/* ** Register a statically linked extension that is automatically ** loaded by every new database connection. */ int sqlite3_auto_extension(void (*xInit)(void)){ int rc = SQLITE_OK; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ){ return rc; }else #endif { u32 i; #if SQLITE_THREADSAFE sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); #endif wsdAutoextInit; sqlite3_mutex_enter(mutex); for(i=0; i<wsdAutoext.nExt; i++){ if( wsdAutoext.aExt[i]==xInit ) break; } if( i==wsdAutoext.nExt ){ u64 nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]); void (**aNew)(void); aNew = sqlite3_realloc64(wsdAutoext.aExt, nByte); if( aNew==0 ){ rc = SQLITE_NOMEM; }else{ wsdAutoext.aExt = aNew; wsdAutoext.aExt[wsdAutoext.nExt] = xInit; wsdAutoext.nExt++; } } sqlite3_mutex_leave(mutex); assert( (rc&0xff)==rc ); return rc; } }
/* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ void *pNew = 0; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); if( db->mallocFailed==0 ){ if( p==0 ){ return sqlite3DbMallocRaw(db, n); } if( isLookaside(db, p) ){ if( n<=db->lookaside.sz ){ return p; } pNew = sqlite3DbMallocRaw(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3_realloc64(p, n); if( !pNew ){ db->mallocFailed = 1; } sqlite3MemdebugSetType(pNew, (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); } } return pNew; }
static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ void *pNew = 0; assert( db!=0 ); assert( p!=0 ); if( db->mallocFailed==0 ){ if( isLookaside(db, p) ){ pNew = sqlite3DbMallocRawNN(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3_realloc64(p, n); if( !pNew ){ sqlite3OomFault(db); } sqlite3MemdebugSetType(pNew, (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); } } return pNew; }
/* ** Try to enlarge the memory allocation to hold at least sz bytes */ static int memdbEnlarge(MemFile *p, sqlite3_int64 newSz){ unsigned char *pNew; if( (p->mFlags & SQLITE_DESERIALIZE_RESIZEABLE)==0 || p->nMmap>0 ){ return SQLITE_FULL; } pNew = sqlite3_realloc64(p->aData, newSz); if( pNew==0 ) return SQLITE_NOMEM; p->aData = pNew; p->szMax = newSz; return SQLITE_OK; }
/* Increase the size of p->z and append character c to the end. ** Return 0 on success and non-zero if there is an OOM error */ static CSV_NOINLINE int csv_resize_and_append(CsvReader *p, char c){ char *zNew; int nNew = p->nAlloc*2 + 100; zNew = sqlite3_realloc64(p->z, nNew); if( zNew ){ p->z = zNew; p->nAlloc = nNew; p->z[p->n++] = c; return 0; }else{ csv_errmsg(p, "out of memory"); return 1; } }
/* ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] ** array so that an OP_VBegin will get generated for it. Add pTab to the ** array if it is missing. If pTab is already in the array, this routine ** is a no-op. */ void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ Parse *pToplevel = sqlite3ParseToplevel(pParse); int i, n; Table **apVtabLock; assert( IsVirtual(pTab) ); for(i=0; i<pToplevel->nVtabLock; i++){ if( pTab==pToplevel->apVtabLock[i] ) return; } n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); if( apVtabLock ){ pToplevel->apVtabLock = apVtabLock; pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; }else{ sqlite3OomFault(pToplevel->db); } }
/* Compute the filename for the iChunk-th chunk */ static int multiplexSubFilename(multiplexGroup *pGroup, int iChunk){ if( iChunk>=pGroup->nReal ){ struct multiplexReal *p; p = sqlite3_realloc64(pGroup->aReal, (iChunk+1)*sizeof(*p)); if( p==0 ){ return SQLITE_NOMEM; } memset(&p[pGroup->nReal], 0, sizeof(p[0])*(iChunk+1-pGroup->nReal)); pGroup->aReal = p; pGroup->nReal = iChunk+1; } if( pGroup->zName && pGroup->aReal[iChunk].z==0 ){ char *z; int n = pGroup->nName; pGroup->aReal[iChunk].z = z = sqlite3_malloc64( n+5 ); if( z==0 ){ return SQLITE_NOMEM; } multiplexFilename(pGroup->zName, pGroup->nName, pGroup->flags, iChunk, z); } return SQLITE_OK; }
/* ** Advance a CsvCursor to its next row of input. ** Set the EOF marker if we reach the end of input. */ static int csvtabNext(sqlite3_vtab_cursor *cur){ CsvCursor *pCur = (CsvCursor*)cur; CsvTable *pTab = (CsvTable*)cur->pVtab; int i = 0; char *z; do{ z = csv_read_one_field(&pCur->rdr); if( z==0 ){ csv_xfer_error(pTab, &pCur->rdr); break; } if( i<pTab->nCol ){ if( pCur->aLen[i] < pCur->rdr.n+1 ){ char *zNew = sqlite3_realloc64(pCur->azVal[i], pCur->rdr.n+1); if( zNew==0 ){ csv_errmsg(&pCur->rdr, "out of memory"); csv_xfer_error(pTab, &pCur->rdr); break; } pCur->azVal[i] = zNew; pCur->aLen[i] = pCur->rdr.n+1; } memcpy(pCur->azVal[i], z, pCur->rdr.n+1); i++; } }while( pCur->rdr.cTerm==',' ); while( i<pTab->nCol ){ sqlite3_free(pCur->azVal[i]); pCur->azVal[i] = 0; pCur->aLen[i] = 0; i++; } if( z==0 || pCur->rdr.cTerm==EOF ){ pCur->iRowid = -1; }else{ pCur->iRowid++; } return SQLITE_OK; }
/* ** This routine is called once for each row in the result table. Its job ** is to fill in the TabResult structure appropriately, allocating new ** memory as necessary. */ static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){ TabResult *p = (TabResult*)pArg; /* Result accumulator */ int need; /* Slots needed in p->azResult[] */ int i; /* Loop counter */ char *z; /* A single column of result */ /* Make sure there is enough space in p->azResult to hold everything ** we need to remember from this invocation of the callback. */ if( p->nRow==0 && argv!=0 ){ need = nCol*2; }else{ need = nCol; } if( p->nData + need > p->nAlloc ){ char **azNew; p->nAlloc = p->nAlloc*2 + need; azNew = sqlite3_realloc64( p->azResult, sizeof(char*)*p->nAlloc ); if( azNew==0 ) goto malloc_failed; p->azResult = azNew; } /* If this is the first row, then generate an extra row containing ** the names of all columns. */ if( p->nRow==0 ){ p->nColumn = nCol; for(i=0; i<nCol; i++){ z = sqlite3_mprintf("%s", colv[i]); if( z==0 ) goto malloc_failed; p->azResult[p->nData++] = z; } }else if( (int)p->nColumn!=nCol ){ sqlite3_free(p->zErrMsg); p->zErrMsg = sqlite3_mprintf( "sqlite3_get_table() called with two or more incompatible queries" ); p->rc = SQLITE_ERROR; return 1; } /* Copy over the row data */ if( argv!=0 ){ for(i=0; i<nCol; i++){ if( argv[i]==0 ){ z = 0; }else{ int n = sqlite3Strlen30(argv[i])+1; z = sqlite3_malloc64( n ); if( z==0 ) goto malloc_failed; memcpy(z, argv[i], n); } p->azResult[p->nData++] = z; } p->nRow++; } return 0; malloc_failed: p->rc = SQLITE_NOMEM_BKPT; return 1; }
/* ** Query the database. But instead of invoking a callback for each row, ** malloc() for space to hold the result and return the entire results ** at the conclusion of the call. ** ** The result that is written to ***pazResult is held in memory obtained ** from malloc(). But the caller cannot free this memory directly. ** Instead, the entire table should be passed to sqlite3_free_table() when ** the calling procedure is finished using it. */ int sqlite3_get_table( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ char ***pazResult, /* Write the result table here */ int *pnRow, /* Write the number of rows in the result here */ int *pnColumn, /* Write the number of columns of result here */ char **pzErrMsg /* Write error messages here */ ){ int rc; TabResult res; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || pazResult==0 ) return SQLITE_MISUSE_BKPT; #endif *pazResult = 0; if( pnColumn ) *pnColumn = 0; if( pnRow ) *pnRow = 0; if( pzErrMsg ) *pzErrMsg = 0; res.zErrMsg = 0; res.nRow = 0; res.nColumn = 0; res.nData = 1; res.nAlloc = 20; res.rc = SQLITE_OK; res.azResult = sqlite3_malloc64(sizeof(char*)*res.nAlloc ); if( res.azResult==0 ){ db->errCode = SQLITE_NOMEM; return SQLITE_NOMEM_BKPT; } res.azResult[0] = 0; rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg); assert( sizeof(res.azResult[0])>= sizeof(res.nData) ); res.azResult[0] = SQLITE_INT_TO_PTR(res.nData); if( (rc&0xff)==SQLITE_ABORT ){ sqlite3_free_table(&res.azResult[1]); if( res.zErrMsg ){ if( pzErrMsg ){ sqlite3_free(*pzErrMsg); *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg); } sqlite3_free(res.zErrMsg); } db->errCode = res.rc; /* Assume 32-bit assignment is atomic */ return res.rc; } sqlite3_free(res.zErrMsg); if( rc!=SQLITE_OK ){ sqlite3_free_table(&res.azResult[1]); return rc; } if( res.nAlloc>res.nData ){ char **azNew; azNew = sqlite3_realloc64( res.azResult, sizeof(char*)*res.nData ); if( azNew==0 ){ sqlite3_free_table(&res.azResult[1]); db->errCode = SQLITE_NOMEM; return SQLITE_NOMEM_BKPT; } res.azResult = azNew; } *pazResult = &res.azResult[1]; if( pnColumn ) *pnColumn = res.nColumn; if( pnRow ) *pnRow = res.nRow; return rc; }