ShatterEffect(NewtonWorld* const world, NewtonMesh* const mesh, int interiorMaterial)
		:dList<ShatterAtom>(), m_world (world)
	{
		// first we populate the bounding Box area with few random point to get some interior subdivisions.
		// the subdivision are local to the point placement, by placing these points visual ally with a 3d tool
		// and have precise control of how the debris are created.
		// the number of pieces is equal to the number of point inside the Mesh plus the number of point on the mesh 
		dVector size;
		dMatrix matrix(GetIdentityMatrix()); 
		NewtonMeshCalculateOOBB(mesh, &matrix[0][0], &size.m_x, &size.m_y, &size.m_z);

		// pepper the inside of the BBox box of the mesh with random points
		int count = 0;
		dVector points[NUMBER_OF_ITERNAL_PARTS + 1];
		while (count < NUMBER_OF_ITERNAL_PARTS) {			
			dFloat x = RandomVariable(size.m_x);
			dFloat y = RandomVariable(size.m_y);
			dFloat z = RandomVariable(size.m_z);
			if ((x <= size.m_x) && (x >= -size.m_x) && (y <= size.m_y) && (y >= -size.m_y) && (z <= size.m_z) && (z >= -size.m_z)){
				points[count] = dVector (x, y, z);
				count ++;
			}
		} 

		// create a texture matrix, for applying the material's UV to all internal faces
		dMatrix textureMatrix (GetIdentityMatrix());
		textureMatrix[0][0] = 1.0f / size.m_x;
		textureMatrix[1][1] = 1.0f / size.m_y;

		// now we call create we decompose the mesh into several convex pieces 
		NewtonMesh* const debriMeshPieces = NewtonMeshVoronoiDecomposition (mesh, count, sizeof (dVector), &points[0].m_x, interiorMaterial, &textureMatrix[0][0]);


		// Get the volume of the original mesh
		NewtonCollision* const collision = NewtonCreateConvexHullFromMesh (m_world, mesh, 0.0f, 0);
		dFloat volume = NewtonConvexCollisionCalculateVolume (collision);
		NewtonReleaseCollision(m_world, collision);

		// now we iterate over each pieces and for each one we create a visual entity and a rigid body
		NewtonMesh* nextDebri;
		for (NewtonMesh* debri = NewtonMeshCreateFirstLayer (debriMeshPieces); debri; debri = nextDebri) {
			nextDebri = NewtonMeshCreateNextLayer (debriMeshPieces, debri); 

			NewtonCollision* const collision = NewtonCreateConvexHullFromMesh (m_world, debri, 0.0f, 0);
			if (collision) {
				ShatterAtom& atom = Append()->GetInfo();
				atom.m_mesh = new DemoMesh(debri);
				atom.m_collision = collision;
				NewtonConvexCollisionCalculateInertialMatrix (atom.m_collision, &atom.m_momentOfInirtia[0], &atom.m_centerOfMass[0]);	
				dFloat debriVolume = NewtonConvexCollisionCalculateVolume (atom.m_collision);
				atom.m_massFraction = debriVolume / volume;
			}
			NewtonMeshDestroy(debri);
		}

		NewtonMeshDestroy(debriMeshPieces);
	}
	DelaunayEffect(NewtonWorld* const world, NewtonMesh* const mesh, int interiorMaterial)
		:FractureEffect(world)
	{
		// first we populate the bounding Box area with few random point to get some interior subdivisions.
		// the subdivision are local to the point placement, by placing these points visual ally with a 3d tool
		// and have precise control of how the debris are created.
		// the number of pieces is equal to the number of point inside the Mesh plus the number of point on the mesh 
		dVector size(0.0f);
		dMatrix matrix(dGetIdentityMatrix());
		NewtonMeshCalculateOOBB(mesh, &matrix[0][0], &size.m_x, &size.m_y, &size.m_z);

		// create a texture matrix, for applying the material's UV to all internal faces
		dMatrix textureMatrix(dGetIdentityMatrix());
		textureMatrix[0][0] = 1.0f / size.m_x;
		textureMatrix[1][1] = 1.0f / size.m_y;

		// Get the volume of the original mesh
		NewtonCollision* const collision1 = NewtonCreateConvexHullFromMesh(m_world, mesh, 0.0f, 0);
		dFloat volume = NewtonConvexCollisionCalculateVolume(collision1);
		NewtonDestroyCollision(collision1);

		// now we call create we decompose the mesh into several convex pieces 
		NewtonMesh* const debriMeshPieces = NewtonMeshCreateTetrahedraIsoSurface(mesh);
		dAssert(debriMeshPieces);

		// now we iterate over each pieces and for each one we create a visual entity and a rigid body
		NewtonMesh* nextDebri;
		for (NewtonMesh* debri = NewtonMeshCreateFirstLayer(debriMeshPieces); debri; debri = nextDebri) {
			// get next segment piece
			nextDebri = NewtonMeshCreateNextLayer(debriMeshPieces, debri);
			
			//clip the Delaunay convexes against the mesh, make a convex hull collision shape
			NewtonCollision* const collision = NewtonCreateConvexHullFromMesh(m_world, debri, 0.0f, 0);
			if (collision) {
				// we have a piece which has a convex collision  representation, add that to the list
				FractureAtom& atom = Append()->GetInfo();
				atom.m_mesh = new DemoMesh(debri);
				atom.m_collision = collision;
				NewtonConvexCollisionCalculateInertialMatrix(atom.m_collision, &atom.m_momentOfInirtia[0], &atom.m_centerOfMass[0]);
				dFloat debriVolume = NewtonConvexCollisionCalculateVolume(atom.m_collision);
				atom.m_massFraction = debriVolume / volume;
			}
			NewtonMeshDestroy(debri);
		}

		NewtonMeshDestroy(debriMeshPieces);
	}
static void CreateSimpleVoronoiShatter (DemoEntityManager* const scene)
{
	// create a collision primitive
//	dVector size (2.0f, 2.0f, 2.0f);
//	dVector size = dVector (10.0f, 0.5f, 10.0f, 0.0f);
	dVector size = dVector (5.0f, 5.0f, 5.0f, 0.0f);
	NewtonWorld* const world = scene->GetNewton();

//	NewtonCollision* const collision = CreateConvexCollision (world, GetIdentityMatrix(), size, _BOX_PRIMITIVE, 0);
	NewtonCollision* const collision = CreateConvexCollision (world, GetIdentityMatrix(), size, _CAPSULE_PRIMITIVE, 0);
//	NewtonCollision* const collision = CreateConvexCollision (world, GetIdentityMatrix(), size, _SPHERE_PRIMITIVE, 0);
//	NewtonCollision* const collision = CreateConvexCollision (world, GetIdentityMatrix(), size, _REGULAR_CONVEX_HULL_PRIMITIVE, 0);
//	NewtonCollision* const collision = CreateConvexCollision (world, GetIdentityMatrix(), size, _RANDOM_CONVEX_HULL_PRIMITIVE, 0);
	
	

	// create a newton mesh from the collision primitive
	NewtonMesh* const mesh = NewtonMeshCreateFromCollision(collision);

	// apply a simple Box Mapping
	int tex0 = LoadTexture("reljef.tga");
	NewtonMeshApplyBoxMapping(mesh, tex0, tex0, tex0);

	// pepper the bing box of the mesh with random points
	dVector points[NUMBER_OF_ITERNAL_PARTS + 100];
	int count = 0;

	while (count < NUMBER_OF_ITERNAL_PARTS) {
		dFloat x = RandomVariable(size.m_x);
		dFloat y = RandomVariable(size.m_y);
		dFloat z = RandomVariable(size.m_z);
		if ((x <= size.m_x) && (x >= -size.m_x) && (y <= size.m_y) && (y >= -size.m_y) && (z <= size.m_z) && (z >= -size.m_z)){
			points[count] = dVector (x, y, z);
			count ++;
		}
	} 

count = 4;

	// Create the array of convex pieces from the mesh
	int interior = LoadTexture("KAMEN-stup.tga");
//	int interior = LoadTexture("camo.tga");
	dMatrix textureMatrix (GetIdentityMatrix());
	textureMatrix[0][0] = 1.0f / size.m_x;
	textureMatrix[1][1] = 1.0f / size.m_y;
	NewtonMesh* const convexParts = NewtonMeshVoronoiDecomposition (mesh, count, sizeof (dVector), &points[0].m_x, interior, &textureMatrix[0][0]);
//	NewtonMesh* const convexParts = NewtonMeshConvexDecomposition (mesh, 1000000);

#if 1
dScene xxxx(world);
dScene::dTreeNode* const modelNode = xxxx.CreateSceneNode(xxxx.GetRootNode());
dScene::dTreeNode* const meshNode = xxxx.CreateMeshNode(modelNode);
dMeshNodeInfo* const modelMesh = (dMeshNodeInfo*)xxxx.GetInfoFromNode(meshNode);
modelMesh->ReplaceMesh (convexParts);
xxxx.Serialize("../../../media/xxx.ngd");
#endif

	DemoEntity* const entity = new DemoEntity(NULL);
	entity->SetMatrix(*scene, dQuaternion(), dVector (0, 10, 0, 0));
	entity->InterpolateMatrix (*scene, 1.0f);
	
	
	scene->Append (entity);
	DemoMesh* const mesh1 = new DemoMesh(convexParts);
	entity->SetMesh(mesh1);
	mesh1->Release();

/*
DemoEntity* const entity2 = new DemoEntity(NULL);
entity2->SetMatrix(*scene, dQuaternion(), dVector (0, 10, 0, 0));
entity2->InterpolateMatrix (*scene, 1.0f);

scene->Append (entity2);
DemoMesh* const mesh2 = new DemoMesh(mesh);
entity2->SetMesh(mesh2);
mesh2->Release();
*/

	// make sure the assets are released before leaving the function
	if (convexParts) {
		NewtonMeshDestroy (convexParts);
	}
	NewtonMeshDestroy (mesh);
	NewtonReleaseCollision(world, collision);
}
static void AddStructuredFractured (DemoEntityManager* const scene, const dVector& origin, int materialID, const char* const assetName)
{
	// create the shape and visual mesh as a common data to be re used
	NewtonWorld* const world = scene->GetNewton();


#if 0
	// load the mesh asset
	DemoEntity entity(GetIdentityMatrix(), NULL);	
	entity.LoadNGD_mesh (assetName, world);
	DemoMesh____* const mesh = entity.GetMesh();
	dAssert (mesh);

	// convert the mesh to a newtonMesh
	NewtonMesh* const solidMesh = mesh->CreateNewtonMesh (world, entity.GetMeshMatrix() * entity.GetCurrentMatrix());
#else
	int externalMaterial = LoadTexture("wood_0.tga");
	NewtonCollision* const collision = CreateConvexCollision (world, dGetIdentityMatrix(), dVector (3.0f, 3.0f, 3.0f, 0.0), _BOX_PRIMITIVE, 0);
	NewtonMesh* const solidMesh = NewtonMeshCreateFromCollision(collision);
	NewtonDestroyCollision(collision);
	//NewtonMeshTriangulate(solidMesh);
	NewtonMeshApplyBoxMapping (solidMesh, externalMaterial, externalMaterial, externalMaterial);
#endif


	// create a random point cloud
	dVector points[MAX_POINT_CLOUD_SIZE];
	int pointCount = MakeRandomPoisonPointCloud (solidMesh, points);
//	int pointCount = MakeRandomGuassianPointCloud (solidMesh, points, MAX_POINT_CLOUD_SIZE);

	// create and interiors material for texturing the fractured pieces
	//int internalMaterial = LoadTexture("KAMEN-stup.tga");
	int internalMaterial = LoadTexture("concreteBrick.tga");

	// crate a texture matrix for uv mapping of fractured pieces
	dMatrix textureMatrix (dGetIdentityMatrix());
	textureMatrix[0][0] = 1.0f / 2.0f;
	textureMatrix[1][1] = 1.0f / 2.0f;

	/// create the fractured collision and mesh
	int debreePhysMaterial = NewtonMaterialGetDefaultGroupID(world);
	NewtonCollision* structuredFracturedCollision = NewtonCreateFracturedCompoundCollision (world, solidMesh, 0, debreePhysMaterial, pointCount, &points[0][0], sizeof (dVector), internalMaterial, &textureMatrix[0][0],
																							OnReconstructMainMeshCallBack, OnEmitFracturedCompound, OnEmitFracturedChunk);

// uncomment this to test serialization
#if 0
	FILE* file = fopen ("serialize.bin", "wb");
	NewtonCollisionSerialize (world, structuredFracturedCollision, DemoEntityManager::SerializeFile, file);
	NewtonDestroyCollision (structuredFracturedCollision);
	fclose (file);

	file = fopen ("serialize.bin", "rb");
	structuredFracturedCollision = NewtonCreateCollisionFromSerialization (world, DemoEntityManager::DeserializeFile, file);
	NewtonFracturedCompoundSetCallbacks (structuredFracturedCollision, OnReconstructMainMeshCallBack, OnEmitFracturedCompound, OnEmitFracturedChunk);
	fclose (file);
#endif	

#if 0
	// test the interface
	dTree<void*, void*> detachableNodes;
	NewtonCompoundCollisionBeginAddRemove(structuredFracturedCollision);	

	// remove all chunk that can be detached for the first layer
	for (void* node = NewtonCompoundCollisionGetFirstNode(structuredFracturedCollision); node; node = NewtonCompoundCollisionGetNextNode(structuredFracturedCollision, node)) { 
		if (NewtonFracturedCompoundIsNodeFreeToDetach (structuredFracturedCollision, node)) {
			detachableNodes.Insert(node, node);
		}

		// remove any node that can be deched fro the secund layer, this codul; be reusive
		void* neighbors[32];
		int count = NewtonFracturedCompoundNeighborNodeList (structuredFracturedCollision, node, neighbors, sizeof (neighbors) / sizeof (neighbors[0]));
		for (int i = 0; i < count; i ++ ) {
			if (NewtonFracturedCompoundIsNodeFreeToDetach (structuredFracturedCollision, neighbors[i])) {
				detachableNodes.Insert(node, node);
			}
		}
	}

	// now delete the actual nodes
	dTree<void*, void*>::Iterator iter (detachableNodes) ;
	for (iter.Begin(); iter; iter ++) { 
		void* const node = iter.GetNode()->GetInfo(); 
		NewtonCompoundCollisionRemoveSubCollision (structuredFracturedCollision, node);
	}
	NewtonCompoundCollisionEndAddRemove(structuredFracturedCollision);	
#endif
	
#if 1
	dVector plane (0.0f, 1.0f, 0.0f, 0.0f);
	NewtonCollision* const crack = NewtonFracturedCompoundPlaneClip (structuredFracturedCollision, &plane[0]);
	if (crack) {
		NewtonDestroyCollision (structuredFracturedCollision);
	}
#endif




    dVector com(0.0f);
    dVector inertia(0.0f);
    NewtonConvexCollisionCalculateInertialMatrix (structuredFracturedCollision, &inertia[0], &com[0]);	

    //dFloat mass = 10.0f;
    //int materialId = 0;
    //create the rigid body
	dMatrix matrix (dGetIdentityMatrix());
	matrix.m_posit = origin;
	matrix.m_posit.m_y = 20.0;
	matrix.m_posit.m_w = 1.0f;
    NewtonBody* const rigidBody = NewtonCreateDynamicBody (world, structuredFracturedCollision, &matrix[0][0]);

	// set the mass and center of mass
	dFloat density = 1.0f;
	dFloat mass = density * NewtonConvexCollisionCalculateVolume (structuredFracturedCollision);
	NewtonBodySetMassProperties (rigidBody, mass, structuredFracturedCollision);


	// set the transform call back function
	NewtonBodySetTransformCallback (rigidBody, DemoEntity::TransformCallback);

	// set the force and torque call back function
	NewtonBodySetForceAndTorqueCallback (rigidBody, PhysicsApplyGravityForce);

	// create the entity and visual mesh and attach to the body as user data
	CreateVisualEntity (scene, rigidBody);

    // assign the wood id
//    NewtonBodySetMaterialGroupID (rigidBody, materialId);

    // set a destructor for this rigid body
//    NewtonBodySetDestructorCallback (rigidBody, PhysicsBodyDestructor);

	// release the interior texture
//	ReleaseTexture (internalMaterial);

	// delete the solid mesh since it no longed needed
	NewtonMeshDestroy (solidMesh);

	// destroy the fracture collision
	NewtonDestroyCollision (structuredFracturedCollision);
}
Пример #5
0
void KisOpenGLCanvas2::drawCheckers()
{
    if (!d->checkerShader) {
        return;
    }

    KisCoordinatesConverter *converter = coordinatesConverter();
    QTransform textureTransform;
    QTransform modelTransform;
    QRectF textureRect;
    QRectF modelRect;

    QRectF viewportRect = !d->wrapAroundMode ?
                converter->imageRectInViewportPixels() :
                converter->widgetToViewport(this->rect());

    converter->getOpenGLCheckersInfo(viewportRect,
                                     &textureTransform, &modelTransform, &textureRect, &modelRect, d->scrollCheckers);

    textureTransform *= QTransform::fromScale(d->checkSizeScale / KisOpenGLImageTextures::BACKGROUND_TEXTURE_SIZE,
                                              d->checkSizeScale / KisOpenGLImageTextures::BACKGROUND_TEXTURE_SIZE);

    if (!d->checkerShader->bind()) {
        qWarning() << "Could not bind checker shader";
        return;
    }

    QMatrix4x4 projectionMatrix;
    projectionMatrix.setToIdentity();
    projectionMatrix.ortho(0, width(), height(), 0, NEAR_VAL, FAR_VAL);

    // Set view/projection matrices
    QMatrix4x4 modelMatrix(modelTransform);
    modelMatrix.optimize();
    modelMatrix = projectionMatrix * modelMatrix;
    d->checkerShader->setUniformValue(d->checkerShader->location(Uniform::ModelViewProjection), modelMatrix);

    QMatrix4x4 textureMatrix(textureTransform);
    d->checkerShader->setUniformValue(d->checkerShader->location(Uniform::TextureMatrix), textureMatrix);

    //Setup the geometry for rendering
    if (KisOpenGL::hasOpenGL3()) {
        rectToVertices(d->vertices, modelRect);

        d->quadBuffers[0].bind();
        d->quadBuffers[0].write(0, d->vertices, 3 * 6 * sizeof(float));

        rectToTexCoords(d->texCoords, textureRect);
        d->quadBuffers[1].bind();
        d->quadBuffers[1].write(0, d->texCoords, 2 * 6 * sizeof(float));
    }
    else {
        rectToVertices(d->vertices, modelRect);
        d->checkerShader->enableAttributeArray(PROGRAM_VERTEX_ATTRIBUTE);
        d->checkerShader->setAttributeArray(PROGRAM_VERTEX_ATTRIBUTE, d->vertices);

        rectToTexCoords(d->texCoords, textureRect);
        d->checkerShader->enableAttributeArray(PROGRAM_TEXCOORD_ATTRIBUTE);
        d->checkerShader->setAttributeArray(PROGRAM_TEXCOORD_ATTRIBUTE, d->texCoords);
    }

    // render checkers
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, d->openGLImageTextures->checkerTexture());

    glDrawArrays(GL_TRIANGLES, 0, 6);

    glBindTexture(GL_TEXTURE_2D, 0);
    d->checkerShader->release();
    glBindBuffer(GL_ARRAY_BUFFER, 0);
}
	VoronoidEffect(NewtonWorld* const world, NewtonMesh* const mesh, int interiorMaterial)
		:FractureEffect(world)
	{
		// first we populate the bounding Box area with few random point to get some interior subdivisions.
		// the subdivision are local to the point placement, by placing these points visual ally with a 3d tool
		// and have precise control of how the debris are created.
		// the number of pieces is equal to the number of point inside the Mesh plus the number of point on the mesh 
		dVector size(0.0f);
		dMatrix matrix(dGetIdentityMatrix());
		NewtonMeshCalculateOOBB(mesh, &matrix[0][0], &size.m_x, &size.m_y, &size.m_z);

		dVector points[NUMBER_OF_INTERNAL_PARTS + 8];

		int count = 0;
		// pepper the inside of the BBox box of the mesh with random points
		while (count < NUMBER_OF_INTERNAL_PARTS) {
			dFloat x = dGaussianRandom (size.m_x);
			dFloat y = dGaussianRandom (size.m_y);
			dFloat z = dGaussianRandom (size.m_z);
			if ((x <= size.m_x) && (x >= -size.m_x) && (y <= size.m_y) && (y >= -size.m_y) && (z <= size.m_z) && (z >= -size.m_z)) {
				points[count] = dVector(x, y, z);
				count++;
			}
		}

		// add the bounding box as a safeguard area
		points[count + 0] = dVector(size.m_x, size.m_y, size.m_z, 0.0f);
		points[count + 1] = dVector(size.m_x, size.m_y, -size.m_z, 0.0f);
		points[count + 2] = dVector(size.m_x, -size.m_y, size.m_z, 0.0f);
		points[count + 3] = dVector(size.m_x, -size.m_y, -size.m_z, 0.0f);
		points[count + 4] = dVector(-size.m_x, size.m_y, size.m_z, 0.0f);
		points[count + 5] = dVector(-size.m_x, size.m_y, -size.m_z, 0.0f);
		points[count + 6] = dVector(-size.m_x, -size.m_y, size.m_z, 0.0f);
		points[count + 7] = dVector(-size.m_x, -size.m_y, -size.m_z, 0.0f);
		count += 8;


		// create a texture matrix, for applying the material's UV to all internal faces
		dMatrix textureMatrix(dGetIdentityMatrix());
		textureMatrix[0][0] = 1.0f / size.m_x;
		textureMatrix[1][1] = 1.0f / size.m_y;

		// Get the volume of the original mesh
		NewtonCollision* const collision1 = NewtonCreateConvexHullFromMesh(m_world, mesh, 0.0f, 0);
		dFloat volume = NewtonConvexCollisionCalculateVolume(collision1);
		NewtonDestroyCollision(collision1);

		// now we call create we decompose the mesh into several convex pieces 
		NewtonMesh* const debriMeshPieces = NewtonMeshCreateVoronoiConvexDecomposition(m_world, count, &points[0].m_x, sizeof (dVector), interiorMaterial, &textureMatrix[0][0]);
		dAssert(debriMeshPieces);

		// now we iterate over each pieces and for each one we create a visual entity and a rigid body
		NewtonMesh* nextDebri;
		for (NewtonMesh* debri = NewtonMeshCreateFirstLayer(debriMeshPieces); debri; debri = nextDebri) {
			// get next segment piece
			nextDebri = NewtonMeshCreateNextLayer(debriMeshPieces, debri);

			//clip the voronoi convexes against the mesh 
			NewtonMesh* const fracturePiece = NewtonMeshConvexMeshIntersection(mesh, debri);
			if (fracturePiece) {
				// make a convex hull collision shape
				NewtonCollision* const collision = NewtonCreateConvexHullFromMesh(m_world, fracturePiece, 0.0f, 0);
				if (collision) {
					// we have a piece which has a convex collision  representation, add that to the list
					FractureAtom& atom = Append()->GetInfo();
					atom.m_mesh = new DemoMesh(fracturePiece);
					atom.m_collision = collision;
					NewtonConvexCollisionCalculateInertialMatrix(atom.m_collision, &atom.m_momentOfInirtia[0], &atom.m_centerOfMass[0]);
					dFloat debriVolume = NewtonConvexCollisionCalculateVolume(atom.m_collision);
					atom.m_massFraction = debriVolume / volume;
				}
				NewtonMeshDestroy(fracturePiece);
			}

			NewtonMeshDestroy(debri);
		}

		NewtonMeshDestroy(debriMeshPieces);
	}