vert->uv[1] += a->uv[1] * f; } if (origVertType & GE_VTYPE_COL_MASK) { vert->color[0] += a->color[0] * f; vert->color[1] += a->color[1] * f; vert->color[2] += a->color[2] * f; vert->color[3] += a->color[3] * f; } if (origVertType & GE_VTYPE_NRM_MASK) { vert->nrm += a->nrm * f; } } } } if (origVertType & GE_VTYPE_NRM_MASK) { vert->nrm.Normalize(); } } } delete [] knot_u; delete [] knot_v; // Hacky normal generation through central difference. if (gstate.isLightingEnabled() && (origVertType & GE_VTYPE_NRM_MASK) == 0) { for (int v = 0; v < patch_div_t + 1; v++) { for (int u = 0; u < patch_div_s + 1; u++) { int l = std::max(0, u - 1); int t = std::max(0, v - 1); int r = std::min(patch_div_s, u + 1); int b = std::min(patch_div_t, v + 1); const Vec3f &right = vertices[v * (patch_div_s + 1) + r].pos - vertices[v * (patch_div_s + 1) + l].pos; const Vec3f &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos; vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized(); if (gstate.patchfacing & 1) { vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f; } } } } // Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six. for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) { for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) { float u = ((float)tile_u / (float)patch_div_s); float v = ((float)tile_v / (float)patch_div_t); SimpleVertex *v0 = &vertices[tile_v * (patch_div_s + 1) + tile_u]; SimpleVertex *v1 = &vertices[tile_v * (patch_div_s + 1) + tile_u + 1]; SimpleVertex *v2 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u]; SimpleVertex *v3 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u + 1]; CopyQuad(dest, v0, v1, v2, v3); count += 6; } } delete [] vertices; } }