/*
 * Locate the physical frame number for the given vaddr using the page table.
 *
 * If the entry is invalid and not on swap, then this is the first reference 
 * to the page and a (simulated) physical frame should be allocated and 
 * initialized (using init_frame).  
 *
 * If the entry is invalid and on swap, then a (simulated) physical frame
 * should be allocated and filled by reading the page data from swap.
 *
 * Counters for hit, miss and reference events should be incremented in
 * this function.
 */
char *find_physpage(addr_t vaddr, char type) {
	pgtbl_entry_t *p=NULL; // pointer to the full page table entry for vaddr
	unsigned idx = PGDIR_INDEX(vaddr); // get index into page directory

	// IMPLEMENTATION NEEDED
	// Use top-level page directory to get pointer to 2nd-level page table
	if (!(pgdir[idx].pde & PG_VALID)){
		pgdir[idx] = init_second_level();
	}

	// Use vaddr to get index into 2nd-level page table and initialize 'p'
	uintptr_t ptr_table = PAGE_MASK & pgdir[idx].pde;
	p = (pgtbl_entry_t*)(ptr_table) + PGTBL_INDEX(vaddr);

	// Check if p is valid or not, on swap or not, and handle appropriately
	
	// Page is present in the memory
	if (p->frame & PG_VALID){
		hit_count++;

	// Page is not present in the memory
	} else {
		miss_count++;
		ref_count++;
		int frame = allocate_frame(p);

		// Page on disk.
		if (p->frame & PG_ONSWAP){
			swap_pagein(frame, p->swap_off);
			p->frame = frame << PAGE_SHIFT;
			p->frame = p->frame | PG_VALID;

		// Page not on disk, first time access the page	
		} else {
			init_frame(frame, vaddr);
			p->frame = frame << PAGE_SHIFT;
			p->frame = p->frame | PG_DIRTY;			
		}
	}

	// Make sure that p is marked valid. Also mark it dirty
	// if the access type indicates that the page will be written to
	p->frame = p->frame | PG_VALID;

	if(type == 'S' || type == 'M'){
		p->frame = p->frame | PG_DIRTY;
	}

	// Call replacement algorithm's ref_fcn for this page
	ref_fcn(p);

	// p is marked referenced.
	p->frame = p->frame | PG_REF;
	
	// Return pointer into (simulated) physical memory at start of frame
	return  &physmem[(p->frame >> PAGE_SHIFT)*SIMPAGESIZE];
}
Пример #2
0
/*
 * lpage_fault - handle a fault on a specific lpage. If the page is
 * not resident, get a physical page from coremap and swap it in.
 * 
 * You do not yet need to distinguish a readonly fault from a write
 * fault. When we implement sharing, there will be a difference.
 *
 * Synchronization: Lock the lpage while checking if it's in memory. 
 * If it's not, unlock the page while allocting space and loading the
 * page in. This only works because lpages are not currently sharable.
 * The page should be locked again as soon as it is loaded, but be 
 * careful of interactions with other locks while modifying the coremap.
 *
 * After it has been loaded, the page must be pinned so that it is not
 * evicted while changes are made to the TLB. It can be unpinned as soon
 * as the TLB is updated. 
 */
int
lpage_fault(struct lpage *lp, struct addrspace *as, int faulttype, vaddr_t va)
{
	
	paddr_t pa = lp->lp_paddr & PAGE_FRAME;
	off_t swap = lp->lp_swapaddr;

	int writable = 0;

	//lock the page
	lpage_lock_and_pin(lp);

	//If the page is not in RAM, load into RAM
	if(pa == INVALID_PADDR) {
		//unlock the page if its not 
		lpage_unlock(lp);

		//allocate a page and pin it
		pa = coremap_allocuser(lp);
		if(pa == INVALID_PADDR) {
			coremap_unpin(lp->lp_paddr & PAGE_FRAME);
			return ENOMEM;
		}

		//assert the page is pinned and lock
		KASSERT(coremap_pageispinned(pa));
		lock_acquire(global_paging_lock);

		//fetch from disk and put in RAM
		swap_pagein(pa, swap);

		//release locks
		lpage_lock(lp);
		lock_release(global_paging_lock);

		//make sure nobody else paged in the page
		KASSERT((lp->lp_paddr & PAGE_FRAME) == INVALID_PADDR);

		//set the pages new phyiscal address
		lp->lp_paddr = pa;
	}

	if(faulttype == VM_FAULT_WRITE || faulttype == VM_FAULT_READONLY) {
		LP_SET(lp, LPF_DIRTY);
		writable = 1;
	}

	//put a mapping into the TLB
	/*if(coremap_pageispinned(lp->lp_paddr) == 0) {
		DEBUG(DB_VM, "Page is unpinned!");
	}*/
	mmu_map(as, va, pa, writable);
	lpage_unlock(lp);

	return 0;
}
Пример #3
0
/*
 * lpage_fault - handle a fault on a specific lpage. If the page is
 * not resident, get a physical page from coremap and swap it in.
 * 
 * You do not yet need to distinguish a readonly fault from a write
 * fault. When we implement sharing, there will be a difference.
 *
 * Synchronization: Lock the lpage while checking if it's in memory. 
 * If it's not, unlock the page while allocting space and loading the
 * page in. This only works because lpages are not currently sharable.
 * The page should be locked again as soon as it is loaded, but be 
 * careful of interactions with other locks while modifying the coremap.
 *
 * After it has been loaded, the page must be pinned so that it is not
 * evicted while changes are made to the TLB. It can be unpinned as soon
 * as the TLB is updated. 
 */
int
lpage_fault(struct lpage *lp, struct addrspace *as, int faulttype, vaddr_t va)
{
	paddr_t pa, swa;

	/* Pin the physical page and lock the lpage. */
	lpage_lock_and_pin(lp);
	// Get the physical address
	pa = lp->lp_paddr & PAGE_FRAME;

	// If the page is not in memeory, get it from swap
	if (pa == INVALID_PADDR) {
			swa = lp->lp_swapaddr;
			lpage_unlock(lp);
			// Have a page frame allocated
			pa = coremap_allocuser(lp);
			if (pa == INVALID_PADDR) {
				coremap_unpin(lp->lp_paddr & PAGE_FRAME);
				lpage_destroy(lp);
				return ENOMEM;
			}
			KASSERT(coremap_pageispinned(pa));
			lock_acquire(global_paging_lock);
			// Add page contents from swap to physical memory
			swap_pagein(pa, swa);
			lpage_lock(lp);
			lock_release(global_paging_lock);
			/* Assert nobody else did the pagein. */
			KASSERT((lp->lp_paddr & PAGE_FRAME) == INVALID_PADDR);
			lp->lp_paddr = pa;
	}

	//Update TLB
	switch (faulttype){
	case VM_FAULT_READONLY:
		mmu_map(as, va, pa, 0);
		break;
	case VM_FAULT_READ:
	case VM_FAULT_WRITE:
		// Set it to dirty
		LP_SET(lp, LPF_DIRTY);
		mmu_map(as, va, pa, 1);
	}

	// Already unpinned in mmu_map
	lpage_unlock(lp);

	return 0;
}
Пример #4
0
/*
 * Locate the physical frame number for the given vaddr using the page table.
 *
 * If the entry is invalid and not on swap, then this is the first reference 
 * to the page and a (simulated) physical frame should be allocated and 
 * initialized (using init_frame).  
 *
 * If the entry is invalid and on swap, then a (simulated) physical frame
 * should be allocated and filled by reading the page data from swap.
 *
 * Counters for hit, miss and reference events should be incremented in
 * this function.
 */
char *find_physpage(addr_t vaddr, char type) {

	pgtbl_entry_t *p=NULL; // pointer to the full page table entry for vaddr
	unsigned idx = PGDIR_INDEX(vaddr); // get index into page directory

	// IMPLEMENTATION NEEDED
	// Use top-level page directory to get pointer to 2nd-level page table

	// Check if it's valid
	unsigned int valid_pde = pgdir[idx].pde & PG_VALID;

	// Not Valid, initialize a 2nd pagetable
	if (!valid_pde) {

		pgdir[idx] = init_second_level();

	}

	// Use vaddr to get index into 2nd-level page table and initialize 'p'
	unsigned pgtbl_index =  PGTBL_INDEX(vaddr);
	p = (pgtbl_entry_t *) (pgdir[idx].pde & PAGE_MASK);
	p = p + pgtbl_index;

	// Check if p is valid or not, on swap or not, and handle appropriately
	// Find the valid bit and the on-swap bit
	unsigned int valid = p->frame & PG_VALID;
	unsigned int on_swap = p->frame & PG_ONSWAP;

	// Check if it's valid
	if (!valid) {

		// Allocate a frame for p
		int frame = allocate_frame(p);

		// Update fields for OPT
		coremap[frame].pgtbl_idx = (int) pgtbl_index;
		coremap[frame].pgdir_idx = (int) idx;

		// On swap
		if (on_swap) {
			// Read the page from swap
			int success = swap_pagein(frame, p->swap_off);
			assert(success == 0);

		}
 
		// Not on swap
		if (!on_swap) { 
			// Initialize the frame
			init_frame(frame, vaddr);

			// Mark it as dirty
			p->frame = p->frame | PG_DIRTY;

		}

		// Not Valid, so increment miss
		miss_count++;
	
	} 


	// Make sure that p is marked valid and referenced. Also mark it
	// dirty if the access type indicates that the page will be written to.

	// Mark p as valid and referenced
	p->frame = p->frame | PG_VALID;
	p->frame = p->frame | PG_REF;

	unsigned int check =  p->frame & PG_VALID;
	assert(check);

	// Check the access type
	if ((type == 'S') || (type == 'M')) {

		// Set the dirty bit
		p->frame = p->frame | PG_DIRTY;

	} 

	// Increment ref, hit
	if (valid) {
		hit_count++;
	}

	ref_count++;


	// Call replacement algorithm's ref_fcn for this page
	ref_fcn(p);

	// Return pointer into (simulated) physical memory at start of frame
	return  &physmem[(p->frame >> PAGE_SHIFT)*SIMPAGESIZE];
}
Пример #5
0
// Copies Logical Page from fromlp to tolp.
int
lp_copy (struct lpage *fromlp, struct lpage **tolp)
{

	struct lpage *newlp = NULL;
	paddr_t frompa; paddr_t topa;
	off_t swapaddr;
	int result;

	DEBUG(DB_VM, "LPage: lp_copy\n");

	lock_acquire(fromlp -> lock);

	frompa = fromlp -> paddr & PAGE_FRAME;
	if (frompa == INVALID_PADDR) {

		swapaddr = fromlp -> swapaddr;
		lock_release(fromlp -> lock);

		frompa = cm_allocuserpage(fromlp);
		if (frompa == INVALID_PADDR) {
			return (ENOMEM);
		}

		KASSERT(cm_pageispinned(frompa));

		lock_acquire(paging_lock);
		swap_pagein(frompa, swapaddr);
		lock_acquire(fromlp -> lock);
		lock_release(paging_lock);

		KASSERT((fromlp -> paddr & PAGE_FRAME) == INVALID_PADDR);

		fromlp -> paddr = frompa | LPF_LOCKED;

	}
	else {
		cm_pin(frompa);
	}

	KASSERT(cm_pageispinned(frompa));

	result = lp_setup(&newlp, &topa);
	if (result) {
		cm_unpin(frompa);
		lock_release(fromlp -> lock);
		return (result);
	}

	KASSERT(cm_pageispinned(topa));
	KASSERT(cm_pageispinned(frompa));
	cm_copypage(frompa, topa);
	cm_unpin(topa);
	cm_unpin(frompa);

	lock_release(fromlp -> lock);
	lock_release(newlp -> lock);

	*tolp = newlp;
	return (0);

}
Пример #6
0
/*
 * lpage_fault - handle a fault on a specific lpage. If the page is
 * not resident, get a physical page from coremap and swap it in.
 * 
 * You do not yet need to distinguish a readonly fault from a write
 * fault. When we implement sharing, there will be a difference.
 *
 * Synchronization: Lock the lpage while checking if it's in memory. 
 * If it's not, unlock the page while allocating space and loading the
 * page in. This only works because lpages are not currently sharable.
 * The page should be locked again as soon as it is loaded, but be 
 * careful of interactions with other locks while modifying the coremap.
 *
 * After it has been loaded, the page must be pinned so that it is not
 * evicted while changes are made to the TLB. It can be unpinned as soon
 * as the TLB is updated. 
 */
int
lpage_fault(struct lpage *lp, struct addrspace *as, int faulttype, vaddr_t va)
{
	KASSERT(lp != NULL); // kernel pages never get paged out, thus never fault

	lock_acquire(global_paging_lock);
	if ((lp->lp_paddr & PAGE_FRAME) != INVALID_PADDR) {
		lpage_lock_and_pin(lp);
	} else {
		lpage_lock(lp);
	}
	lock_release(global_paging_lock);

	KASSERT(lp->lp_swapaddr != INVALID_SWAPADDR);

	paddr_t pa = lp->lp_paddr;
	int writable; // 0 if page is read-only, 1 if page is writable

    /* case 1 - minor fault: the frame is still in memory */
	if ((pa & PAGE_FRAME) != INVALID_PADDR) {

		/* make sure it's a minor fault */
		KASSERT(pa != INVALID_PADDR);

		/* Setting the TLB entry's dirty bit */
		writable = (faulttype != VM_FAULT_READ);

		/* update stats */
		spinlock_acquire(&stats_spinlock);
		ct_minfaults++;
		DEBUG(DB_VM, "\nlpage_fault: minor faults = %d.", ct_minfaults);
		spinlock_release(&stats_spinlock);

	} else {
		/* case 2 - major fault: the frame was swapped out to disk */

		/* make sure it is a major fault */
		KASSERT(pa == INVALID_PADDR);

		/* allocate a new frame */
		lpage_unlock(lp); // must not hold lpage locks before entering coremap
		pa = coremap_allocuser(lp); // do evict if needed, also pin coremap
		if ((pa & PAGE_FRAME)== INVALID_PADDR) {
			DEBUG(DB_VM, "lpage_fault: ENOMEM: va=0x%x\n", va);
			return ENOMEM;
		}
		KASSERT(coremap_pageispinned(pa));

		/* retrieving the content from disk */
		lock_acquire(global_paging_lock); // because swap_pagein needs it
		swap_pagein((pa & PAGE_FRAME), lp->lp_swapaddr); // coremap is already pinned above
		lpage_lock(lp);
		lock_release(global_paging_lock);

		/* assert that nobody else did the pagein */
		KASSERT((lp->lp_paddr & PAGE_FRAME) == INVALID_PADDR);

		/* now update PTE with new PFN */
		lp->lp_paddr = pa ; // page is clean

		/* Setting the TLB entry's dirty bit */
		writable = 0; // this way we can detect the first write to a page

		/* update stats */
		spinlock_acquire(&stats_spinlock);
		ct_majfaults++;
		DEBUG(DB_VM, "\nlpage_fault: MAJOR faults = %d", ct_majfaults);
		spinlock_release(&stats_spinlock);
	}

	/* check preconditions before update TLB/PTE */
	KASSERT(coremap_pageispinned(lp->lp_paddr));
	KASSERT(spinlock_do_i_hold(&lp->lp_spinlock));

	/* PTE entry is dirty if the instruction is a write */
	if (writable) {
		LP_SET(lp, LPF_DIRTY);
	}

	/* Put the new TLB entry into the TLB */
	KASSERT(coremap_pageispinned(lp->lp_paddr)); // done in both cases of above IF clause
	mmu_map(as, va, lp->lp_paddr, writable); // update TLB and unpin coremap
	lpage_unlock(lp);

	return 0;
}
Пример #7
0
/*
 * lpage_copy: create a new lpage and copy data from another lpage.
 *
 * The synchronization for this is kind of unpleasant. We do it like
 * this:
 *
 *      1. Create newlp.
 *      2. Materialize a page for newlp, so it's locked and pinned.
 *      3. Lock and pin oldlp.
 *      4. Extract the physical address and swap address.
 *      5. If oldlp wasn't present,
 *      5a.    Unlock oldlp.
 *      5b.    Page in.
 *      5c.    This pins the page in the coremap.
 *      5d.    Leave the page pinned and relock oldlp.
 *      5e.    Assert nobody else paged the page in.
 *      6. Copy.
 *      7. Unlock the lpages first, so we can enter the coremap.
 *      8. Unpin the physical pages.
 *      
 */
int
lpage_copy(struct lpage *oldlp, struct lpage **lpret)
{
	struct lpage *newlp;
	paddr_t newpa, oldpa;
	off_t swa;
	int result;

	result = lpage_materialize(&newlp, &newpa);
	if (result) {
		return result;
	}
	KASSERT(coremap_pageispinned(newpa));

	/* Pin the physical page and lock the lpage. */
	lpage_lock_and_pin(oldlp);
	oldpa = oldlp->lp_paddr & PAGE_FRAME;

	/*
	 * If there is no physical page, we allocate one, which pins
	 * it, and then (re)lock the lpage. Since we are single-
	 * threaded (if we weren't, we'd hold the address space lock
	 * to exclude sibling threads) nobody else should have paged
	 * the page in behind our back.
	 */
	if (oldpa == INVALID_PADDR) {
		/*
		 * XXX this is mostly copied from lpage_fault
		 */
		swa = oldlp->lp_swapaddr;
		lpage_unlock(oldlp);
		oldpa = coremap_allocuser(oldlp);
		if (oldpa == INVALID_PADDR) {
			coremap_unpin(newlp->lp_paddr & PAGE_FRAME);
			lpage_destroy(newlp);
			return ENOMEM;
		}
		KASSERT(coremap_pageispinned(oldpa));
		lock_acquire(global_paging_lock);
		swap_pagein(oldpa, swa);
		lpage_lock(oldlp);
		lock_release(global_paging_lock);
		/* Assert nobody else did the pagein. */
		KASSERT((oldlp->lp_paddr & PAGE_FRAME) == INVALID_PADDR);
		oldlp->lp_paddr = oldpa;
	}

	KASSERT(coremap_pageispinned(oldpa));

	coremap_copy_page(oldpa, newpa);

	KASSERT(LP_ISDIRTY(newlp));

	lpage_unlock(oldlp);
	lpage_unlock(newlp);

	coremap_unpin(newpa);
	coremap_unpin(oldpa);

	*lpret = newlp;
	return 0;
}