Пример #1
0
/*- render_particles から呼ばれる。粒子の数だけ繰り返し -*/
void Particles_Engine::do_render(
    TFlash *flash, Particle *part, TTile *tile,
    std::vector<TRasterFxPort *> part_ports, std::map<int, TTile *> porttiles,
    const TRenderSettings &ri, TDimension &p_size, TPointD &p_offset,
    int lastframe, std::vector<TLevelP> partLevel,
    struct particles_values &values, double opacity_range, int dist_frame,
    std::map<std::pair<int, int>, double> &partScales) {
  // Retrieve the particle frame - that is, the *column frame* from which we are
  // picking
  // the particle to be rendered.
  int ndx = part->frame % lastframe;

  TRasterP tileRas(tile->getRaster());

  std::string levelid;
  double aim_angle = 0;
  if (values.pathaim_val) {
    double arctan = atan2(part->vy, part->vx);
    aim_angle     = arctan * M_180_PI;
  }

  // Calculate the rotational and scale components we have to apply on the
  // particle
  TRotation rotM(part->angle + aim_angle);
  TScale scaleM(part->scale);
  TAffine M(rotM * scaleM);

  // Particles deal with dpi affines on their own
  TAffine scaleAff(m_parent->handledAffine(ri, m_frame));
  double partScale =
      scaleAff.a11 * partScales[std::pair<int, int>(part->level, ndx)];
  TDimensionD partResolution(0, 0);
  TRenderSettings riNew(ri);

  // Retrieve the bounding box in the standard reference
  TRectD bbox(-5.0, -5.0, 5.0, 5.0), standardRefBBox;
  if (part->level <
          (int)part_ports.size() &&  // Not the default levelless cases
      part_ports[part->level]->isConnected()) {
    TRenderSettings riIdentity(ri);
    riIdentity.m_affine = TAffine();

    (*part_ports[part->level])->getBBox(ndx, bbox, riIdentity);

    // A particle's bbox MUST be finite. Gradients and such which have an
    // infinite bbox
    // are just NOT rendered.

    // NOTE: No fx returns half-planes or similar (ie if any coordinate is
    // either
    // (std::numeric_limits<double>::max)() or its opposite, then the rect IS
    // THE infiniteRectD)
    if (bbox == TConsts::infiniteRectD) return;
  }

  // Now, these are the particle rendering specifications
  bbox            = bbox.enlarge(3);
  standardRefBBox = bbox;
  riNew.m_affine  = TScale(partScale);
  bbox            = riNew.m_affine * bbox;
  /*- 縮小済みのParticleのサイズ -*/
  partResolution = TDimensionD(tceil(bbox.getLx()), tceil(bbox.getLy()));

  if (flash) {
    if (!partLevel[part->level]->frame(ndx)) {
      if (part_ports[0]->isConnected()) {
        TTile auxTile;
        TRaster32P tmp;
        tmp = TRaster32P(p_size);
        (*part_ports[0])
            ->allocateAndCompute(auxTile, p_offset, p_size, tmp, ndx, ri);
        partLevel[part->level]->setFrame(ndx,
                                         TRasterImageP(auxTile.getRaster()));
      }
    }

    flash->pushMatrix();

    const TAffine aff;

    flash->multMatrix(scaleM * aff.place(0, 0, part->x, part->y));

    // if(curr_opacity!=1.0 || part->gencol.fadecol || part->fincol.fadecol ||
    // part->foutcol.fadecol)
    {
      TColorFader cf(TPixel32::Red, .5);
      flash->draw(partLevel[part->level]->frame(ndx), &cf);
    }
    // flash->draw(partLevel->frame(ndx), 0);

    flash->popMatrix();
  } else {
    TRasterP ras;

    std::string alias;
    TRasterImageP rimg;
    if (rimg = partLevel[part->level]->frame(ndx)) {
      ras = rimg->getRaster();
    } else {
      alias = "PART: " + (*part_ports[part->level])->getAlias(ndx, riNew);
      if (rimg = TImageCache::instance()->get(alias, false)) {
        ras = rimg->getRaster();

        // Check that the raster resolution is sufficient for our purposes
        if (ras->getLx() < partResolution.lx ||
            ras->getLy() < partResolution.ly)
          ras = 0;
        else
          partResolution = TDimensionD(ras->getLx(), ras->getLy());
      }
    }

    // We are interested in making the relation between scale and (integer)
    // resolution
    // bijective - since we shall cache by using resolution as a partial
    // identification parameter.
    // Therefore, we find the current bbox Lx and take a unique scale out of it.
    partScale      = partResolution.lx / standardRefBBox.getLx();
    riNew.m_affine = TScale(partScale);
    bbox           = riNew.m_affine * standardRefBBox;

    // If no image was retrieved from the cache (or it was not scaled enough),
    // calculate it
    if (!ras) {
      TTile auxTile;
      (*part_ports[part->level])
          ->allocateAndCompute(auxTile, bbox.getP00(),
                               TDimension(partResolution.lx, partResolution.ly),
                               tile->getRaster(), ndx, riNew);
      ras = auxTile.getRaster();

      // For now, we'll just use 32 bit particles
      TRaster32P rcachepart;
      rcachepart = ras;
      if (!rcachepart) {
        rcachepart = TRaster32P(ras->getSize());
        TRop::convert(rcachepart, ras);
      }
      ras = rcachepart;

      // Finally, cache the particle
      addRenderCache(alias, TRasterImageP(ras));
    }

    if (!ras) return;  // At this point, it should never happen anyway...

    // Deal with particle colors/opacity
    TRaster32P rfinalpart;
    double curr_opacity =
        part->set_Opacity(porttiles, values, opacity_range, dist_frame);
    if (curr_opacity != 1.0 || part->gencol.fadecol || part->fincol.fadecol ||
        part->foutcol.fadecol) {
      /*- 毎フレーム現在位置のピクセル色を参照 -*/
      if (values.pick_color_for_every_frame_val && values.gencol_ctrl_val &&
          (porttiles.find(values.gencol_ctrl_val) != porttiles.end()))
        part->get_image_reference(porttiles[values.gencol_ctrl_val], values,
                                  part->gencol.col);

      rfinalpart = ras->clone();
      part->modify_colors_and_opacity(values, curr_opacity, dist_frame,
                                      rfinalpart);
    } else
      rfinalpart = ras;

    // Now, let's build the particle transform before it is overed on the output
    // tile

    // First, complete the transform by adding the rotational and scale
    // components from
    // Particles parameters
    M = ri.m_affine * M * TScale(1.0 / partScale);

    // Then, retrieve the particle position in current reference.
    TPointD pos(part->x, part->y);
    pos = ri.m_affine * pos;

    // Finally, add the translational component to the particle
    // NOTE: p_offset is added to account for the particle relative position
    // inside its level's bbox
    M = TTranslation(pos - tile->m_pos) * M * TTranslation(bbox.getP00());

    if (TRaster32P myras32 = tile->getRaster())
      TRop::over(tileRas, rfinalpart, M);
    else if (TRaster64P myras64 = tile->getRaster())
      TRop::over(tileRas, rfinalpart, M);
    else
      throw TException("ParticlesFx: unsupported Pixel Type");
  }
}
Пример #2
0
void FreeDistortBaseFx::doCompute(TTile &tile, double frame, const TRenderSettings &ri)
{
	if (!m_input.isConnected())
		return;

	//Upon deactivation, this fx does nothing.
	if (m_deactivate->getValue()) {
		m_input->compute(tile, frame, ri);
		return;
	}

	//Get the source quad
	TPointD p00_b = m_p00_b->getValue(frame);
	TPointD p10_b = m_p10_b->getValue(frame);
	TPointD p01_b = m_p01_b->getValue(frame);
	TPointD p11_b = m_p11_b->getValue(frame);

	//Get destination quad
	TPointD p00_a = m_p00_a->getValue(frame);
	TPointD p10_a = m_p10_a->getValue(frame);
	TPointD p01_a = m_p01_a->getValue(frame);
	TPointD p11_a = m_p11_a->getValue(frame);

	if (m_isCastShadow) {
		//Shadows are mirrored
		tswap(p00_a, p01_a);
		tswap(p10_a, p11_a);
	}

	//Get requested tile's geometry
	TRasterP tileRas(tile.getRaster());
	TRectD tileRect(convert(tileRas->getBounds()) + tile.m_pos);

	//Call transform to get the minimal rectOnInput
	TRectD inRect;
	TRenderSettings riNew;
	TRectD inBBox;

	safeTransform(frame, 0, tileRect, ri, inRect, riNew, inBBox);

	//Intersect with the bbox
	inRect *= inBBox;

	if (myIsEmpty(inRect))
		return;

	double scale = ri.m_affine.a11;

	double downBlur = m_downBlur->getValue(frame) * scale;
	double upBlur = m_upBlur->getValue(frame) * scale;
	int brad = tceil(tmax(downBlur, upBlur));

	inRect = inRect.enlarge(brad);

	TDimension inRectSize(tceil(inRect.getLx()), tceil(inRect.getLy()));

	TTile inTile;
	m_input->allocateAndCompute(inTile, inRect.getP00(), inRectSize, tileRas, frame, riNew);

	TPointD inTilePosRi = inTile.m_pos;

	//Update quads by the scale factors
	p00_b = riNew.m_affine * p00_b;
	p10_b = riNew.m_affine * p10_b;
	p01_b = riNew.m_affine * p01_b;
	p11_b = riNew.m_affine * p11_b;

	p00_a = ri.m_affine * p00_a;
	p10_a = ri.m_affine * p10_a;
	p01_a = ri.m_affine * p01_a;
	p11_a = ri.m_affine * p11_a;

	PerspectiveDistorter perpDistorter(
		p00_b - inTile.m_pos, p10_b - inTile.m_pos, p01_b - inTile.m_pos, p11_b - inTile.m_pos,
		p00_a, p10_a, p01_a, p11_a);

	BilinearDistorter bilDistorter(
		p00_b - inTile.m_pos, p10_b - inTile.m_pos, p01_b - inTile.m_pos, p11_b - inTile.m_pos,
		p00_a, p10_a, p01_a, p11_a);

	TQuadDistorter *distorter;
	if (m_distortType->getValue() == PERSPECTIVE)
		distorter = &perpDistorter;
	else if (m_distortType->getValue() == BILINEAR)
		distorter = &bilDistorter;
	else
		assert(0);

	if (m_isCastShadow) {
		TRaster32P ras32 = inTile.getRaster();
		TRaster64P ras64 = inTile.getRaster();

		if (ras32) {
			if (m_fade->getValue(frame) > 0)
				doFade(ras32, m_color->getValue(frame), m_fade->getValue(frame) / 100.0);
			if (brad > 0)
				doBlur(ras32, upBlur, downBlur,
					   m_upTransp->getValue(frame) / 100.0, m_downTransp->getValue(frame) / 100.0,
					   inBBox.y0 - inTile.m_pos.y, inBBox.y1 - inTile.m_pos.y);
			else if (m_upTransp->getValue(frame) > 0 || m_downTransp->getValue(frame) > 0)
				doTransparency(ras32, m_upTransp->getValue(frame) / 100.0, m_downTransp->getValue(frame) / 100.0,
							   inBBox.y0 - inTile.m_pos.y, inBBox.y1 - inTile.m_pos.y);
		} else if (ras64) {
			if (m_fade->getValue(frame) > 0)
				doFade(ras64, toPixel64(m_color->getValue(frame)), m_fade->getValue(frame) / 100.0);
			if (brad > 0)
				doBlur(ras64, upBlur, downBlur,
					   m_upTransp->getValue(frame) / 100.0, m_downTransp->getValue(frame) / 100.0,
					   inBBox.y0 - inTile.m_pos.y, inBBox.y1 - inTile.m_pos.y);
			else if (m_upTransp->getValue(frame) > 0 || m_downTransp->getValue(frame) > 0)
				doTransparency(ras64, m_upTransp->getValue(frame) / 100.0, m_downTransp->getValue(frame) / 100.0,
							   inBBox.y0 - inTile.m_pos.y, inBBox.y1 - inTile.m_pos.y);
		} else
			assert(false);
	}

	distort(tileRas, inTile.getRaster(), *distorter, convert(tile.m_pos), TRop::Bilinear);
}