Пример #1
0
long long get_min_duration(long long dur)
{
	long long count = 1;
	while ( time_loop(count) < dur )
		count *= 2;

	return count;
}
Пример #2
0
int main(int argc,char *argv[]){
	
	ALLDATA *adt;
	FILE *f;
	
	//assign novalues
	number_novalue = -9999;
	number_absent = -9998;
	string_novalue = assign_string("none");
	i_sim0 = 1;
	i_run0 = 1;
	cum_time = 0.;
	elapsed_time_start = 0.;
	
	MM1=0.;
	MM2=0.;
	MMR=0.;
	MMo=0.;
   
	/*dinamic allocations:*/
	UV=(T_INIT *)malloc(sizeof(T_INIT));
	if(!UV) t_error("UV was not allocated");
 
	adt=(ALLDATA *)malloc(sizeof(ALLDATA));
	if(!adt){
		t_error("adt was not allocated");
	}else {
		
		adt->I=(TIMES *)malloc(sizeof(TIMES));
		if(!(adt->I)) t_error("times was not allocated");	
		
		adt->T=(TOPO *)malloc(sizeof(TOPO));
		if(!(adt->T)) t_error("top was not allocated");
		
		adt->S=(SOIL *)malloc(sizeof(SOIL));
		if(!(adt->S)) t_error("sl was not allocated");
		
		adt->L=(LAND *)malloc(sizeof(LAND));
		if(!(adt->L)) t_error("land was not allocated");
		
		adt->W=(WATER *)malloc(sizeof(WATER));
		if(!(adt->W)) t_error("water was not allocated");
		
		adt->P=(PAR *)malloc(sizeof(PAR));
		if(!(adt->P)) t_error("par was not allocated");
		
		adt->C=(CHANNEL *)malloc(sizeof(CHANNEL));
		if(!(adt->C)) t_error("channel was not allocated"); 
		
		adt->E=(ENERGY *)malloc(sizeof(ENERGY));
		if(!(adt->E)) t_error("egy was not allocated");
		
		adt->N=(SNOW *)malloc(sizeof(SNOW));	
		if(!(adt->N)) t_error("snow was not allocated");	
		
		adt->G=(GLACIER *)malloc(sizeof(GLACIER));	
		if(!(adt->G)) t_error("glac was not allocated"); 
		
		adt->M=(METEO *)malloc(sizeof(METEO));	
		if(!(adt->M)) t_error("met was not allocated"); 
		
		t_meteo=0.;
		t_energy=0.; 
		t_water=0.;
		t_sub=0.;
		t_sup=0.;
		t_out=0.;
		t_blowingsnow=0.;
		
		
		/*------------------    3.  Acquisition of input data and initialisation    --------------------*/
		get_all_input(argc, argv, adt->T, adt->S, adt->L, adt->M, adt->W, adt->C, adt->P, adt->E, adt->N, adt->G, adt->I);
		
		/*-----------------   4. Time-loop for the balances of water-mass and egy   -----------------*/
		time_loop(adt);
		
		/*--------------------   5.Completion of the output files and deallocaions  --------------------*/
		dealloc_all(adt->T, adt->S, adt->L, adt->W, adt->C, adt->P, adt->E, adt->N, adt->G, adt->M, adt->I);
		free(adt);

	}
		
	printf("End of simulation!\n");
	
	f = fopen(SuccessfulRunFile, "w");
	fclose(f);
	
	return 0;
}
Пример #3
0
void ComparisonStageIR::build_stage() {

    assert(!is_tiled() || (is_tiled() && !track_progress()));
    // timer is only allowed for serial loops (just use it to get avg iterations per second or something like that)
    assert(!time_loop() || (time_loop() && !is_parallelized()));

    set_stage_function(create_stage_function());
    set_user_function(create_user_function());
    // stuff before the loop
    // build the return idx
    MVar *loop_start = new MVar(MScalarType::get_long_type()); // don't make a constant b/c it should be updateable
    loop_start->register_for_delete();
    MStatement *set_loop_start = new MStatement(loop_start, MVar::create_constant<long>(0));
    set_loop_start->register_for_delete();
    MStatement *set_result = new MStatement(get_return_idx(), loop_start);
    set_result->register_for_delete();
    set_start_block(new MBlock("start"));
    get_start_block()->register_for_delete();
    get_start_block()->add_expr(set_loop_start);
    get_start_block()->add_expr(set_result);

    // When we don't parallelize, then make the inner loop's index outside of both the loops rather than within
    // the outer loop. This is a hack for llvm because if we have an alloca call within each iteration of the outer loop,
    // we will be "leaking" stack space each time that is called, so moving it outside of the loop prevents that.
    // However, it makes it hard to work with when we then parallelize because the code sees that inner loop index as a
    // free variable that needs to be added to the closure. This is not fun because our index is now a pointer to an index
    // and then we would need to update the index by going through the pointer, etc. Basically, it would cause some hacks on the
    // LLVM side (and unless this becomes something that is needed in the future, I don't want to deal with it).
    // So instead, it is dealt with below. Without parallelization, the inner loop index is initialized outside of the
    // nested loop, and then updated to the correct start right before the inner loop begins execution.
    // When parallelization is turned on, the inner loop index is made INSIDE the outer loop. This is because the
    // parallelized outer loop calls a function every iteration which is the outer loop body, and then within that the
    // inner loop is created. alloca is scoped at the function level, so the inner loop index gets a single alloca
    // in this function call, and then the inner loop is created.
    // This may not be required of other possible back-end languages that we choose, but it will depend on their scoping rules.
    //
    // TL;DR LLVM has function scoping for allocainst, so if we create the inner loop index as so
    // val outer_index...
    // for outer_index...
    //    val inner_index...
    //    for inner_index...
    // every iteration of the outer loop adds space to the stack which isn't released until the function ends. So we want
    // val outer_index...
    // val inner_index...
    // for outer_index...
    //    for inner_index...
    MVar *inner_start = initialize<long>(MScalarType::get_long_type(), 0, get_start_block());

    MBlock *preallocation_block = create_preallocator();
    get_start_block()->add_expr(preallocation_block);

    MTimer *timer = nullptr;
    timer = new MTimer();
    timer->register_for_delete();

    MFor *outer_loop_skeleton_1 = nullptr;
    MFor *inner_loop_skeleton_1 = nullptr;
    MFor *outer_loop_skeleton_2 = nullptr;
    MFor *inner_loop_skeleton_2 = nullptr;
    MBlock *inner_loop_body = nullptr;
    // think of all comparisons as being in an NxM matrix where N is the left input and M is the right input.
    // N is the outermost iteration
    tile_size_N = MVar::create_constant<long>(2);
    tile_size_M = MVar::create_constant<long>(2);

    MVar *final_loop_bound;

    if (!is_tiled() || !is_tileable()) { // No tiling
        // To make sure that the inner loop doesn't get replace with a different bound if parallelizing, copy
        // the bound to a different variable and use that
        MVar *bound_copy = new MVar(MScalarType::get_long_type());
        bound_copy->register_for_delete();
        MStatement *set_copy = new MStatement(bound_copy, get_stage_function()->/*get_args()*/get_loaded_args()[3]);
        set_copy->register_for_delete();
        get_start_block()->add_expr(set_copy);
        // loop components
        MVar *outer_loop_start = initialize<long>(MScalarType::get_long_type(), 0, get_start_block());
        outer_loop_skeleton_1 =
            create_stage_for_loop(outer_loop_start, MVar::create_constant<long>(1),
                                  get_stage_function()->/*get_args()*/get_loaded_args()[1], false, get_start_block());
        if (is_parallelizable() && is_parallelized()) {
            outer_loop_skeleton_1->set_exec_type(PARALLEL);
        }

        MVar *_inner_start = nullptr;
        if ((left_input || right_input) && !_force_commutative) {
            _inner_start = initialize<long>(MScalarType::get_long_type(), 0, get_start_block());
        } else {
            MAdd *add = new MAdd(outer_loop_skeleton_1->get_loop_index(),
                                 MVar::create_constant<long>(1));
            outer_loop_skeleton_1->get_body_block()->add_expr(add);
            add->register_for_delete();
            _inner_start = add->get_result();
        }
        if (!time_loop()) {
            get_start_block()->add_expr(outer_loop_skeleton_1);
        } else {
            get_start_block()->add_expr(timer);
            timer->get_timer_block()->add_expr(outer_loop_skeleton_1);
        }

        MStatement *set_inner_start = new MStatement(inner_start, _inner_start);
        set_inner_start->register_for_delete();
        outer_loop_skeleton_1->get_body_block()->add_expr(set_inner_start);
        MBlock *temp_block = new MBlock();
        temp_block->register_for_delete();
        inner_loop_skeleton_1 = create_stage_for_loop(inner_start, MVar::create_constant<long>(1), bound_copy, true,
                                temp_block);
        // TODO hack, need to add the loop index initialization before the outer loop, but we have to add the outer loop before this since
        // the inner_start depends on the outer loop
        get_start_block()->insert_at(temp_block, get_start_block()->get_exprs().size() - 2); // insert right before the outer loop

        // stuff for calling the user function in the loop
        inner_loop_body = inner_loop_skeleton_1->get_body_block();
    } else if (is_tiled() && is_tileable()) { // tiling
        // loop components
        MDiv *_outer_1_bound =
            new MDiv(get_stage_function()->/*get_args()*/get_loaded_args()[1], tile_size_N);
        _outer_1_bound->register_for_delete();
        MDiv *_inner_1_bound =
            new MDiv(get_stage_function()->/*get_args()*/get_loaded_args()[3], tile_size_M);
        _inner_1_bound->register_for_delete();

        // compensate for when the number of elements isn't a multiple of the tile size
        MAdd *outer_1_bound = new MAdd(_outer_1_bound->get_result(), MVar::create_constant<long>(1));
        outer_1_bound->register_for_delete();
        MAdd *inner_1_bound = new MAdd(_inner_1_bound->get_result(), MVar::create_constant<long>(1));
        inner_1_bound->register_for_delete();
        get_start_block()->add_expr(_outer_1_bound);
        get_start_block()->add_expr(_inner_1_bound);
        get_start_block()->add_expr(outer_1_bound);
        get_start_block()->add_expr(inner_1_bound);

        MVar *outer_loop_start_1 = initialize<long>(MScalarType::get_long_type(), 0, get_start_block());
        outer_loop_start_1->override_name("outer_loop_start_1");
        MVar *inner_loop_start_1 = initialize<long>(MScalarType::get_long_type(), 0, get_start_block());
        inner_loop_start_1->override_name("inner_loop_start_1");
        MVar *outer_loop_start_2 = initialize<long>(MScalarType::get_long_type(), 0, get_start_block());
        outer_loop_start_2->override_name("outer_loop_start_2");
        MVar *inner_loop_start_2 = initialize<long>(MScalarType::get_long_type(), 0, get_start_block());
        inner_loop_start_2->override_name("inner_loop_start_2");

        // n = 0 to N/tile_size_N + 1
        outer_loop_skeleton_1 =
            create_stage_for_loop(outer_loop_start_1, MVar::create_constant<long>(1),
                                  outer_1_bound->get_result(), true, get_start_block());
        outer_loop_skeleton_1->override_name("outer_loop_skeleton1");
//
//        if (!time_loop()) {
//            get_start_block()->add_expr(outer_loop_skeleton_1);
//        } else {
//            get_start_block()->add_expr(timer);
//            timer->get_timer_block()->add_expr(outer_loop_skeleton_1);
//        }

        // m = 0 to M/tile_size_M + 1
        inner_loop_skeleton_1 =
            create_stage_for_loop(inner_loop_start_1, MVar::create_constant<long>(1),
                                  inner_1_bound->get_result(), true, get_start_block());
        inner_loop_skeleton_1->override_name("inner_loop_skeleton1");

        // nn = 0 to tile_size_N
        outer_loop_skeleton_2 = create_stage_for_loop(outer_loop_start_2, MVar::create_constant<long>(1),
                                tile_size_N, true, get_start_block());
        outer_loop_skeleton_2->override_name("outer_loop_skeleton2");

        // mm = 0 to tile_size_M
        inner_loop_skeleton_2 = create_stage_for_loop(inner_loop_start_2, MVar::create_constant<long>(1),
                                tile_size_M, true, get_start_block());
        inner_loop_skeleton_2->override_name("inner_loop_skeleton2");

        if (!time_loop()) {
            get_start_block()->add_expr(outer_loop_skeleton_1);
        } else {
            get_start_block()->add_expr(timer);
            timer->get_timer_block()->add_expr(outer_loop_skeleton_1);
        }


        inner_loop_skeleton_1->get_body_block()->add_expr(outer_loop_skeleton_2);
        outer_loop_skeleton_2->get_body_block()->add_expr(inner_loop_skeleton_2);
        inner_loop_body = inner_loop_skeleton_2->get_body_block();

    }

    MBlock *user_arg_block;

    std::vector<MVar *> args = create_user_function_inputs(&user_arg_block, outer_loop_skeleton_1, outer_loop_skeleton_2,
                               inner_loop_skeleton_1, inner_loop_skeleton_2, nullptr, false,
                               nullptr, nullptr, get_stage_function()->/*get_args()*/get_loaded_args()[1],
                               get_stage_function()->/*get_args()*/get_loaded_args()[3]);
    if (!is_tiled() || !is_tileable()) {
        inner_loop_body->add_expr(user_arg_block);
    } // if tiled, this is already added in the create_user_function_inputs
    inner_loop_body = user_arg_block;

    int bucket_idx = inner_loop_body->get_exprs().size();

    MFunctionCall *call = call_user_function(get_user_function(), args);
    inner_loop_body->add_expr(call);

    // handle the output of the user call
    MBlock *processed_call = process_user_function_call(call, NULL, false);
    inner_loop_body->add_expr(processed_call);

    // do any other postprocessing needed in the loop before the next iteration
    MBlock *extra = loop_extras();
    inner_loop_body->add_expr(extra);

    if (track_progress() && !is_parallelized()) {
        // still return the original loop bound
        MBlock *temp = new MBlock();
        temp->register_for_delete();
        final_loop_bound = outer_loop_skeleton_1->get_loop_bound();
        outer_loop_skeleton_1->get_body_block()->add_expr(inner_loop_skeleton_1);
        inner_loop_body->insert_at(apply_buckets(args[0], args[1], inner_loop_skeleton_2 ? inner_loop_skeleton_2 : inner_loop_skeleton_1), bucket_idx);
        std::pair<MFor *, MFor *> splits = ProgressTracker::create_progress_tracker(outer_loop_skeleton_1,
                                           inner_loop_skeleton_1,
                                           get_num_tracking_splits(), temp,
                                           true);

        // find the original outer_loop_skeleton_1 in the block and remove it. Then replace with the new one in splits.first
        int idx = 0;
        if (!time_loop()) {
            for (std::vector<MExpr *>::const_iterator iter = get_start_block()->get_exprs().cbegin();
                    iter != get_start_block()->get_exprs().cend(); iter++) {
                if (*iter == outer_loop_skeleton_1) {
                    break;
                }
                idx++;
            }
            get_start_block()->remove_at(idx);
        } else {
            for (std::vector<MExpr *>::const_iterator iter = timer->get_timer_block()->get_exprs().cbegin();
                    iter != timer->get_timer_block()->get_exprs().cend(); iter++) {
                if (*iter == outer_loop_skeleton_1) {
                    break;
                }
                idx++;
            }
            timer->get_timer_block()->remove_at(idx);
        }
        outer_loop_skeleton_1 = splits.first;
        // do the replacement
        // outer_loop_skeleton_1 added to temp block in the progress tracker function
        if (!time_loop()) {
            get_stage_function()->add_body_block(temp);
        } else {
            timer->get_timer_block()->insert_at(temp, idx);
        }
    } else {
        outer_loop_skeleton_1->get_body_block()->add_expr(inner_loop_skeleton_1);
        final_loop_bound = outer_loop_skeleton_1->get_loop_bound();
        inner_loop_body->insert_at(apply_buckets(args[0], args[1], inner_loop_skeleton_2 ? inner_loop_skeleton_2 : inner_loop_skeleton_1), bucket_idx);
    }

    // modify this loop if it needs to be parallelized
    if (is_parallelizable() && is_parallelized()) {
        parallelize_main_loop(get_start_block(), outer_loop_skeleton_1, inner_loop_skeleton_1);
    }
//
//    if (is_tiled() && is_tileable()) {
//        inner_loop_skeleton_1->get_body_block()->add_expr(outer_loop_skeleton_2);
//        outer_loop_skeleton_2->get_body_block()->add_expr(inner_loop_skeleton_2);
//    }

    // postprocessing after the outer loop is done (no postprocessing needed after the inner loop since it just goes back to the outer loop)
    MBlock *after_loop = time_loop() ? timer->get_after_timer_block() : outer_loop_skeleton_1->get_end_block();
    MBlock *finished = finish_stage(nullptr, final_loop_bound);
    MBlock *deletion = delete_fields();
    after_loop->add_expr(deletion);
    after_loop->add_expr(finished);

    get_stage_function()->insert_body_block_at(get_start_block(), 1); // insert before the temp block, which would have been added if doing tracking. Insert after the stage arg loading though.
    // the temp block has the loop now, so it can't come before everything else
}