bool st_get_next_segment_up3d(segment_up3d_t** ppseg) { //auto prepare new segment(s) if segment buffer empty if (segment_buffer_head == segment_buffer_tail) st_prep_buffer(); //exit if no segments found if (segment_buffer_head == segment_buffer_tail) return false; *ppseg = &segment_buffer[segment_buffer_tail]; // Segment is complete. Advance segment indexing. if ( ++segment_buffer_tail == SEGMENT_BUFFER_SIZE) { segment_buffer_tail = 0; } return true; }
// Plans and executes the single special motion case for parking. Independent of main planner buffer. // NOTE: Uses the always free planner ring buffer head to store motion parameters for execution. void mc_parking_motion(float *parking_target, plan_line_data_t *pl_data) { if (sys.abort) { return; } // Block during abort. uint8_t plan_status = plan_buffer_line(parking_target, pl_data); if (plan_status) { bit_true(sys.step_control, STEP_CONTROL_EXECUTE_SYS_MOTION); bit_false(sys.step_control, STEP_CONTROL_END_MOTION); // Allow parking motion to execute, if feed hold is active. st_parking_setup_buffer(); // Setup step segment buffer for special parking motion case st_prep_buffer(); st_wake_up(); do { protocol_exec_rt_system(); if (sys.abort) { return; } } while (sys.step_control & STEP_CONTROL_EXECUTE_SYS_MOTION); st_parking_restore_buffer(); // Restore step segment buffer to normal run state. } else { bit_false(sys.step_control, STEP_CONTROL_EXECUTE_SYS_MOTION); protocol_exec_rt_system(); } }
// Homes the specified cycle axes, sets the machine position, and performs a pull-off motion after // completing. Homing is a special motion case, which involves rapid uncontrolled stops to locate // the trigger point of the limit switches. The rapid stops are handled by a system level axis lock // mask, which prevents the stepper algorithm from executing step pulses. Homing motions typically // circumvent the processes for executing motions in normal operation. // NOTE: Only the abort realtime command can interrupt this process. // TODO: Move limit pin-specific calls to a general function for portability. void limits_go_home(uint8_t cycle_mask) { if (sys.abort) { return; } // Block if system reset has been issued. // Initialize uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1); uint8_t step_pin[N_AXIS]; float target[N_AXIS]; float max_travel = 0.0; uint8_t idx; for (idx=0; idx<N_AXIS; idx++) { // Initialize step pin masks step_pin[idx] = get_step_pin_mask(idx); #ifdef COREXY if ((idx==A_MOTOR)||(idx==B_MOTOR)) { step_pin[idx] = (get_step_pin_mask(X_AXIS)|get_step_pin_mask(Y_AXIS)); } #endif if (bit_istrue(cycle_mask,bit(idx))) { // Set target based on max_travel setting. Ensure homing switches engaged with search scalar. // NOTE: settings.max_travel[] is stored as a negative value. max_travel = max(max_travel,(-HOMING_AXIS_SEARCH_SCALAR)*settings.max_travel[idx]); } } // Set search mode with approach at seek rate to quickly engage the specified cycle_mask limit switches. bool approach = true; float homing_rate = settings.homing_seek_rate; uint8_t limit_state, axislock, n_active_axis; do { system_convert_array_steps_to_mpos(target,sys.position); // Initialize and declare variables needed for homing routine. axislock = 0; n_active_axis = 0; for (idx=0; idx<N_AXIS; idx++) { // Set target location for active axes and setup computation for homing rate. if (bit_istrue(cycle_mask,bit(idx))) { n_active_axis++; sys.position[idx] = 0; // Set target direction based on cycle mask and homing cycle approach state. // NOTE: This happens to compile smaller than any other implementation tried. if (bit_istrue(settings.homing_dir_mask,bit(idx))) { if (approach) { target[idx] = -max_travel; } else { target[idx] = max_travel; } } else { if (approach) { target[idx] = max_travel; } else { target[idx] = -max_travel; } } // Apply axislock to the step port pins active in this cycle. axislock |= step_pin[idx]; } } homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate. sys.homing_axis_lock = axislock; plan_sync_position(); // Sync planner position to current machine position. // Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle. #ifdef USE_LINE_NUMBERS plan_buffer_line(target, homing_rate, false, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan homing motion. #else plan_buffer_line(target, homing_rate, false, false); // Bypass mc_line(). Directly plan homing motion. #endif st_prep_buffer(); // Prep and fill segment buffer from newly planned block. st_wake_up(); // Initiate motion do { if (approach) { // Check limit state. Lock out cycle axes when they change. limit_state = limits_get_state(); for (idx=0; idx<N_AXIS; idx++) { if (axislock & step_pin[idx]) { if (limit_state & (1 << idx)) { axislock &= ~(step_pin[idx]); } } } sys.homing_axis_lock = axislock; } st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us. // Exit routines: No time to run protocol_execute_realtime() in this loop. if (sys_rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_STOP)) { // Homing failure: Limit switches are still engaged after pull-off motion if ( (sys_rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET)) || // Safety door or reset issued (!approach && (limits_get_state() & cycle_mask)) || // Limit switch still engaged after pull-off motion ( approach && (sys_rt_exec_state & EXEC_CYCLE_STOP)) ) { // Limit switch not found during approach. mc_reset(); // Stop motors, if they are running. protocol_execute_realtime(); return; } else { // Pull-off motion complete. Disable CYCLE_STOP from executing. system_clear_exec_state_flag(EXEC_CYCLE_STOP); break; } } } while (STEP_MASK & axislock); st_reset(); // Immediately force kill steppers and reset step segment buffer. plan_reset(); // Reset planner buffer to zero planner current position and to clear previous motions. delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate. // Reverse direction and reset homing rate for locate cycle(s). approach = !approach; // After first cycle, homing enters locating phase. Shorten search to pull-off distance. if (approach) { max_travel = settings.homing_pulloff*HOMING_AXIS_LOCATE_SCALAR; homing_rate = settings.homing_feed_rate; } else { max_travel = settings.homing_pulloff; homing_rate = settings.homing_seek_rate; } } while (n_cycle-- > 0); // The active cycle axes should now be homed and machine limits have been located. By // default, Grbl defines machine space as all negative, as do most CNCs. Since limit switches // can be on either side of an axes, check and set axes machine zero appropriately. Also, // set up pull-off maneuver from axes limit switches that have been homed. This provides // some initial clearance off the switches and should also help prevent them from falsely // triggering when hard limits are enabled or when more than one axes shares a limit pin. #ifdef COREXY int32_t off_axis_position = 0; #endif int32_t set_axis_position; // Set machine positions for homed limit switches. Don't update non-homed axes. for (idx=0; idx<N_AXIS; idx++) { // NOTE: settings.max_travel[] is stored as a negative value. if (cycle_mask & bit(idx)) { #ifdef HOMING_FORCE_SET_ORIGIN set_axis_position = 0; #else if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) { set_axis_position = lround((settings.max_travel[idx]+settings.homing_pulloff)*settings.steps_per_mm[idx]); } else { set_axis_position = lround(-settings.homing_pulloff*settings.steps_per_mm[idx]); } #endif #ifdef COREXY if (idx==X_AXIS) { off_axis_position = (sys.position[B_MOTOR] - sys.position[A_MOTOR])/2; sys.position[A_MOTOR] = set_axis_position - off_axis_position; sys.position[B_MOTOR] = set_axis_position + off_axis_position; } else if (idx==Y_AXIS) { off_axis_position = (sys.position[A_MOTOR] + sys.position[B_MOTOR])/2; sys.position[A_MOTOR] = off_axis_position - set_axis_position; sys.position[B_MOTOR] = off_axis_position + set_axis_position; } else { sys.position[idx] = set_axis_position; } #else sys.position[idx] = set_axis_position; #endif } } plan_sync_position(); // Sync planner position to homed machine position. // sys.state = STATE_HOMING; // Ensure system state set as homing before returning. }
// Homes the specified cycle axes, sets the machine position, and performs a pull-off motion after // completing. Homing is a special motion case, which involves rapid uncontrolled stops to locate // the trigger point of the limit switches. The rapid stops are handled by a system level axis lock // mask, which prevents the stepper algorithm from executing step pulses. Homing motions typically // circumvent the processes for executing motions in normal operation. // NOTE: Only the abort runtime command can interrupt this process. void limits_go_home(uint8_t cycle_mask) { if (sys.abort) { return; } // Block if system reset has been issued. // Initialize homing in search mode to quickly engage the specified cycle_mask limit switches. bool approach = true; float homing_rate = settings.homing_seek_rate; uint8_t invert_pin, idx; uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1); ///***5 float target[N_AXIS]; uint8_t limit_pin[N_AXIS], step_pin[N_AXIS]; float max_travel = 0.0; for (idx=0; idx<N_AXIS; idx++) { // Initialize limit and step pin masks limit_pin[idx] = get_limit_pin_mask(idx); ///////****get the Pin of limit min x, y ,z , Limit OK step_pin[idx] = get_step_pin_mask(idx); ///////****get the Pin of limit min x, y ,z now I let it 0, 1, 2 // Determine travel distance to the furthest homing switch based on user max travel settings. // NOTE: settings.max_travel[] is stored as a negative value. if (max_travel > settings.max_travel[idx]) { max_travel = settings.max_travel[idx]; } } max_travel *= -HOMING_AXIS_SEARCH_SCALAR; // Ensure homing switches engaged by over-estimating max travel. plan_reset(); // Reset planner buffer to zero planner current position and to clear previous motions. do { // Initialize invert_pin boolean based on approach and invert pin user setting. if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { invert_pin = approach; } else { invert_pin = !approach; } // Initialize and declare variables needed for homing routine. uint8_t n_active_axis = 0; uint8_t axislock = 0; for (idx=0; idx<N_AXIS; idx++) { // Set target location for active axes and setup computation for homing rate. if (bit_istrue(cycle_mask,bit(idx))) { n_active_axis++; if (!approach) { target[idx] = -max_travel; } else { target[idx] = max_travel; } } else { target[idx] = 0.0; } // Set target direction based on cycle mask if (bit_istrue(settings.homing_dir_mask,bit(idx))) { target[idx] = -target[idx]; } // Apply axislock to the step port pins active in this cycle. if (bit_istrue(cycle_mask,bit(idx))) { axislock |= step_pin[idx]; } } homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate. sys.homing_axis_lock = axislock; // Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle. uint8_t limit_state; #ifdef USE_LINE_NUMBERS plan_buffer_line(target, homing_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan homing motion. #else plan_buffer_line(target, homing_rate, false); // Bypass mc_line(). Directly plan homing motion. #endif st_prep_buffer(); // Prep and fill segment buffer from newly planned block. st_wake_up(); // Initiate motion do { // Check limit state. Lock out cycle axes when they change. /////////////////########################################*********** #if MotherBoard==3 /////**MB==3 #ifdef limit_int_style limit_state = LIMIT_PIN; if (invert_pin) { limit_state ^= LIMIT_MASK; } #else //************Get Limit Pin State. PiBot get limit/endstop mask same with the step mask. #if LIMIT_MAX_OPEN if(isXMinEndstopHit()) { limit_state^= MASK(X_LIMIT_BIT);} ////***read X_endstop then write into limite_state if(isYMinEndstopHit()) { limit_state^= MASK(Y_LIMIT_BIT);} if(isZMinEndstopHit()) { limit_state^= MASK(Z_LIMIT_BIT);} ////*****add MAX limit if(isXMaxEndstopHit()) { limit_state^= MASK(X_LIMIT_MAX_BIT);} ////***read X_endstop then write into limite_state if(isYMaxEndstopHit()) { limit_state^= MASK(Y_LIMIT_MAX_BIT);} if(isZMaxEndstopHit()) { limit_state^= MASK(Z_LIMIT_MAX_BIT);} ////*****add MAX limit #else if(isXMinEndstopHit()) { limit_state^= MASK(X_MASK);} ////***read X_endstop then write into limite_state if(isYMinEndstopHit()) { limit_state^= MASK(Y_MASK);} if(isZMinEndstopHit()) { limit_state^= MASK(Z_MASK);} ////*****add MAX limit #endif #endif #else /////**MB!=3 ////////################################################# limit_state = LIMIT_PIN; if (invert_pin) { limit_state ^= LIMIT_MASK; } #endif /////**MB==3 /////////////////////////////##################################### for (idx=0; idx<N_AXIS; idx++) { if (axislock & step_pin[idx]) { if (limit_state & limit_pin[idx]) { axislock &= ~(step_pin[idx]); } } } sys.homing_axis_lock = axislock; st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us. // Check only for user reset. No time to run protocol_execute_runtime() in this loop. if (sys.execute & EXEC_RESET) { protocol_execute_runtime(); return; } } while (STEP_MASK & axislock); st_reset(); // Immediately force kill steppers and reset step segment buffer. plan_reset(); // Reset planner buffer. Zero planner positions. Ensure homing motion is cleared. delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate. // Reverse direction and reset homing rate for locate cycle(s). homing_rate = settings.homing_feed_rate; approach = !approach; } while (n_cycle-- > 0); // The active cycle axes should now be homed and machine limits have been located. By // default, grbl defines machine space as all negative, as do most CNCs. Since limit switches // can be on either side of an axes, check and set axes machine zero appropriately. Also, // set up pull-off maneuver from axes limit switches that have been homed. This provides // some initial clearance off the switches and should also help prevent them from falsely // triggering when hard limits are enabled or when more than one axes shares a limit pin. for (idx=0; idx<N_AXIS; idx++) { // Set up pull off targets and machine positions for limit switches homed in the negative // direction, rather than the traditional positive. Leave non-homed positions as zero and // do not move them. // NOTE: settings.max_travel[] is stored as a negative value. if (cycle_mask & bit(idx)) { #ifdef HOMING_FORCE_SET_ORIGIN sys.position[idx] = 0; // Set axis homed location as axis origin target[idx] = settings.homing_pulloff; if ( bit_isfalse(settings.homing_dir_mask,bit(idx)) ) { target[idx] = -target[idx]; } #else if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) { target[idx] = settings.homing_pulloff+settings.max_travel[idx]; sys.position[idx] = lround(settings.max_travel[idx]*settings.steps_per_mm[idx]); } else { target[idx] = -settings.homing_pulloff; sys.position[idx] = 0; } #endif } else { // Non-active cycle axis. Set target to not move during pull-off. target[idx] = (float)sys.position[idx]/settings.steps_per_mm[idx]; } } plan_sync_position(); // Sync planner position to current machine position for pull-off move. #ifdef USE_LINE_NUMBERS plan_buffer_line(target, settings.homing_seek_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan motion. #else plan_buffer_line(target, settings.homing_seek_rate, false); // Bypass mc_line(). Directly plan motion. #endif // Initiate pull-off using main motion control routines. // TODO : Clean up state routines so that this motion still shows homing state. sys.state = STATE_QUEUED; bit_true_atomic(sys.execute, EXEC_CYCLE_START); protocol_execute_runtime(); protocol_buffer_synchronize(); // Complete pull-off motion. // Set system state to homing before returning. sys.state = STATE_HOMING; }
// Executes run-time commands, when required. This is called from various check points in the main // program, primarily where there may be a while loop waiting for a buffer to clear space or any // point where the execution time from the last check point may be more than a fraction of a second. // This is a way to execute realtime commands asynchronously (aka multitasking) with grbl's g-code // parsing and planning functions. This function also serves as an interface for the interrupts to // set the system realtime flags, where only the main program handles them, removing the need to // define more computationally-expensive volatile variables. This also provides a controlled way to // execute certain tasks without having two or more instances of the same task, such as the planner // recalculating the buffer upon a feedhold or override. // NOTE: The sys_rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts, // limit switches, or the main program. void protocol_execute_realtime() { uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times. do { // If system is suspended, suspend loop restarts here. // Check and execute alarms. rt_exec = sys_rt_exec_alarm; // Copy volatile sys_rt_exec_alarm. if (rt_exec) { // Enter only if any bit flag is true // System alarm. Everything has shutdown by something that has gone severely wrong. Report // the source of the error to the user. If critical, Grbl disables by entering an infinite // loop until system reset/abort. sys.state = STATE_ALARM; // Set system alarm state if (rt_exec & EXEC_ALARM_HARD_LIMIT) { report_alarm_message(ALARM_HARD_LIMIT_ERROR); } else if (rt_exec & EXEC_ALARM_SOFT_LIMIT) { report_alarm_message(ALARM_SOFT_LIMIT_ERROR); } else if (rt_exec & EXEC_ALARM_ABORT_CYCLE) { report_alarm_message(ALARM_ABORT_CYCLE); } else if (rt_exec & EXEC_ALARM_PROBE_FAIL) { report_alarm_message(ALARM_PROBE_FAIL); } else if (rt_exec & EXEC_ALARM_HOMING_FAIL) { report_alarm_message(ALARM_HOMING_FAIL); } // Halt everything upon a critical event flag. Currently hard and soft limits flag this. if (rt_exec & EXEC_CRITICAL_EVENT) { report_feedback_message(MESSAGE_CRITICAL_EVENT); bit_false_atomic(sys_rt_exec_state,EXEC_RESET); // Disable any existing reset do { // Nothing. Block EVERYTHING until user issues reset or power cycles. Hard limits // typically occur while unattended or not paying attention. Gives the user time // to do what is needed before resetting, like killing the incoming stream. The // same could be said about soft limits. While the position is not lost, the incoming // stream could be still engaged and cause a serious crash if it continues afterwards. // TODO: Allow status reports during a critical alarm. Still need to think about implications of this. // if (sys_rt_exec_state & EXEC_STATUS_REPORT) { // report_realtime_status(); // bit_false_atomic(sys_rt_exec_state,EXEC_STATUS_REPORT); // } } while (bit_isfalse(sys_rt_exec_state,EXEC_RESET)); } bit_false_atomic(sys_rt_exec_alarm,0xFF); // Clear all alarm flags } // Check amd execute realtime commands rt_exec = sys_rt_exec_state; // Copy volatile sys_rt_exec_state. if (rt_exec) { // Enter only if any bit flag is true // Execute system abort. if (rt_exec & EXEC_RESET) { sys.abort = true; // Only place this is set true. return; // Nothing else to do but exit. } // Execute and serial print status if (rt_exec & EXEC_STATUS_REPORT) { report_realtime_status(); bit_false_atomic(sys_rt_exec_state,EXEC_STATUS_REPORT); } // Execute hold states. // NOTE: The math involved to calculate the hold should be low enough for most, if not all, // operational scenarios. Once hold is initiated, the system enters a suspend state to block // all main program processes until either reset or resumed. if (rt_exec & (EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR)) { // TODO: CHECK MODE? How to handle this? Likely nothing, since it only works when IDLE and then resets Grbl. // State check for allowable states for hold methods. if ((sys.state == STATE_IDLE) || (sys.state & (STATE_CYCLE | STATE_HOMING | STATE_MOTION_CANCEL | STATE_HOLD | STATE_SAFETY_DOOR))) { // If in CYCLE state, all hold states immediately initiate a motion HOLD. if (sys.state == STATE_CYCLE) { st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration. sys.suspend = SUSPEND_ENABLE_HOLD; // Initiate holding cycle with flag. } // If IDLE, Grbl is not in motion. Simply indicate suspend ready state. if (sys.state == STATE_IDLE) { sys.suspend = SUSPEND_ENABLE_READY; } // Execute and flag a motion cancel with deceleration and return to idle. Used primarily by probing cycle // to halt and cancel the remainder of the motion. if (rt_exec & EXEC_MOTION_CANCEL) { // MOTION_CANCEL only occurs during a CYCLE, but a HOLD and SAFETY_DOOR may been initiated beforehand // to hold the CYCLE. If so, only flag that motion cancel is complete. if (sys.state == STATE_CYCLE) { sys.state = STATE_MOTION_CANCEL; } sys.suspend |= SUSPEND_MOTION_CANCEL; // Indicate motion cancel when resuming. Special motion complete. } // Execute a feed hold with deceleration, only during cycle. if (rt_exec & EXEC_FEED_HOLD) { // Block SAFETY_DOOR state from prematurely changing back to HOLD. if (bit_isfalse(sys.state,STATE_SAFETY_DOOR)) { sys.state = STATE_HOLD; } } // Execute a safety door stop with a feed hold, only during a cycle, and disable spindle/coolant. // NOTE: Safety door differs from feed holds by stopping everything no matter state, disables powered // devices (spindle/coolant), and blocks resuming until switch is re-engaged. The power-down is // executed here, if IDLE, or when the CYCLE completes via the EXEC_CYCLE_STOP flag. if (rt_exec & EXEC_SAFETY_DOOR) { report_feedback_message(MESSAGE_SAFETY_DOOR_AJAR); // If already in active, ready-to-resume HOLD, set CYCLE_STOP flag to force de-energize. // NOTE: Only temporarily sets the 'rt_exec' variable, not the volatile 'rt_exec_state' variable. if (sys.suspend & SUSPEND_ENABLE_READY) { bit_true(rt_exec,EXEC_CYCLE_STOP); } sys.suspend |= SUSPEND_ENERGIZE; sys.state = STATE_SAFETY_DOOR; } } bit_false_atomic(sys_rt_exec_state,(EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR)); } // Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue. if (rt_exec & EXEC_CYCLE_START) { // Block if called at same time as the hold commands: feed hold, motion cancel, and safety door. // Ensures auto-cycle-start doesn't resume a hold without an explicit user-input. if (!(rt_exec & (EXEC_FEED_HOLD | EXEC_MOTION_CANCEL | EXEC_SAFETY_DOOR))) { // Cycle start only when IDLE or when a hold is complete and ready to resume. // NOTE: SAFETY_DOOR is implicitly blocked. It reverts to HOLD when the door is closed. if ((sys.state == STATE_IDLE) || ((sys.state & (STATE_HOLD | STATE_MOTION_CANCEL)) && (sys.suspend & SUSPEND_ENABLE_READY))) { // Re-energize powered components, if disabled by SAFETY_DOOR. if (sys.suspend & SUSPEND_ENERGIZE) { // Delayed Tasks: Restart spindle and coolant, delay to power-up, then resume cycle. if (gc_state.modal.spindle != SPINDLE_DISABLE) { spindle_set_state(gc_state.modal.spindle, gc_state.spindle_speed); delay_ms(SAFETY_DOOR_SPINDLE_DELAY); // TODO: Blocking function call. Need a non-blocking one eventually. } if (gc_state.modal.coolant != COOLANT_DISABLE) { coolant_set_state(gc_state.modal.coolant); delay_ms(SAFETY_DOOR_COOLANT_DELAY); // TODO: Blocking function call. Need a non-blocking one eventually. } // TODO: Install return to pre-park position. } // Start cycle only if queued motions exist in planner buffer and the motion is not canceled. if (plan_get_current_block() && bit_isfalse(sys.suspend,SUSPEND_MOTION_CANCEL)) { sys.state = STATE_CYCLE; st_prep_buffer(); // Initialize step segment buffer before beginning cycle. st_wake_up(); } else { // Otherwise, do nothing. Set and resume IDLE state. sys.state = STATE_IDLE; } sys.suspend = SUSPEND_DISABLE; // Break suspend state. } } bit_false_atomic(sys_rt_exec_state,EXEC_CYCLE_START); } // Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by // realtime command execution in the main program, ensuring that the planner re-plans safely. // NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper // cycle reinitializations. The stepper path should continue exactly as if nothing has happened. // NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes. if (rt_exec & EXEC_CYCLE_STOP) { if (sys.state & (STATE_HOLD | STATE_SAFETY_DOOR)) { // Hold complete. Set to indicate ready to resume. Remain in HOLD or DOOR states until user // has issued a resume command or reset. if (sys.suspend & SUSPEND_ENERGIZE) { // De-energize system if safety door has been opened. spindle_stop(); coolant_stop(); // TODO: Install parking motion here. } bit_true(sys.suspend,SUSPEND_ENABLE_READY); } else { // Motion is complete. Includes CYCLE, HOMING, and MOTION_CANCEL states. sys.suspend = SUSPEND_DISABLE; sys.state = STATE_IDLE; } bit_false_atomic(sys_rt_exec_state,EXEC_CYCLE_STOP); } } // Overrides flag byte (sys.override) and execution should be installed here, since they // are realtime and require a direct and controlled interface to the main stepper program. // Reload step segment buffer if (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_MOTION_CANCEL | STATE_SAFETY_DOOR | STATE_HOMING)) { st_prep_buffer(); } // If safety door was opened, actively check when safety door is closed and ready to resume. // NOTE: This unlocks the SAFETY_DOOR state to a HOLD state, such that CYCLE_START can activate a resume. if (sys.state == STATE_SAFETY_DOOR) { if (bit_istrue(sys.suspend,SUSPEND_ENABLE_READY)) { #ifndef DEFAULTS_TRINAMIC if (!(system_check_safety_door_ajar())) { sys.state = STATE_HOLD; // Update to HOLD state to indicate door is closed and ready to resume. } #endif } } } while(sys.suspend); // Check for system suspend state before exiting. }