int up_svcall(int irq, FAR void *context) { uint32_t *regs = (uint32_t*)context; DEBUGASSERT(regs && regs == current_regs); /* The SVCall software interrupt is called with R0 = system call command * and R1..R7 = variable number of arguments depending on the system call. */ svcdbg("SVCALL Entry: regs: %p cmd: %d\n", regs, regs[REG_R0]); svcdbg(" R0: %08x %08x %08x %08x %08x %08x %08x %08x\n", regs[REG_R0], regs[REG_R1], regs[REG_R2], regs[REG_R3], regs[REG_R4], regs[REG_R5], regs[REG_R6], regs[REG_R7]); svcdbg(" R8: %08x %08x %08x %08x %08x %08x %08x %08x\n", regs[REG_R8], regs[REG_R9], regs[REG_R10], regs[REG_R11], regs[REG_R12], regs[REG_R13], regs[REG_R14], regs[REG_R15]); svcdbg(" PSR=%08x\n", regs[REG_XPSR]); /* Handle the SVCall according to the command in R0 */ switch (regs[REG_R0]) { /* R0=SYS_save_context: This is a save context command: * * int up_saveusercontext(uint32_t *saveregs); * * At this point, the following values are saved in context: * * R0 = SYS_save_context * R1 = saveregs * * In this case, we simply need to copy the current regsters to the * save register space references in the saved R1 and return. */ case SYS_save_context: { DEBUGASSERT(regs[REG_R1] != 0); memcpy((uint32_t*)regs[REG_R1], regs, XCPTCONTEXT_SIZE); } break; /* R0=SYS_restore_context: This a restore context command: * * void up_fullcontextrestore(uint32_t *restoreregs) __attribute__ ((noreturn)); * * At this point, the following values are saved in context: * * R0 = SYS_restore_context * R1 = restoreregs * * In this case, we simply need to set current_regs to restore register * area referenced in the saved R1. context == current_regs is the normal * exception return. By setting current_regs = context[R1], we force * the return to the saved context referenced in R1. */ case SYS_restore_context: { DEBUGASSERT(regs[REG_R1] != 0); current_regs = (uint32_t*)regs[REG_R1]; } break; /* R0=SYS_switch_context: This a switch context command: * * void up_switchcontext(uint32_t *saveregs, uint32_t *restoreregs); * * At this point, the following values are saved in context: * * R0 = 1 * R1 = saveregs * R2 = restoreregs * * In this case, we do both: We save the context registers to the save * register area reference by the saved contents of R1 and then set * current_regs to to the save register area referenced by the saved * contents of R2. */ case SYS_switch_context: { DEBUGASSERT(regs[REG_R1] != 0 && regs[REG_R2] != 0); memcpy((uint32_t*)regs[REG_R1], regs, XCPTCONTEXT_SIZE); current_regs = (uint32_t*)regs[REG_R2]; } break; /* This is not an architecture-specific system call. If NuttX is built * as a standalone kernel with a system call interface, then all of the * additional system calls must be handled as in the default case. */ default: #ifdef CONFIG_NUTTX_KERNEL dispatch_syscall(regs); #else slldbg("ERROR: Bad SYS call: %d\n", regs[REG_R0]); #endif break; } /* Report what happened. That might difficult in the case of a context switch */ if (regs != current_regs) { svcdbg("SVCall Return: Context switch!\n"); svcdbg(" R0: %08x %08x %08x %08x %08x %08x %08x %08x\n", current_regs[REG_R0], current_regs[REG_R1], current_regs[REG_R2], current_regs[REG_R3], current_regs[REG_R4], current_regs[REG_R5], current_regs[REG_R6], current_regs[REG_R7]); svcdbg(" R8: %08x %08x %08x %08x %08x %08x %08x %08x\n", current_regs[REG_R8], current_regs[REG_R9], current_regs[REG_R10], current_regs[REG_R11], current_regs[REG_R12], current_regs[REG_R13], current_regs[REG_R14], current_regs[REG_R15]); svcdbg(" PSR=%08x\n", current_regs[REG_XPSR]); } else { svcdbg("SVCall Return: %d\n", regs[REG_R0]); } return OK; }
int up_svcall(int irq, FAR void *context) { uint32_t *regs = (uint32_t*)context; uint32_t cmd; DEBUGASSERT(regs && regs == current_regs); cmd = regs[REG_R0]; /* The SVCall software interrupt is called with R0 = system call command * and R1..R7 = variable number of arguments depending on the system call. */ #if defined(CONFIG_DEBUG_SYSCALL) || defined(CONFIG_DEBUG_SVCALL) # ifndef CONFIG_DEBUG_SVCALL if (cmd > SYS_switch_context) # endif { svcdbg("SVCALL Entry: regs: %p cmd: %d\n", regs, cmd); svcdbg(" R0: %08x %08x %08x %08x %08x %08x %08x %08x\n", regs[REG_R0], regs[REG_R1], regs[REG_R2], regs[REG_R3], regs[REG_R4], regs[REG_R5], regs[REG_R6], regs[REG_R7]); svcdbg(" R8: %08x %08x %08x %08x %08x %08x %08x %08x\n", regs[REG_R8], regs[REG_R9], regs[REG_R10], regs[REG_R11], regs[REG_R12], regs[REG_R13], regs[REG_R14], regs[REG_R15]); # ifdef REG_EXC_RETURN svcdbg(" PSR: %08x EXC_RETURN: %08x\n", regs[REG_XPSR], regs[REG_EXC_RETURN]); # else svcdbg(" PSR: %08x\n", regs[REG_XPSR]); # endif } #endif /* Handle the SVCall according to the command in R0 */ switch (cmd) { /* R0=SYS_save_context: This is a save context command: * * int up_saveusercontext(uint32_t *saveregs); * * At this point, the following values are saved in context: * * R0 = SYS_save_context * R1 = saveregs * * In this case, we simply need to copy the current regsters to the * save register space references in the saved R1 and return. */ case SYS_save_context: { DEBUGASSERT(regs[REG_R1] != 0); memcpy((uint32_t*)regs[REG_R1], regs, XCPTCONTEXT_SIZE); #if defined(CONFIG_ARCH_FPU) && !defined(CONFIG_ARMV7M_CMNVECTOR) up_savefpu((uint32_t*)regs[REG_R1]); #endif } break; /* R0=SYS_restore_context: This a restore context command: * * void up_fullcontextrestore(uint32_t *restoreregs) noreturn_function; * * At this point, the following values are saved in context: * * R0 = SYS_restore_context * R1 = restoreregs * * In this case, we simply need to set current_regs to restore register * area referenced in the saved R1. context == current_regs is the normal * exception return. By setting current_regs = context[R1], we force * the return to the saved context referenced in R1. */ case SYS_restore_context: { DEBUGASSERT(regs[REG_R1] != 0); current_regs = (uint32_t*)regs[REG_R1]; } break; /* R0=SYS_switch_context: This a switch context command: * * void up_switchcontext(uint32_t *saveregs, uint32_t *restoreregs); * * At this point, the following values are saved in context: * * R0 = SYS_switch_context * R1 = saveregs * R2 = restoreregs * * In this case, we do both: We save the context registers to the save * register area reference by the saved contents of R1 and then set * current_regs to to the save register area referenced by the saved * contents of R2. */ case SYS_switch_context: { DEBUGASSERT(regs[REG_R1] != 0 && regs[REG_R2] != 0); memcpy((uint32_t*)regs[REG_R1], regs, XCPTCONTEXT_SIZE); #if defined(CONFIG_ARCH_FPU) && !defined(CONFIG_ARMV7M_CMNVECTOR) up_savefpu((uint32_t*)regs[REG_R1]); #endif current_regs = (uint32_t*)regs[REG_R2]; } break; /* R0=SYS_syscall_return: This a syscall return command: * * void up_syscall_return(void); * * At this point, the following values are saved in context: * * R0 = SYS_syscall_return * * We need to restore the saved return address and return in * unprivileged thread mode. */ #ifdef CONFIG_NUTTX_KERNEL case SYS_syscall_return: { struct tcb_s *rtcb = sched_self(); int index = (int)rtcb->xcp.nsyscalls - 1; /* Make sure that there is a saved syscall return address. */ DEBUGASSERT(index >= 0); /* Setup to return to the saved syscall return address in * the original mode. */ regs[REG_PC] = rtcb->xcp.syscall[index].sysreturn; regs[REG_EXC_RETURN] = rtcb->xcp.syscall[index].excreturn; rtcb->xcp.nsyscalls = index; /* The return value must be in R0-R1. dispatch_syscall() temporarily * moved the value for R0 into R2. */ regs[REG_R0] = regs[REG_R2]; } break; #endif /* R0=SYS_task_start: This a user task start * * void up_task_start(main_t taskentry, int argc, FAR char *argv[]) noreturn_function; * * At this point, the following values are saved in context: * * R0 = SYS_task_start * R1 = taskentry * R2 = argc * R3 = argv */ #ifdef CONFIG_NUTTX_KERNEL case SYS_task_start: { /* Set up to return to the user-space task start-up function in * unprivileged mode. */ regs[REG_PC] = (uint32_t)USERSPACE->task_startup; regs[REG_EXC_RETURN] = EXC_RETURN_UNPRIVTHR; /* Change the parameter ordering to match the expectation of struct * userpace_s task_startup: */ regs[REG_R0] = regs[REG_R1]; /* Task entry */ regs[REG_R1] = regs[REG_R2]; /* argc */ regs[REG_R2] = regs[REG_R3]; /* argv */ } break; #endif /* R0=SYS_pthread_start: This a user pthread start * * void up_pthread_start(pthread_startroutine_t entrypt, pthread_addr_t arg) noreturn_function; * * At this point, the following values are saved in context: * * R0 = SYS_pthread_start * R1 = entrypt * R2 = arg */ #if defined(CONFIG_NUTTX_KERNEL) && !defined(CONFIG_DISABLE_PTHREAD) case SYS_pthread_start: { /* Set up to return to the user-space pthread start-up function in * unprivileged mode. */ regs[REG_PC] = (uint32_t)USERSPACE->pthread_startup; regs[REG_EXC_RETURN] = EXC_RETURN_UNPRIVTHR; /* Change the parameter ordering to match the expectation of struct * userpace_s pthread_startup: */ regs[REG_R0] = regs[REG_R1]; /* pthread entry */ regs[REG_R1] = regs[REG_R2]; /* arg */ } break; #endif /* R0=SYS_signal_handler: This a user signal handler callback * * void signal_handler(_sa_sigaction_t sighand, int signo, * FAR siginfo_t *info, FAR void *ucontext); * * At this point, the following values are saved in context: * * R0 = SYS_signal_handler * R1 = sighand * R2 = signo * R3 = info * ucontext (on the stack) */ #if defined(CONFIG_NUTTX_KERNEL) && !defined(CONFIG_DISABLE_SIGNALS) case SYS_signal_handler: { struct tcb_s *rtcb = sched_self(); /* Remember the caller's return address */ DEBUGASSERT(rtcb->xcp.sigreturn == 0); rtcb->xcp.sigreturn = regs[REG_PC]; /* Set up to return to the user-space pthread start-up function in * unprivileged mode. */ regs[REG_PC] = (uint32_t)USERSPACE->signal_handler; regs[REG_EXC_RETURN] = EXC_RETURN_UNPRIVTHR; /* Change the parameter ordering to match the expectation of struct * userpace_s signal_handler. */ regs[REG_R0] = regs[REG_R1]; /* sighand */ regs[REG_R1] = regs[REG_R2]; /* signal */ regs[REG_R2] = regs[REG_R3]; /* info */ /* The last parameter, ucontext, is trickier. The ucontext * parameter will reside at an offset of 4 from the stack pointer. */ regs[REG_R3] = *(uint32_t*)(regs[REG_SP+4]); } break; #endif /* R0=SYS_signal_handler_return: This a user signal handler callback * * void signal_handler_return(void); * * At this point, the following values are saved in context: * * R0 = SYS_signal_handler_return */ #if defined(CONFIG_NUTTX_KERNEL) && !defined(CONFIG_DISABLE_SIGNALS) case SYS_signal_handler_return: { struct tcb_s *rtcb = sched_self(); /* Set up to return to the kernel-mode signal dispatching logic. */ DEBUGASSERT(rtcb->xcp.sigreturn != 0); regs[REG_PC] = rtcb->xcp.sigreturn; regs[REG_EXC_RETURN] = EXC_RETURN_PRIVTHR; rtcb->xcp.sigreturn = 0; } break; #endif /* This is not an architecture-specific system call. If NuttX is built * as a standalone kernel with a system call interface, then all of the * additional system calls must be handled as in the default case. */ default: { #ifdef CONFIG_NUTTX_KERNEL FAR struct tcb_s *rtcb = sched_self(); int index = rtcb->xcp.nsyscalls; /* Verify that the SYS call number is within range */ DEBUGASSERT(cmd >= CONFIG_SYS_RESERVED && cmd < SYS_maxsyscall); /* Make sure that there is a no saved syscall return address. We * cannot yet handle nested system calls. */ DEBUGASSERT(index < CONFIG_SYS_NNEST); /* Setup to return to dispatch_syscall in privileged mode. */ rtcb->xcp.syscall[index].sysreturn = regs[REG_PC]; rtcb->xcp.syscall[index].excreturn = regs[REG_EXC_RETURN]; rtcb->xcp.nsyscalls = index + 1; regs[REG_PC] = (uint32_t)dispatch_syscall; regs[REG_EXC_RETURN] = EXC_RETURN_PRIVTHR; /* Offset R0 to account for the reserved values */ regs[REG_R0] -= CONFIG_SYS_RESERVED; #else slldbg("ERROR: Bad SYS call: %d\n", regs[REG_R0]); #endif } break; } /* Report what happened. That might difficult in the case of a context switch */ #if defined(CONFIG_DEBUG_SYSCALL) || defined(CONFIG_DEBUG_SVCALL) # ifndef CONFIG_DEBUG_SVCALL if (cmd > SYS_switch_context) # else if (regs != current_regs) # endif { svcdbg("SVCall Return:\n"); svcdbg(" R0: %08x %08x %08x %08x %08x %08x %08x %08x\n", current_regs[REG_R0], current_regs[REG_R1], current_regs[REG_R2], current_regs[REG_R3], current_regs[REG_R4], current_regs[REG_R5], current_regs[REG_R6], current_regs[REG_R7]); svcdbg(" R8: %08x %08x %08x %08x %08x %08x %08x %08x\n", current_regs[REG_R8], current_regs[REG_R9], current_regs[REG_R10], current_regs[REG_R11], current_regs[REG_R12], current_regs[REG_R13], current_regs[REG_R14], current_regs[REG_R15]); # ifdef REG_EXC_RETURN svcdbg(" PSR: %08x EXC_RETURN: %08x\n", current_regs[REG_XPSR], current_regs[REG_EXC_RETURN]); # else svcdbg(" PSR: %08x\n", current_regs[REG_XPSR]); # endif } # ifdef CONFIG_DEBUG_SVCALL else { svcdbg("SVCall Return: %d\n", regs[REG_R0]); } # endif #endif return OK; }
static inline void dispatch_syscall(uint32_t *regs) { uint32_t cmd = regs[REG_R0]; FAR _TCB *rtcb = sched_self(); uintptr_t ret = (uintptr_t)ERROR; /* Verify the the SYS call number is within range */ if (cmd < SYS_maxsyscall) { /* Report error and return ERROR */ slldbg("ERROR: Bad SYS call: %d\n", cmd); } else { /* The index into the syscall table is offset by the number of architecture- * specific reserved entries at the beginning of the SYS call number space. */ int index = cmd - CONFIG_SYS_RESERVED; /* Enable interrupts while the SYSCALL executes */ #ifdef SYSCALL_INTERRUPTIBLE irqenable(); #endif /* Call the correct stub for each SYS call, based on the number of parameters */ svcdbg("Calling stub%d at %p\n", index, g_stubloopkup[index].stub0); switch (g_stubnparms[index]) { /* No parameters */ case 0: ret = g_stublookup[index].stub0(); break; /* Number of parameters: 1 */ case 1: ret = g_stublookup[index].stub1(regs[REG_R1]); break; /* Number of parameters: 2 */ case 2: ret = g_stublookup[index].stub2(regs[REG_R1], regs[REG_R2]); break; /* Number of parameters: 3 */ case 3: ret = g_stublookup[index].stub3(regs[REG_R1], regs[REG_R2], regs[REG_R3]); break; /* Number of parameters: 4 */ case 4: ret = g_stublookup[index].stub4(regs[REG_R1], regs[REG_R2], regs[REG_R3], regs[REG_R4]); break; /* Number of parameters: 5 */ case 5: ret = g_stublookup[index].stub5(regs[REG_R1], regs[REG_R2], regs[REG_R3], regs[REG_R4], regs[REG_R5]); break; /* Number of parameters: 6 */ case 6: ret = g_stublookup[index].stub6(regs[REG_R1], regs[REG_R2], regs[REG_R3], regs[REG_R4], regs[REG_R5], regs[REG_R6]); break; /* Unsupported number of paramters. Report error and return ERROR */ default: slldbg("ERROR: Bad SYS call %d number parameters %d\n", cmd, g_stubnparms[index]); break; } #ifdef SYSCALL_INTERRUPTIBLE irqdisable(); #endif } /* Set up the return value. First, check if a context switch occurred. * In this case, regs will no longer be the same as current_regs. In * the case of a context switch, we will have to save the return value * in the TCB where it can be returned later when the task is restarted. */ if (regs != current_regs) { regs = rtcb->xcp.regs; } /* Then return the result in R0 */ svcdbg("Return value regs: %p value: %d\n", regs, ret); regs[REG_R0] = (uint32_t)ret; }
uint32_t *arm_syscall(uint32_t *regs) { uint32_t cmd; #ifdef CONFIG_BUILD_KERNEL uint32_t cpsr; #endif /* Nested interrupts are not supported */ DEBUGASSERT(regs); /* The SYSCALL command is in R0 on entry. Parameters follow in R1..R7 */ cmd = regs[REG_R0]; /* The SVCall software interrupt is called with R0 = system call command * and R1..R7 = variable number of arguments depending on the system call. */ #if defined(CONFIG_DEBUG_SYSCALL) svcdbg("SYSCALL Entry: regs: %p cmd: %d\n", regs, cmd); svcdbg(" R0: %08x %08x %08x %08x %08x %08x %08x %08x\n", regs[REG_R0], regs[REG_R1], regs[REG_R2], regs[REG_R3], regs[REG_R4], regs[REG_R5], regs[REG_R6], regs[REG_R7]); svcdbg(" R8: %08x %08x %08x %08x %08x %08x %08x %08x\n", regs[REG_R8], regs[REG_R9], regs[REG_R10], regs[REG_R11], regs[REG_R12], regs[REG_R13], regs[REG_R14], regs[REG_R15]); svcdbg("CPSR: %08x\n", regs[REG_CPSR]); #endif /* Handle the SVCall according to the command in R0 */ switch (cmd) { /* R0=SYS_syscall_return: This a SYSCALL return command: * * void up_syscall_return(void); * * At this point, the following values are saved in context: * * R0 = SYS_syscall_return * * We need to restore the saved return address and return in * unprivileged thread mode. */ case SYS_syscall_return: { FAR struct tcb_s *rtcb = sched_self(); int index = (int)rtcb->xcp.nsyscalls - 1; /* Make sure that there is a saved SYSCALL return address. */ DEBUGASSERT(index >= 0); /* Setup to return to the saved SYSCALL return address in * the original mode. */ regs[REG_PC] = rtcb->xcp.syscall[index].sysreturn; #ifdef CONFIG_BUILD_KERNEL regs[REG_CPSR] = rtcb->xcp.syscall[index].cpsr; #endif /* The return value must be in R0-R1. dispatch_syscall() temporarily * moved the value for R0 into R2. */ regs[REG_R0] = regs[REG_R2]; #ifdef CONFIG_ARCH_KERNEL_STACK /* If this is the outermost SYSCALL and if there is a saved user stack * pointer, then restore the user stack pointer on this final return to * user code. */ if (index == 0 && rtcb->xcp.ustkptr != NULL) { regs[REG_SP] = (uint32_t)rtcb->xcp.ustkptr; rtcb->xcp.ustkptr = NULL; } #endif /* Save the new SYSCALL nesting level */ rtcb->xcp.nsyscalls = index; } break; /* R0=SYS_context_restore: Restore task context * * void up_fullcontextrestore(uint32_t *restoreregs) noreturn_function; * * At this point, the following values are saved in context: * * R0 = SYS_context_restore * R1 = restoreregs */ #ifdef CONFIG_BUILD_KERNEL case SYS_context_restore: { /* Replace 'regs' with the pointer to the register set in * regs[REG_R1]. On return from the system call, that register * set will determine the restored context. */ regs = (uint32_t *)regs[REG_R1]; DEBUGASSERT(regs); } break; #endif /* R0=SYS_task_start: This a user task start * * void up_task_start(main_t taskentry, int argc, FAR char *argv[]) noreturn_function; * * At this point, the following values are saved in context: * * R0 = SYS_task_start * R1 = taskentry * R2 = argc * R3 = argv */ #ifdef CONFIG_BUILD_KERNEL case SYS_task_start: { /* Set up to return to the user-space _start function in * unprivileged mode. We need: * * R0 = argc * R1 = argv * PC = taskentry * CSPR = user mode */ regs[REG_PC] = regs[REG_R1]; regs[REG_R0] = regs[REG_R2]; regs[REG_R1] = regs[REG_R3]; cpsr = regs[REG_CPSR] & ~PSR_MODE_MASK; regs[REG_CPSR] = cpsr | PSR_MODE_USR; } break; #endif /* R0=SYS_pthread_start: This a user pthread start * * void up_pthread_start(pthread_startroutine_t entrypt, pthread_addr_t arg) noreturn_function; * * At this point, the following values are saved in context: * * R0 = SYS_pthread_start * R1 = entrypt * R2 = arg */ #if defined(CONFIG_BUILD_KERNEL) && !defined(CONFIG_DISABLE_PTHREAD) case SYS_pthread_start: { /* Set up to return to the user-space pthread start-up function in * unprivileged mode. We need: * * R0 = arg * PC = entrypt * CSPR = user mode */ regs[REG_PC] = regs[REG_R1]; regs[REG_R0] = regs[REG_R2]; cpsr = regs[REG_CPSR] & ~PSR_MODE_MASK; regs[REG_CPSR] = cpsr | PSR_MODE_USR; } break; #endif #if defined(CONFIG_BUILD_KERNEL) && !defined(CONFIG_DISABLE_SIGNALS) /* R0=SYS_signal_handler: This a user signal handler callback * * void signal_handler(_sa_sigaction_t sighand, int signo, * FAR siginfo_t *info, FAR void *ucontext); * * At this point, the following values are saved in context: * * R0 = SYS_signal_handler * R1 = sighand * R2 = signo * R3 = info * ucontext (on the stack) */ case SYS_signal_handler: { FAR struct tcb_s *rtcb = sched_self(); /* Remember the caller's return address */ DEBUGASSERT(rtcb->xcp.sigreturn == 0); rtcb->xcp.sigreturn = regs[REG_PC]; /* Set up to return to the user-space pthread start-up function in * unprivileged mode. */ regs[REG_PC] = (uint32_t)ARCH_DATA_RESERVE->ar_sigtramp; cpsr = regs[REG_CPSR] & ~PSR_MODE_MASK; regs[REG_CPSR] = cpsr | PSR_MODE_USR; /* Change the parameter ordering to match the expectation of struct * userpace_s signal_handler. */ regs[REG_R0] = regs[REG_R1]; /* sighand */ regs[REG_R1] = regs[REG_R2]; /* signal */ regs[REG_R2] = regs[REG_R3]; /* info */ /* The last parameter, ucontext, is trickier. The ucontext * parameter will reside at an offset of 4 from the stack pointer. */ regs[REG_R3] = *(uint32_t*)(regs[REG_SP]+4); #ifdef CONFIG_ARCH_KERNEL_STACK /* If we are signalling a user process, then we must be operating * on the kernel stack now. We need to switch back to the user * stack before dispatching the signal handler to the user code. * The existence of an allocated kernel stack is sufficient * information to make this decision. */ if (rtcb->xcp.kstack != NULL) { DEBUGASSERT(rtcb->xcp.kstkptr == NULL && rtcb->xcp.ustkptr != NULL); rtcb->xcp.kstkptr = (FAR uint32_t *)regs[REG_SP]; regs[REG_SP] = (uint32_t)rtcb->xcp.ustkptr; } #endif } break; #endif #if defined(CONFIG_BUILD_KERNEL) && !defined(CONFIG_DISABLE_SIGNALS) /* R0=SYS_signal_handler_return: This a user signal handler callback * * void signal_handler_return(void); * * At this point, the following values are saved in context: * * R0 = SYS_signal_handler_return */ case SYS_signal_handler_return: { FAR struct tcb_s *rtcb = sched_self(); /* Set up to return to the kernel-mode signal dispatching logic. */ DEBUGASSERT(rtcb->xcp.sigreturn != 0); regs[REG_PC] = rtcb->xcp.sigreturn; cpsr = regs[REG_CPSR] & ~PSR_MODE_MASK; regs[REG_CPSR] = cpsr | PSR_MODE_SVC; rtcb->xcp.sigreturn = 0; #ifdef CONFIG_ARCH_KERNEL_STACK /* We must enter here be using the user stack. We need to switch * to back to the kernel user stack before returning to the kernel * mode signal trampoline. */ if (rtcb->xcp.kstack != NULL) { DEBUGASSERT(rtcb->xcp.kstkptr != NULL && (uint32_t)rtcb->xcp.ustkptr == regs[REG_SP]); regs[REG_SP] = (uint32_t)rtcb->xcp.kstkptr; rtcb->xcp.kstkptr = NULL; } #endif } break; #endif /* This is not an architecture-specific system call. If NuttX is built * as a standalone kernel with a system call interface, then all of the * additional system calls must be handled as in the default case. */ default: { #ifdef CONFIG_LIB_SYSCALL FAR struct tcb_s *rtcb = sched_self(); int index = rtcb->xcp.nsyscalls; /* Verify that the SYS call number is within range */ DEBUGASSERT(cmd >= CONFIG_SYS_RESERVED && cmd < SYS_maxsyscall); /* Make sure that there is a no saved SYSCALL return address. We * cannot yet handle nested system calls. */ DEBUGASSERT(index < CONFIG_SYS_NNEST); /* Setup to return to dispatch_syscall in privileged mode. */ rtcb->xcp.syscall[index].sysreturn = regs[REG_PC]; #ifdef CONFIG_BUILD_KERNEL rtcb->xcp.syscall[index].cpsr = regs[REG_CPSR]; #endif regs[REG_PC] = (uint32_t)dispatch_syscall; #ifdef CONFIG_BUILD_KERNEL cpsr = regs[REG_CPSR] & ~PSR_MODE_MASK; regs[REG_CPSR] = cpsr | PSR_MODE_SVC; #endif /* Offset R0 to account for the reserved values */ regs[REG_R0] -= CONFIG_SYS_RESERVED; #else svcdbg("ERROR: Bad SYS call: %d\n", regs[REG_R0]); #endif #ifdef CONFIG_ARCH_KERNEL_STACK /* If this is the first SYSCALL and if there is an allocated * kernel stack, then switch to the kernel stack. */ if (index == 0 && rtcb->xcp.kstack != NULL) { rtcb->xcp.ustkptr = (FAR uint32_t *)regs[REG_SP]; regs[REG_SP] = (uint32_t)rtcb->xcp.kstack + ARCH_KERNEL_STACKSIZE; } #endif /* Save the new SYSCALL nesting level */ rtcb->xcp.nsyscalls = index + 1; } break; } #if defined(CONFIG_DEBUG_SYSCALL) /* Report what happened */ svcdbg("SYSCALL Exit: regs: %p\n", regs); svcdbg(" R0: %08x %08x %08x %08x %08x %08x %08x %08x\n", regs[REG_R0], regs[REG_R1], regs[REG_R2], regs[REG_R3], regs[REG_R4], regs[REG_R5], regs[REG_R6], regs[REG_R7]); svcdbg(" R8: %08x %08x %08x %08x %08x %08x %08x %08x\n", regs[REG_R8], regs[REG_R9], regs[REG_R10], regs[REG_R11], regs[REG_R12], regs[REG_R13], regs[REG_R14], regs[REG_R15]); svcdbg("CPSR: %08x\n", regs[REG_CPSR]); #endif /* Return the last value of curent_regs. This supports context switches * on return from the exception. That capability is only used with the * SYS_context_switch system call. */ return regs; }