Пример #1
0
bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
    Cubic sub1, sub2;
    // FIXME: carry last subdivide and reduceOrder result with cubic
    sub_divide(cubic1, minT1, maxT1, sub1);
    sub_divide(cubic2, minT2, maxT2, sub2);
    Intersections i;
    intersect2(sub1, sub2, i);
    if (i.used() == 0) {
        return false;
    }
    double x1, y1, x2, y2;
    t1 = minT1 + i.fT[0][0] * (maxT1 - minT1);
    t2 = minT2 + i.fT[1][0] * (maxT2 - minT2);
    xy_at_t(cubic1, t1, x1, y1);
    xy_at_t(cubic2, t2, x2, y2);
    if (AlmostEqualUlps(x1, x2) && AlmostEqualUlps(y1, y2)) {
        return true;
    }
    double half1 = (minT1 + maxT1) / 2;
    double half2 = (minT2 + maxT2) / 2;
    ++depth;
    bool result;
    if (depth & 1) {
        result = intersect(minT1, half1, minT2, maxT2) || intersect(half1, maxT1, minT2, maxT2)
            || intersect(minT1, maxT1, minT2, half2) || intersect(minT1, maxT1, half2, maxT2);
    } else {
        result = intersect(minT1, maxT1, minT2, half2) || intersect(minT1, maxT1, half2, maxT2)
            || intersect(minT1, half1, minT2, maxT2) || intersect(half1, maxT1, minT2, maxT2);
    }
    --depth;
    return result;
}
Пример #2
0
static int quadPart(const Cubic& cubic, double tStart, double tEnd, Quadratic& simple) {
    Cubic part;
    sub_divide(cubic, tStart, tEnd, part);
    Quadratic quad;
    demote_cubic_to_quad(part, quad);
    // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
    // extremely shallow quadratic?
    int order = reduceOrder(quad, simple, kReduceOrder_TreatAsFill);
#if DEBUG_QUAD_PART
    SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g) t=(%1.17g,%1.17g)\n",
            __FUNCTION__, cubic[0].x, cubic[0].y, cubic[1].x, cubic[1].y, cubic[2].x, cubic[2].y,
            cubic[3].x, cubic[3].y, tStart, tEnd);
    SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)"
            " quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, part[0].x, part[0].y,
            part[1].x, part[1].y, part[2].x, part[2].y, part[3].x, part[3].y, quad[0].x, quad[0].y,
            quad[1].x, quad[1].y, quad[2].x, quad[2].y);
    SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, simple[0].x, simple[0].y);
    if (order > 1) {
        SkDebugf(" %1.17g,%1.17g", simple[1].x, simple[1].y);
    }
    if (order > 2) {
        SkDebugf(" %1.17g,%1.17g", simple[2].x, simple[2].y);
    }
    SkDebugf(")\n");
    SkASSERT(order < 4 && order > 0);
#endif
    return order;
}
Пример #3
0
void CubicCoincidence_Test() {
    // split large quadratic
    // upscale quadratics to cubics
    // compare original, parts, to see if the are coincident
    for (size_t index = firstCubicCoincidenceTest; index < quadratics_count; ++index) {
        const Quadratic& test = quadratics[index];
        QuadraticPair split;
        chop_at(test, split, 0.5);
        Quadratic midThird;
        sub_divide(test, 1.0/3, 2.0/3, midThird);
        Cubic whole, first, second, mid;
        quad_to_cubic(test, whole);
        quad_to_cubic(split.first(), first);
        quad_to_cubic(split.second(), second);
        quad_to_cubic(midThird, mid);
        if (!implicit_matches(whole, first)) {
            printf("%s-1 %d\n", __FUNCTION__, (int)index);
        }
        if (!implicit_matches(whole, second)) {
            printf("%s-2 %d\n", __FUNCTION__, (int)index);
        }
        if (!implicit_matches(mid, first)) {
            printf("%s-3 %d\n", __FUNCTION__, (int)index);
        }
        if (!implicit_matches(mid, second)) {
            printf("%s-4 %d\n", __FUNCTION__, (int)index);
        }
        if (!implicit_matches(first, second)) {
            printf("%s-5 %d\n", __FUNCTION__, (int)index);
        }
    }
}
Пример #4
0
bool intersect(const Cubic& cubic, Intersections& i) {
    SkTDArray<double> ts;
    double precision = calcPrecision(cubic);
    cubic_to_quadratics(cubic, precision, ts);
    int tsCount = ts.count();
    if (tsCount == 1) {
        return false;
    }
    double t1Start = 0;
    Cubic part;
    for (int idx = 0; idx < tsCount; ++idx) {
        double t1 = ts[idx];
        Quadratic q1;
        sub_divide(cubic, t1Start, t1, part);
        demote_cubic_to_quad(part, q1);
        double t2Start = t1;
        for (int i2 = idx + 1; i2 <= tsCount; ++i2) {
            const double t2 = i2 < tsCount ? ts[i2] : 1;
            Quadratic q2;
            sub_divide(cubic, t2Start, t2, part);
            demote_cubic_to_quad(part, q2);
            Intersections locals;
            intersect2(q1, q2, locals);
            for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
            // discard intersections at cusp? (maximum curvature)
                double t1sect = locals.fT[0][tIdx];
                double t2sect = locals.fT[1][tIdx];
                if (idx + 1 == i2 && t1sect == 1 && t2sect == 0) {
                    continue;
                }
                double to1 = t1Start + (t1 - t1Start) * t1sect;
                double to2 = t2Start + (t2 - t2Start) * t2sect;
                i.insert(to1, to2);
            }
            t2Start = t2;
        }
        t1Start = t1;
    }
    return i.intersected();
}
Пример #5
0
_Point top(const Quadratic& quad, double startT, double endT) {
    Quadratic sub;
    sub_divide(quad, startT, endT, sub);
    _Point topPt = sub[0];
    if (topPt.y > sub[2].y || (topPt.y == sub[2].y && topPt.x > sub[2].x)) {
        topPt = sub[2];
    }
    if (!between(sub[0].y, sub[1].y, sub[2].y)) {
        double extremeT;
        if (findExtrema(sub[0].y, sub[1].y, sub[2].y, &extremeT)) {
            extremeT = startT + (endT - startT) * extremeT;
            _Point test;
            xy_at_t(quad, extremeT, test.x, test.y);
            if (topPt.y > test.y || (topPt.y == test.y && topPt.x > test.x)) {
                topPt = test;
            }
        }
    }
    return topPt;
}
Пример #6
0
_Point top(const Cubic& cubic, double startT, double endT) {
    Cubic sub;
    sub_divide(cubic, startT, endT, sub);
    _Point topPt = sub[0];
    if (topPt.y > sub[3].y || (topPt.y == sub[3].y && topPt.x > sub[3].x)) {
        topPt = sub[3];
    }
    double extremeTs[2];
    if (!monotonic_in_y(sub)) {
        int roots = findExtrema(sub[0].y, sub[1].y, sub[2].y, sub[3].y, extremeTs);
        for (int index = 0; index < roots; ++index) {
            _Point mid;
            double t = startT + (endT - startT) * extremeTs[index];
            xy_at_t(cubic, t, mid.x, mid.y);
            if (topPt.y > mid.y || (topPt.y == mid.y && topPt.x > mid.x)) {
                topPt = mid;
            }
        }
    }
    return topPt;
}
Пример #7
0
int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
    SkTDArray<double> ts;
    double precision = calcPrecision(cubic);
    cubic_to_quadratics(cubic, precision, ts);
    double tStart = 0;
    Cubic part;
    int tsCount = ts.count();
    for (int idx = 0; idx <= tsCount; ++idx) {
        double t = idx < tsCount ? ts[idx] : 1;
        Quadratic q1;
        sub_divide(cubic, tStart, t, part);
        demote_cubic_to_quad(part, q1);
        Intersections locals;
        intersect2(q1, quad, locals);
        for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
            double globalT = tStart + (t - tStart) * locals.fT[0][tIdx];
            i.insertOne(globalT, 0);
            globalT = locals.fT[1][tIdx];
            i.insertOne(globalT, 1);
        }
        tStart = t;
    }
    return i.used();
}
Пример #8
0
bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
    bool t1IsLine = maxT1 - minT1 <= quad1Divisions;
    bool t2IsLine = maxT2 - minT2 <= quad2Divisions;
    if (t1IsLine | t2IsLine) {
        return intersectAsLine(minT1, maxT1, minT2, maxT2, t1IsLine, t2IsLine);
    }
    Quadratic smaller, larger;
    // FIXME: carry last subdivide and reduceOrder result with quad
    sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller);
    sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger);
    double minT, maxT;
    if (!bezier_clip(smaller, larger, minT, maxT)) {
        if (approximately_equal(minT, maxT)) {
            double smallT, largeT;
            _Point q2pt, q1pt;
            if (intersections.swapped()) {
                largeT = interp(minT2, maxT2, minT);
                xy_at_t(quad2, largeT, q2pt.x, q2pt.y);
                xy_at_t(quad1, minT1, q1pt.x, q1pt.y);
                if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) {
                    smallT = minT1;
                } else {
                    xy_at_t(quad1, maxT1, q1pt.x, q1pt.y); // FIXME: debug code
                    assert(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y));
                    smallT = maxT1;
                }
            } else {
                smallT = interp(minT1, maxT1, minT);
                xy_at_t(quad1, smallT, q1pt.x, q1pt.y);
                xy_at_t(quad2, minT2, q2pt.x, q2pt.y);
                if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) {
                    largeT = minT2;
                } else {
                    xy_at_t(quad2, maxT2, q2pt.x, q2pt.y); // FIXME: debug code
                    assert(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y));
                    largeT = maxT2;
                }
            }
            intersections.add(smallT, largeT);
            return true;
        }
        return false;
    }
    int split;
    if (intersections.swapped()) {
        double newMinT1 = interp(minT1, maxT1, minT);
        double newMaxT1 = interp(minT1, maxT1, maxT);
        split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
#define VERBOSE 0
#if VERBOSE
        printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth,
            splits, newMinT1, newMaxT1, minT1, maxT1, split);
#endif
        minT1 = newMinT1;
        maxT1 = newMaxT1;
    } else {
        double newMinT2 = interp(minT2, maxT2, minT);
        double newMaxT2 = interp(minT2, maxT2, maxT);
        split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
#if VERBOSE
        printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth,
            splits, newMinT2, newMaxT2, minT2, maxT2, split);
#endif
        minT2 = newMinT2;
        maxT2 = newMaxT2;
    }
    return chop(minT1, maxT1, minT2, maxT2, split);
}
Пример #9
0
double calcPrecision(const Cubic& cubic, double t, double scale) {
    Cubic part;
    sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part);
    return calcPrecision(part);
}
Пример #10
0
bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
    Quadratic smaller, larger;
    // FIXME: carry last subdivide and reduceOrder result with quad 
    sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller);
    sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger);
    Quadratic smallResult;
    if (reduceOrder(smaller, smallResult) <= 2) {
        Quadratic largeResult;
        if (reduceOrder(larger, largeResult) <= 2) {
            double smallT[2], largeT[2];
            const _Line& smallLine = (const _Line&) smallResult;
            const _Line& largeLine = (const _Line&) largeResult;
            // FIXME: this doesn't detect or deal with coincident lines
            if (!::intersect(smallLine, largeLine, smallT, largeT)) {
                return false;
            }
            if (intersections.swapped()) {
                smallT[0] = interp(minT2, maxT2, smallT[0]); 
                largeT[0] = interp(minT1, maxT1, largeT[0]); 
            } else {
                smallT[0] = interp(minT1, maxT1, smallT[0]); 
                largeT[0] = interp(minT2, maxT2, largeT[0]); 
            }
            intersections.add(smallT[0], largeT[0]);
            return true;
        }
    }
    double minT, maxT;
    if (!bezier_clip(smaller, larger, minT, maxT)) {
        if (minT == maxT) {
            if (intersections.swapped()) {
                minT1 = (minT1 + maxT1) / 2;
                minT2 = interp(minT2, maxT2, minT);
            } else {
                minT1 = interp(minT1, maxT1, minT);
                minT2 = (minT2 + maxT2) / 2;
            }
            intersections.add(minT1, minT2);
            return true;
        }
        return false;
    }
    
    int split;
    if (intersections.swapped()) {
        double newMinT1 = interp(minT1, maxT1, minT);
        double newMaxT1 = interp(minT1, maxT1, maxT);
        split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
#define VERBOSE 0
#if VERBOSE
        printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth,
            splits, newMinT1, newMaxT1, minT1, maxT1, split);
#endif
        minT1 = newMinT1;
        maxT1 = newMaxT1;
    } else {
        double newMinT2 = interp(minT2, maxT2, minT);
        double newMaxT2 = interp(minT2, maxT2, maxT);
        split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
#define VERBOSE 0
#if VERBOSE
        printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth,
            splits, newMinT2, newMaxT2, minT2, maxT2, split);
#endif
        minT2 = newMinT2;
        maxT2 = newMaxT2;
    }
    return chop(minT1, maxT1, minT2, maxT2, split);
}
Пример #11
0
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
// chase intersections near quadratic ends, requiring odd hacks to find them.
static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
        double t2s, double t2e, double precisionScale, Intersections& i) {
    i.upDepth();
    bool result = false;
    Cubic c1, c2;
    sub_divide(cubic1, t1s, t1e, c1);
    sub_divide(cubic2, t2s, t2e, c2);
    SkTDArray<double> ts1;
    // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
    cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
    SkTDArray<double> ts2;
    cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
    double t1Start = t1s;
    int ts1Count = ts1.count();
    for (int i1 = 0; i1 <= ts1Count; ++i1) {
        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
        const double t1 = t1s + (t1e - t1s) * tEnd1;
        Quadratic s1;
        int o1 = quadPart(cubic1, t1Start, t1, s1);
        double t2Start = t2s;
        int ts2Count = ts2.count();
        for (int i2 = 0; i2 <= ts2Count; ++i2) {
            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
            const double t2 = t2s + (t2e - t2s) * tEnd2;
            if (cubic1 == cubic2 && t1Start >= t2Start) {
                t2Start = t2;
                continue;
            }
            Quadratic s2;
            int o2 = quadPart(cubic2, t2Start, t2, s2);
        #if ONE_OFF_DEBUG
            char tab[] = "                  ";
            if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
                    && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
                Cubic cSub1, cSub2;
                sub_divide(cubic1, t1Start, t1, cSub1);
                sub_divide(cubic2, t2Start, t2, cSub2);
                SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__,
                        t1Start, t1, t2Start, t2);
                Intersections xlocals;
                intersectWithOrder(s1, o1, s2, o2, xlocals);
                SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
            }
        #endif
            Intersections locals;
            intersectWithOrder(s1, o1, s2, o2, locals);
            double coStart[2] = { -1 };
            _Point coPoint;
            int tCount = locals.used();
            for (int tIdx = 0; tIdx < tCount; ++tIdx) {
                double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
                double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
    // if the computed t is not sufficiently precise, iterate
                _Point p1 = xy_at_t(cubic1, to1);
                _Point p2 = xy_at_t(cubic2, to2);
                if (p1.approximatelyEqual(p2)) {
                    if (locals.fIsCoincident[0] & 1 << tIdx) {
                        if (coStart[0] < 0) {
                            coStart[0] = to1;
                            coStart[1] = to2;
                            coPoint = p1;
                        } else {
                            i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
                            coStart[0] = -1;
                        }
                        result = true;
                    } else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) {
                        if (i.swapped()) { // FIXME: insert should respect swap
                            i.insert(to2, to1, p1);
                        } else {
                            i.insert(to1, to2, p1);
                        }
                        result = true;
                    }
                } else {
                    double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine
#if 1
                    double c1Bottom = tIdx == 0 ? 0 :
                            (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
                    double c1Min = SkTMax(c1Bottom, to1 - offset);
                    double c1Top = tIdx == tCount - 1 ? 1 :
                            (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
                    double c1Max = SkTMin(c1Top, to1 + offset);
                    double c2Min = SkTMax(0., to2 - offset);
                    double c2Max = SkTMin(1., to2 + offset);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                    SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                            i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                    SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                            " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
                #endif
                    intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
                            i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
                #endif
                    if (tCount > 1) {
                        c1Min = SkTMax(0., to1 - offset);
                        c1Max = SkTMin(1., to1 + offset);
                        double c2Bottom = tIdx == 0 ? to2 :
                                (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
                        double c2Top = tIdx == tCount - 1 ? to2 :
                                (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
                        if (c2Bottom > c2Top) {
                            SkTSwap(c2Bottom, c2Top);
                        }
                        if (c2Bottom == to2) {
                            c2Bottom = 0;
                        }
                        if (c2Top == to2) {
                            c2Top = 1;
                        }
                        c2Min = SkTMax(c2Bottom, to2 - offset);
                        c2Max = SkTMin(c2Top, to2 + offset);
                    #if ONE_OFF_DEBUG
                        SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                        SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                        SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
                    #endif
                        intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
                            i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
                #endif
                        c1Min = SkTMax(c1Bottom, to1 - offset);
                        c1Max = SkTMin(c1Top, to1 + offset);
                    #if ONE_OFF_DEBUG
                        SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                        SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                        SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
                    #endif
                        intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
                            i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
                #endif
                    }
#else
                    double c1Bottom = tIdx == 0 ? 0 :
                            (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
                    double c1Min = SkTMax(c1Bottom, to1 - offset);
                    double c1Top = tIdx == tCount - 1 ? 1 :
                            (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
                    double c1Max = SkTMin(c1Top, to1 + offset);
                    double c2Bottom = tIdx == 0 ? to2 :
                            (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
                    double c2Top = tIdx == tCount - 1 ? to2 :
                            (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
                    if (c2Bottom > c2Top) {
                        SkTSwap(c2Bottom, c2Top);
                    }
                    if (c2Bottom == to2) {
                        c2Bottom = 0;
                    }
                    if (c2Top == to2) {
                        c2Top = 1;
                    }
                    double c2Min = SkTMax(c2Bottom, to2 - offset);
                    double c2Max = SkTMin(c2Top, to2 + offset);
                #if ONE_OFF_DEBUG
                    SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__,
                            c1Min <= 0.210357794 && 0.210357794 <= c1Max
                         && c2Min <= 0.223476406 && 0.223476406 <= c2Max,
                            to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset
                         && to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset,
                            c1Min <= 0.211324707 && 0.211324707 <= c1Max
                         && c2Min <= 0.211327209 && 0.211327209 <= c2Max,
                            to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset
                         && to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset);
                    SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                            __FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top,
                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                    SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                            " c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
                #endif
#endif
                    intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                    // TODO: if no intersection is found, either quadratics intersected where
                    // cubics did not, or the intersection was missed. In the former case, expect
                    // the quadratics to be nearly parallel at the point of intersection, and check
                    // for that.
                }
            }
            SkASSERT(coStart[0] == -1);
            t2Start = t2;
        }
        t1Start = t1;
    }
    i.downDepth();
    return result;
}
Пример #12
0
// this flavor approximates the cubics with quads to find the intersecting ts
// OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used
// to create the approximations, could be stored in the cubic segment
// FIXME: this strategy needs to intersect the convex hull on either end with the opposite to
// account for inset quadratics that cause the endpoint intersection to avoid detection
// the segments can be very short -- the length of the maximum quadratic error (precision)
// FIXME: this needs to recurse on itself, taking a range of T values and computing the new
// t range ala is linear inner. The range can be figured by taking the dx/dy and determining
// the fraction that matches the precision. That fraction is the change in t for the smaller cubic.
static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
        double t2s, double t2e, double precisionScale, Intersections& i) {
    Cubic c1, c2;
    sub_divide(cubic1, t1s, t1e, c1);
    sub_divide(cubic2, t2s, t2e, c2);
    SkTDArray<double> ts1;
    cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
    SkTDArray<double> ts2;
    cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
    double t1Start = t1s;
    int ts1Count = ts1.count();
    for (int i1 = 0; i1 <= ts1Count; ++i1) {
        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
        const double t1 = t1s + (t1e - t1s) * tEnd1;
        Cubic part1;
        sub_divide(cubic1, t1Start, t1, part1);
        Quadratic q1;
        demote_cubic_to_quad(part1, q1);
  //      start here;
        // should reduceOrder be looser in this use case if quartic is going to blow up on an
        // extremely shallow quadratic?
        Quadratic s1;
        int o1 = reduceOrder(q1, s1);
        double t2Start = t2s;
        int ts2Count = ts2.count();
        for (int i2 = 0; i2 <= ts2Count; ++i2) {
            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
            const double t2 = t2s + (t2e - t2s) * tEnd2;
            Cubic part2;
            sub_divide(cubic2, t2Start, t2, part2);
            Quadratic q2;
            demote_cubic_to_quad(part2, q2);
            Quadratic s2;
            double o2 = reduceOrder(q2, s2);
            Intersections locals;
            if (o1 == 3 && o2 == 3) {
                intersect2(q1, q2, locals);
            } else if (o1 <= 2 && o2 <= 2) {
                locals.fUsed = intersect((const _Line&) s1, (const _Line&) s2, locals.fT[0],
                        locals.fT[1]);
            } else if (o1 == 3 && o2 <= 2) {
                intersect(q1, (const _Line&) s2, locals);
            } else {
                SkASSERT(o1 <= 2 && o2 == 3);
                intersect(q2, (const _Line&) s1, locals);
                for (int s = 0; s < locals.fUsed; ++s) {
                    SkTSwap(locals.fT[0][s], locals.fT[1][s]);
                }
            }
            for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
                double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
                double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
    // if the computed t is not sufficiently precise, iterate
                _Point p1, p2;
                xy_at_t(cubic1, to1, p1.x, p1.y);
                xy_at_t(cubic2, to2, p2.x, p2.y);
                if (p1.approximatelyEqual(p2)) {
                    i.insert(i.swapped() ? to2 : to1, i.swapped() ? to1 : to2);
                } else {
                    double dt1, dt2;
                    computeDelta(cubic1, to1, (t1e - t1s), cubic2, to2, (t2e - t2s), dt1, dt2);
                    double scale = precisionScale;
                    if (dt1 > 0.125 || dt2 > 0.125) {
                        scale /= 2;
                        SkDebugf("%s scale=%1.9g\n", __FUNCTION__, scale);
                    }
#if SK_DEBUG
                    ++debugDepth;
                    assert(debugDepth < 10);
#endif
                    i.swap();
                    intersect2(cubic2, SkTMax(to2 - dt2, 0.), SkTMin(to2 + dt2, 1.),
                            cubic1, SkTMax(to1 - dt1, 0.), SkTMin(to1 + dt1, 1.), scale, i);
                    i.swap();
#if SK_DEBUG
                    --debugDepth;
#endif
                }
            }
            t2Start = t2;
        }
        t1Start = t1;
    }
    return i.intersected();
}