Пример #1
0
c_typecastt::c_typet c_typecastt::minimum_promotion(
  const typet &type) const
{
  c_typet c_type=get_c_type(type);

  // 6.3.1.1, par 2

  // "If an int can represent all values of the original type, the
  // value is converted to an int; otherwise, it is converted to
  // an unsigned int."

  c_typet max_type=std::max(c_type, INT); // minimum promotion

  // The second case can arise if we promote any unsigned type
  // that is as large as unsigned int.

  if(config.ansi_c.short_int_width==config.ansi_c.int_width &&
     max_type==USHORT)
    max_type=UINT;
  else if(config.ansi_c.char_width==config.ansi_c.int_width &&
          max_type==UCHAR)
    max_type=UINT;
  else
    max_type=std::max(max_type, INT);

  if(max_type==UINT &&
     type.id()==ID_c_bit_field &&
     to_c_bit_field_type(type).get_width()<config.ansi_c.int_width)
    max_type=INT;

  return max_type;
}
Пример #2
0
void cpp_typecheckt::typecheck_type(typet &type)
{
  assert(!type.id().empty());
  assert(type.is_not_nil());

  try
  {
    cpp_convert_plain_type(type);
  }

  catch(const char *err)
  {
    error().source_location=type.source_location();
    error() << err << eom;
    throw 0;
  }

  catch(const std::string &err)
  {
    error().source_location=type.source_location();
    error() << err << eom;
    throw 0;
  }

  if(type.id()==ID_cpp_name)
  {
    c_qualifierst qualifiers(type);

    cpp_namet cpp_name;
    cpp_name.swap(type);

    exprt symbol_expr=resolve(
      cpp_name,
      cpp_typecheck_resolvet::wantt::TYPE,
      cpp_typecheck_fargst());

    if(symbol_expr.id()!=ID_type)
    {
      error().source_location=type.source_location();
      error() << "error: expected type" << eom;
      throw 0;
    }

    type=symbol_expr.type();
    assert(type.is_not_nil());

    if(type.get_bool(ID_C_constant))
      qualifiers.is_constant = true;

    qualifiers.write(type);
  }
  else if(type.id()==ID_struct ||
          type.id()==ID_union)
  {
    typecheck_compound_type(to_struct_union_type(type));
  }
  else if(type.id()==ID_pointer)
  {
    // the pointer might have a qualifier, but do subtype first
    typecheck_type(type.subtype());

    // Check if it is a pointer-to-member
    if(type.find("to-member").is_not_nil())
    {
      // these can point either to data members or member functions
      // of a class

      typet &class_object=static_cast<typet &>(type.add("to-member"));

      if(class_object.id()==ID_cpp_name)
      {
        assert(class_object.get_sub().back().id()=="::");
        class_object.get_sub().pop_back();
      }

      typecheck_type(class_object);

      // there may be parameters if this is a pointer to member function
      if(type.subtype().id()==ID_code)
      {
        irept::subt &parameters=type.subtype().add(ID_parameters).get_sub();

        if(parameters.empty() ||
           parameters.front().get(ID_C_base_name)!=ID_this)
        {
          // Add 'this' to the parameters
          exprt a0(ID_parameter);
          a0.set(ID_C_base_name, ID_this);
          a0.type().id(ID_pointer);
          a0.type().subtype() = class_object;
          parameters.insert(parameters.begin(), a0);
        }
      }
    }
  }
  else if(type.id()==ID_array)
  {
    exprt &size_expr=to_array_type(type).size();

    if(size_expr.is_not_nil())
    {
      typecheck_expr(size_expr);
      simplify(size_expr, *this);
    }

    typecheck_type(type.subtype());

    if(type.subtype().get_bool(ID_C_constant))
      type.set(ID_C_constant, true);

    if(type.subtype().get_bool(ID_C_volatile))
      type.set(ID_C_volatile, true);
  }
  else if(type.id()==ID_code)
  {
    code_typet &code_type=to_code_type(type);
    typecheck_type(code_type.return_type());

    code_typet::parameterst &parameters=code_type.parameters();

    for(auto &param : parameters)
    {
      typecheck_type(param.type());

      // see if there is a default value
      if(param.has_default_value())
      {
        typecheck_expr(param.default_value());
        implicit_typecast(param.default_value(), param.type());
      }
    }
  }
  else if(type.id()==ID_template)
  {
    typecheck_type(type.subtype());
  }
  else if(type.id()==ID_c_enum)
  {
    typecheck_enum_type(type);
  }
  else if(type.id()==ID_c_enum_tag)
  {
  }
  else if(type.id()==ID_c_bit_field)
  {
    typecheck_c_bit_field_type(to_c_bit_field_type(type));
  }
  else if(type.id()==ID_unsignedbv ||
          type.id()==ID_signedbv ||
          type.id()==ID_bool ||
          type.id()==ID_floatbv ||
          type.id()==ID_fixedbv ||
          type.id()==ID_empty)
  {
  }
  else if(type.id()==ID_symbol)
  {
  }
  else if(type.id()==ID_constructor ||
          type.id()==ID_destructor)
  {
  }
  else if(type.id()=="cpp-cast-operator")
  {
  }
  else if(type.id()=="cpp-template-type")
  {
  }
  else if(type.id()==ID_typeof)
  {
    exprt e=static_cast<const exprt &>(type.find(ID_expr_arg));

    if(e.is_nil())
    {
      typet tmp_type=
        static_cast<const typet &>(type.find(ID_type_arg));

      if(tmp_type.id()==ID_cpp_name)
      {
        // this may be ambiguous -- it can be either a type or
        // an expression

        cpp_typecheck_fargst fargs;

        exprt symbol_expr=resolve(
          to_cpp_name(static_cast<const irept &>(tmp_type)),
          cpp_typecheck_resolvet::wantt::BOTH,
          fargs);

        type=symbol_expr.type();
      }
      else
      {
        typecheck_type(tmp_type);
        type=tmp_type;
      }
    }
    else
    {
      typecheck_expr(e);
      type=e.type();
    }
  }
  else if(type.id()==ID_decltype)
  {
    exprt e=static_cast<const exprt &>(type.find(ID_expr_arg));
    typecheck_expr(e);
    type=e.type();
  }
  else if(type.id()==ID_unassigned)
  {
    // ignore, for template parameter guessing
  }
  else if(type.id()==ID_template_class_instance)
  {
    // ok (internally generated)
  }
  else if(type.id()==ID_block_pointer)
  {
    // This is an Apple extension for lambda-like constructs.
    // http://thirdcog.eu/pwcblocks/
  }
  else if(type.id()==ID_nullptr)
  {
  }
  else
  {
    error().source_location=type.source_location();
    error() << "unexpected cpp type: " << type.pretty() << eom;
    throw 0;
  }

  assert(type.is_not_nil());
}
Пример #3
0
bool boolbvt::type_conversion(
  const typet &src_type, const bvt &src,
  const typet &dest_type, bvt &dest)
{
  bvtypet dest_bvtype=get_bvtype(dest_type);
  bvtypet src_bvtype=get_bvtype(src_type);
  
  if(src_bvtype==IS_C_BIT_FIELD)
    return type_conversion(
      c_bit_field_replacement_type(to_c_bit_field_type(src_type), ns), src, dest_type, dest);

  if(dest_bvtype==IS_C_BIT_FIELD)
    return type_conversion(
      src_type, src, c_bit_field_replacement_type(to_c_bit_field_type(dest_type), ns), dest);

  std::size_t src_width=src.size();
  std::size_t dest_width=boolbv_width(dest_type);
  
  if(dest_width==0 || src_width==0)
    return true;
  
  dest.clear();
  dest.reserve(dest_width);

  if(dest_type.id()==ID_complex)
  {
    if(src_type==dest_type.subtype())
    {
      forall_literals(it, src)
      dest.push_back(*it);

      // pad with zeros
      for(std::size_t i=src.size(); i<dest_width; i++)
        dest.push_back(const_literal(false));

      return false;
    }
    else if(src_type.id()==ID_complex)
    {
      // recursively do both halfs
      bvt lower, upper, lower_res, upper_res;
      lower.assign(src.begin(), src.begin()+src.size()/2);
      upper.assign(src.begin()+src.size()/2, src.end());
      type_conversion(ns.follow(src_type.subtype()), lower, ns.follow(dest_type.subtype()), lower_res);
      type_conversion(ns.follow(src_type.subtype()), upper, ns.follow(dest_type.subtype()), upper_res);
      assert(lower_res.size()+upper_res.size()==dest_width);
      dest=lower_res;
      dest.insert(dest.end(), upper_res.begin(), upper_res.end());
      return false;
    }
  }
  
  if(src_type.id()==ID_complex)
  {
    assert(dest_type.id()!=ID_complex);
    if(dest_type.id()==ID_signedbv ||
       dest_type.id()==ID_unsignedbv ||
       dest_type.id()==ID_floatbv ||
       dest_type.id()==ID_fixedbv ||
       dest_type.id()==ID_c_enum ||
       dest_type.id()==ID_c_enum_tag ||
       dest_type.id()==ID_bool)
    {
      // A cast from complex x to real T
      // is (T) __real__ x.
      bvt tmp_src(src);
      tmp_src.resize(src.size()/2); // cut off imag part
      return type_conversion(src_type.subtype(), tmp_src, dest_type, dest);
    }
  }
  
  switch(dest_bvtype)
  {
  case IS_RANGE:
    if(src_bvtype==IS_UNSIGNED ||
       src_bvtype==IS_SIGNED ||
       src_bvtype==IS_C_BOOL)
    {
      mp_integer dest_from=to_range_type(dest_type).get_from();

      if(dest_from==0)
      {
        // do zero extension
        dest.resize(dest_width);
        for(std::size_t i=0; i<dest.size(); i++)
          dest[i]=(i<src.size()?src[i]:const_literal(false));

        return false;
      }
    }
    else if(src_bvtype==IS_RANGE) // range to range
    {
      mp_integer src_from=to_range_type(src_type).get_from();
      mp_integer dest_from=to_range_type(dest_type).get_from();

      if(dest_from==src_from)
      {
        // do zero extension, if needed
        dest=bv_utils.zero_extension(src, dest_width);
        return false;
      }
      else
      {
        // need to do arithmetic: add src_from-dest_from
        mp_integer offset=src_from-dest_from;
        dest=
          bv_utils.add(
            bv_utils.zero_extension(src, dest_width),
            bv_utils.build_constant(offset, dest_width));
      }

      return false;
    }
    break;
    
  case IS_FLOAT: // to float
    {
      float_utilst float_utils(prop);
      
      switch(src_bvtype)
      {
      case IS_FLOAT: // float to float
        // we don't have a rounding mode here,
        // which is why we refuse.
        break;

      case IS_SIGNED: // signed to float
      case IS_C_ENUM:
        float_utils.spec=to_floatbv_type(dest_type);
        dest=float_utils.from_signed_integer(src);
        return false;

      case IS_UNSIGNED: // unsigned to float
      case IS_C_BOOL: // _Bool to float
        float_utils.spec=to_floatbv_type(dest_type);
        dest=float_utils.from_unsigned_integer(src);
        return false;

      case IS_BV:
        assert(src_width==dest_width);
        dest=src;
        return false;

      default:
        if(src_type.id()==ID_bool)
        {
          // bool to float
          
          // build a one
          ieee_floatt f;
          f.spec=to_floatbv_type(dest_type);
          f.from_integer(1);
          
          dest=convert_bv(f.to_expr());

          assert(src_width==1);
          
          Forall_literals(it, dest)
            *it=prop.land(*it, src[0]);
            
          return false;
        }
      }
    }
    break;

  case IS_FIXED:
    if(src_bvtype==IS_FIXED)
    {
      // fixed to fixed
      
      std::size_t dest_fraction_bits=to_fixedbv_type(dest_type).get_fraction_bits(),
                  dest_int_bits=dest_width-dest_fraction_bits;
      std::size_t op_fraction_bits=to_fixedbv_type(src_type).get_fraction_bits(),
                  op_int_bits=src_width-op_fraction_bits;
      
      dest.resize(dest_width);
      
      // i == position after dot
      // i == 0: first position after dot

      for(std::size_t i=0; i<dest_fraction_bits; i++)
      {
        // position in bv
        std::size_t p=dest_fraction_bits-i-1;
      
        if(i<op_fraction_bits)
          dest[p]=src[op_fraction_bits-i-1];
        else 
          dest[p]=const_literal(false); // zero padding
      }

      for(std::size_t i=0; i<dest_int_bits; i++)
      {
        // position in bv
        std::size_t p=dest_fraction_bits+i;
        assert(p<dest_width);
      
        if(i<op_int_bits)
          dest[p]=src[i+op_fraction_bits];
        else 
          dest[p]=src[src_width-1]; // sign extension
      }

      return false;
    }
    else if(src_bvtype==IS_BV)
    {
      assert(src_width==dest_width);
      dest=src;
      return false;
    }
    else if(src_bvtype==IS_UNSIGNED ||
            src_bvtype==IS_SIGNED ||
            src_bvtype==IS_C_BOOL ||
            src_bvtype==IS_C_ENUM)
    {
      // integer to fixed

      std::size_t dest_fraction_bits=
        to_fixedbv_type(dest_type).get_fraction_bits();

      for(std::size_t i=0; i<dest_fraction_bits; i++)
        dest.push_back(const_literal(false)); // zero padding

      for(std::size_t i=0; i<dest_width-dest_fraction_bits; i++)
      {
        literalt l;
      
        if(i<src_width)
          l=src[i];
        else
        {
          if(src_bvtype==IS_SIGNED || src_bvtype==IS_C_ENUM)
            l=src[src_width-1]; // sign extension
          else
            l=const_literal(false); // zero extension
        }
        
        dest.push_back(l);
      }

      return false;
    }
    else if(src_type.id()==ID_bool)
    {
      // bool to fixed
      std::size_t fraction_bits=
        to_fixedbv_type(dest_type).get_fraction_bits();

      assert(src_width==1);

      for(std::size_t i=0; i<dest_width; i++)
      {
        if(i==fraction_bits)
          dest.push_back(src[0]);
        else
          dest.push_back(const_literal(false));
      }

      return false;
    }
    break;
  
  case IS_UNSIGNED:
  case IS_SIGNED:
  case IS_C_ENUM:
    switch(src_bvtype)
    {
    case IS_FLOAT: // float to integer
      // we don't have a rounding mode here,
      // which is why we refuse.
      break;
     
    case IS_FIXED: // fixed to integer
      {
        std::size_t op_fraction_bits=
          to_fixedbv_type(src_type).get_fraction_bits();

        for(std::size_t i=0; i<dest_width; i++)
        {
          if(i<src_width-op_fraction_bits)
            dest.push_back(src[i+op_fraction_bits]);
          else
          {
            if(dest_bvtype==IS_SIGNED)
              dest.push_back(src[src_width-1]); // sign extension
            else
              dest.push_back(const_literal(false)); // zero extension
          }
        }
        
        // we might need to round up in case of negative numbers
        // e.g., (int)(-1.00001)==1
        
        bvt fraction_bits_bv=src;
        fraction_bits_bv.resize(op_fraction_bits);
        literalt round_up=
          prop.land(prop.lor(fraction_bits_bv), src.back());

        dest=bv_utils.incrementer(dest, round_up);

        return false;
      }

    case IS_UNSIGNED: // integer to integer
    case IS_SIGNED:
    case IS_C_ENUM:
    case IS_C_BOOL:
      {
        // We do sign extension for any source type
        // that is signed, independently of the
        // destination type.
        // E.g., ((short)(ulong)(short)-1)==-1
        bool sign_extension=
          src_bvtype==IS_SIGNED || src_bvtype==IS_C_ENUM;

        for(std::size_t i=0; i<dest_width; i++)
        {
          if(i<src_width)
            dest.push_back(src[i]);
          else if(sign_extension)
            dest.push_back(src[src_width-1]); // sign extension
          else
            dest.push_back(const_literal(false));
        }

        return false;
      }
      
    case IS_VERILOG_UNSIGNED: // verilog_unsignedbv to signed/unsigned/enum
      {
        for(std::size_t i=0; i<dest_width; i++)
        {
          std::size_t src_index=i*2; // we take every second bit

          if(src_index<src_width)
            dest.push_back(src[src_index]);
          else // always zero-extend
            dest.push_back(const_literal(false));
        }

        return false;
      }
      break;
      
    case IS_VERILOG_SIGNED: // verilog_signedbv to signed/unsigned/enum
      {
        for(std::size_t i=0; i<dest_width; i++)
        {
          std::size_t src_index=i*2; // we take every second bit

          if(src_index<src_width)
            dest.push_back(src[src_index]);
          else // always sign-extend
            dest.push_back(src.back());
        }

        return false;
      }
      break;
      
    default:
      if(src_type.id()==ID_bool)
      {
        // bool to integer

        assert(src_width==1);

        for(std::size_t i=0; i<dest_width; i++)
        {
          if(i==0)
            dest.push_back(src[0]);
          else
            dest.push_back(const_literal(false));
        }

        return false;
      }
    }
    break;
    
  case IS_VERILOG_UNSIGNED:
    if(src_bvtype==IS_UNSIGNED ||
       src_bvtype==IS_C_BOOL ||
       src_type.id()==ID_bool)
    {
      for(std::size_t i=0, j=0; i<dest_width; i+=2, j++)
      {
        if(j<src_width)
          dest.push_back(src[j]);
        else
          dest.push_back(const_literal(false));

        dest.push_back(const_literal(false));
      }

      return false;
    }
    else if(src_bvtype==IS_SIGNED)
    {
      for(std::size_t i=0, j=0; i<dest_width; i+=2, j++)
      {
        if(j<src_width)
          dest.push_back(src[j]);
        else
          dest.push_back(src.back());

        dest.push_back(const_literal(false));
      }

      return false;
    }
    else if(src_bvtype==IS_VERILOG_UNSIGNED)
    {
      // verilog_unsignedbv to verilog_unsignedbv
      dest=src;

      if(dest_width<src_width)
        dest.resize(dest_width);
      else
      {
        dest=src;
        while(dest.size()<dest_width)
        {
          dest.push_back(const_literal(false));
          dest.push_back(const_literal(false));
        }
      }
      return false;
    }
    break;

  case IS_BV:
    assert(src_width==dest_width);
    dest=src;
    return false;
    
  case IS_C_BOOL:
    dest.resize(dest_width, const_literal(false));

    if(src_bvtype==IS_FLOAT)
    {
      float_utilst float_utils(prop);
      float_utils.spec=to_floatbv_type(src_type);
      dest[0]=!float_utils.is_zero(src);
    }
    else if(src_bvtype==IS_C_BOOL)
      dest[0]=src[0];
    else
      dest[0]=!bv_utils.is_zero(src);

    return false;
    
  default:
    if(dest_type.id()==ID_array)
    {
      if(src_width==dest_width)
      {
        dest=src;
        return false;
      }
    }
    else if(dest_type.id()==ID_struct)
    {
      const struct_typet &dest_struct =
        to_struct_type(dest_type);

      if(src_type.id()==ID_struct)
      {
        // we do subsets

        dest.resize(dest_width, const_literal(false));

        const struct_typet &op_struct =
          to_struct_type(src_type);

        const struct_typet::componentst &dest_comp=
          dest_struct.components();

        const struct_typet::componentst &op_comp=
          op_struct.components();

        // build offset maps
        offset_mapt op_offsets, dest_offsets;

        build_offset_map(op_struct, op_offsets);
        build_offset_map(dest_struct, dest_offsets);

        // build name map
        typedef std::map<irep_idt, unsigned> op_mapt;
        op_mapt op_map;

        for(std::size_t i=0; i<op_comp.size(); i++)
          op_map[op_comp[i].get_name()]=i;

        // now gather required fields
        for(std::size_t i=0;
            i<dest_comp.size();
            i++)
        {
          std::size_t offset=dest_offsets[i];
          std::size_t comp_width=boolbv_width(dest_comp[i].type());
          if(comp_width==0) continue;

          op_mapt::const_iterator it=
            op_map.find(dest_comp[i].get_name());

          if(it==op_map.end())
          {
            // not found

            // filling with free variables
            for(std::size_t j=0; j<comp_width; j++)
              dest[offset+j]=prop.new_variable();
          }
          else
          {
            // found
            if(dest_comp[i].type()!=dest_comp[it->second].type())
            {
              // filling with free variables
              for(std::size_t j=0; j<comp_width; j++)
                dest[offset+j]=prop.new_variable();
            }
            else
            {
              std::size_t op_offset=op_offsets[it->second];
              for(std::size_t j=0; j<comp_width; j++)
                dest[offset+j]=src[op_offset+j];
            }
          }
        }

        return false;
      }
    }

  }

  return true;
}
Пример #4
0
xmlt xml(
  const typet &type,
  const namespacet &ns)
{
  if(type.id()==ID_symbol)
    return xml(ns.follow(type), ns);

  xmlt result;

  if(type.id()==ID_unsignedbv)
  {
    result.name="integer";
    result.set_attribute("width", to_unsignedbv_type(type).get_width());
  }
  else if(type.id()==ID_signedbv)
  {
    result.name="integer";
    result.set_attribute("width", to_signedbv_type(type).get_width());
  }
  else if(type.id()==ID_floatbv)
  {
    result.name="float";
    result.set_attribute("width", to_floatbv_type(type).get_width());
  }
  else if(type.id()==ID_bv)
  {
    result.name="integer";
    result.set_attribute("width", to_bv_type(type).get_width());
  }
  else if(type.id()==ID_c_bit_field)
  {
    result.name="integer";
    result.set_attribute("width", to_c_bit_field_type(type).get_width());
  }
  else if(type.id()==ID_c_enum_tag)
  {
    // we return the base type
    return xml(ns.follow_tag(to_c_enum_tag_type(type)).subtype(), ns);
  }
  else if(type.id()==ID_fixedbv)
  {
    result.name="fixed";
    result.set_attribute("width", to_fixedbv_type(type).get_width());
  }
  else if(type.id()==ID_pointer)
  {
    result.name="pointer";
    result.new_element("subtype").new_element()=xml(type.subtype(), ns);
  }
  else if(type.id()==ID_bool)
  {
    result.name="boolean";
  }
  else if(type.id()==ID_array)
  {
    result.name="array";
    result.new_element("subtype").new_element()=xml(type.subtype(), ns);
  }
  else if(type.id()==ID_vector)
  {
    result.name="vector";
    result.new_element("subtype").new_element()=xml(type.subtype(), ns);
    result.new_element("size").new_element()=xml(to_vector_type(type).size(), ns);
  }
  else if(type.id()==ID_struct)
  {
    result.name="struct";
    const struct_typet::componentst &components=
      to_struct_type(type).components();
    for(struct_typet::componentst::const_iterator
        it=components.begin(); it!=components.end(); it++)
    {
      xmlt &e=result.new_element("member");
      e.set_attribute("name", id2string(it->get_name()));
      e.new_element("type").new_element()=xml(it->type(), ns);
    }
  }
  else if(type.id()==ID_union)
  {
    result.name="union";
    const union_typet::componentst &components=
      to_union_type(type).components();
    for(union_typet::componentst::const_iterator
        it=components.begin(); it!=components.end(); it++)
    {
      xmlt &e=result.new_element("member");
      e.set_attribute("name", id2string(it->get_name()));
      e.new_element("type").new_element()=xml(it->type(), ns);
    }
  }
  else
    result.name="unknown";

  return result;
}
Пример #5
0
void c_typecheck_baset::typecheck_compound_body(
  struct_union_typet &type)
{
  struct_union_typet::componentst &components=type.components();

  struct_union_typet::componentst old_components;
  old_components.swap(components);

  // We get these as declarations!
  for(auto &decl : old_components)
  {
    // the arguments are member declarations or static assertions
    assert(decl.id()==ID_declaration);

    ansi_c_declarationt &declaration=
      to_ansi_c_declaration(static_cast<exprt &>(decl));

    if(declaration.get_is_static_assert())
    {
      struct_union_typet::componentt new_component;
      new_component.id(ID_static_assert);
      new_component.add_source_location()=declaration.source_location();
      new_component.operands().swap(declaration.operands());
      assert(new_component.operands().size()==2);
      components.push_back(new_component);
    }
    else
    {
      // do first half of type
      typecheck_type(declaration.type());
      make_already_typechecked(declaration.type());

      for(const auto &declarator : declaration.declarators())
      {
        struct_union_typet::componentt new_component;

        new_component.add_source_location()=
          declarator.source_location();
        new_component.set(ID_name, declarator.get_base_name());
        new_component.set(ID_pretty_name, declarator.get_base_name());
        new_component.type()=declaration.full_type(declarator);

        typecheck_type(new_component.type());

        if(!is_complete_type(new_component.type()) &&
           (new_component.type().id()!=ID_array ||
            !to_array_type(new_component.type()).is_incomplete()))
        {
          error().source_location=new_component.type().source_location();
          error() << "incomplete type not permitted here" << eom;
          throw 0;
        }

        components.push_back(new_component);
      }
    }
  }

  unsigned anon_member_counter=0;

  // scan for anonymous members, and name them
  for(auto &member : components)
  {
    if(member.get_name()!=irep_idt())
      continue;

    member.set_name("$anon"+std::to_string(anon_member_counter++));
    member.set_anonymous(true);
  }

  // scan for duplicate members

  {
    std::unordered_set<irep_idt, irep_id_hash> members;

    for(struct_union_typet::componentst::iterator
        it=components.begin();
        it!=components.end();
        it++)
    {
      if(!members.insert(it->get_name()).second)
      {
        error().source_location=it->source_location();
        error() << "duplicate member '" << it->get_name() << '\'' << eom;
        throw 0;
      }
    }
  }

  // We allow an incomplete (C99) array as _last_ member!
  // Zero-length is allowed everywhere.

  if(type.id()==ID_struct ||
     type.id()==ID_union)
  {
    for(struct_union_typet::componentst::iterator
        it=components.begin();
        it!=components.end();
        it++)
    {
      typet &c_type=it->type();

      if(c_type.id()==ID_array &&
         to_array_type(c_type).is_incomplete())
      {
        // needs to be last member
        if(type.id()==ID_struct && it!=--components.end())
        {
          error().source_location=it->source_location();
          error() << "flexible struct member must be last member" << eom;
          throw 0;
        }

        // make it zero-length
        c_type.id(ID_array);
        c_type.set(ID_size, from_integer(0, index_type()));
      }
    }
  }

  // We may add some minimal padding inside and at
  // the end of structs and
  // as additional member for unions.

  if(type.id()==ID_struct)
    add_padding(to_struct_type(type), *this);
  else if(type.id()==ID_union)
    add_padding(to_union_type(type), *this);

  // Now remove zero-width bit-fields, these are just
  // for adjusting alignment.
  for(struct_typet::componentst::iterator
      it=components.begin();
      it!=components.end();
      ) // blank
  {
    if(it->type().id()==ID_c_bit_field &&
       to_c_bit_field_type(it->type()).get_width()==0)
      it=components.erase(it);
    else
      it++;
  }

  // finally, check _Static_assert inside the compound
  for(struct_union_typet::componentst::iterator
      it=components.begin();
      it!=components.end();
      ) // no it++
  {
    if(it->id()==ID_static_assert)
    {
      assert(it->operands().size()==2);
      exprt &assertion=it->op0();
      typecheck_expr(assertion);
      typecheck_expr(it->op1());
      assertion.make_typecast(bool_typet());
      make_constant(assertion);

      if(assertion.is_false())
      {
        error().source_location=it->source_location();
        error() << "failed _Static_assert" << eom;
        throw 0;
      }
      else if(!assertion.is_true())
      {
        // should warn/complain
      }

      it=components.erase(it);
    }
    else
      it++;
  }
}
Пример #6
0
void c_typecheck_baset::typecheck_type(typet &type)
{
  // we first convert, and then check
  {
    ansi_c_convert_typet ansi_c_convert_type(get_message_handler());

    ansi_c_convert_type.read(type);
    ansi_c_convert_type.write(type);
  }

  if(type.id()==ID_already_typechecked)
  {
    // need to preserve any qualifiers
    c_qualifierst c_qualifiers(type);
    c_qualifiers+=c_qualifierst(type.subtype());
    bool packed=type.get_bool(ID_C_packed);
    exprt alignment=static_cast<const exprt &>(type.find(ID_C_alignment));
    irept _typedef=type.find(ID_C_typedef);

    type=type.subtype();

    c_qualifiers.write(type);
    if(packed)
      type.set(ID_C_packed, true);
    if(alignment.is_not_nil())
      type.add(ID_C_alignment, alignment);
    if(_typedef.is_not_nil())
      type.add(ID_C_typedef, _typedef);

    return; // done
  }

  // do we have alignment?
  if(type.find(ID_C_alignment).is_not_nil())
  {
    exprt &alignment=static_cast<exprt &>(type.add(ID_C_alignment));
    if(alignment.id()!=ID_default)
    {
      typecheck_expr(alignment);
      make_constant(alignment);
    }
  }

  if(type.id()==ID_code)
    typecheck_code_type(to_code_type(type));
  else if(type.id()==ID_array)
    typecheck_array_type(to_array_type(type));
  else if(type.id()==ID_pointer)
    typecheck_type(type.subtype());
  else if(type.id()==ID_struct ||
          type.id()==ID_union)
    typecheck_compound_type(to_struct_union_type(type));
  else if(type.id()==ID_c_enum)
    typecheck_c_enum_type(type);
  else if(type.id()==ID_c_enum_tag)
    typecheck_c_enum_tag_type(to_c_enum_tag_type(type));
  else if(type.id()==ID_c_bit_field)
    typecheck_c_bit_field_type(to_c_bit_field_type(type));
  else if(type.id()==ID_typeof)
    typecheck_typeof_type(type);
  else if(type.id()==ID_symbol)
    typecheck_symbol_type(type);
  else if(type.id()==ID_vector)
    typecheck_vector_type(to_vector_type(type));
  else if(type.id()==ID_custom_unsignedbv ||
          type.id()==ID_custom_signedbv ||
          type.id()==ID_custom_floatbv ||
          type.id()==ID_custom_fixedbv)
    typecheck_custom_type(type);
  else if(type.id()==ID_gcc_attribute_mode)
  {
    // get that mode
    irep_idt mode=type.get(ID_size);

    // A list of all modes ist at
    // http://www.delorie.com/gnu/docs/gcc/gccint_53.html
    typecheck_type(type.subtype());

    typet underlying_type=type.subtype();

    // gcc allows this, but clang doesn't; it's a compiler hint only,
    // but we'll try to interpret it the GCC way
    if(underlying_type.id()==ID_c_enum_tag)
    {
      underlying_type=
        follow_tag(to_c_enum_tag_type(underlying_type)).subtype();

      assert(underlying_type.id()==ID_signedbv ||
             underlying_type.id()==ID_unsignedbv);
    }

    if(underlying_type.id()==ID_signedbv ||
       underlying_type.id()==ID_unsignedbv)
    {
      bool is_signed=underlying_type.id()==ID_signedbv;

      typet result;

      if(mode=="__QI__") // 8 bits
        result=is_signed?signed_char_type():unsigned_char_type();
      else if(mode=="__byte__") // 8 bits
        result=is_signed?signed_char_type():unsigned_char_type();
      else if(mode=="__HI__") // 16 bits
        result=is_signed?signed_short_int_type():unsigned_short_int_type();
      else if(mode=="__SI__") // 32 bits
        result=is_signed?signed_int_type():unsigned_int_type();
      else if(mode=="__word__") // long int, we think
        result=is_signed?signed_long_int_type():unsigned_long_int_type();
      else if(mode=="__pointer__") // we think this is size_t/ssize_t
        result=is_signed?signed_size_type():size_type();
      else if(mode=="__DI__") // 64 bits
      {
        if(config.ansi_c.long_int_width==64)
          result=is_signed?signed_long_int_type():unsigned_long_int_type();
        else
        {
          assert(config.ansi_c.long_long_int_width==64);
          result=
            is_signed?signed_long_long_int_type():unsigned_long_long_int_type();
        }
      }
      else if(mode=="__TI__") // 128 bits
        result=is_signed?gcc_signed_int128_type():gcc_unsigned_int128_type();
      else if(mode=="__V2SI__") // vector of 2 ints, deprecated by gcc
        result=
          vector_typet(
            is_signed?signed_int_type():unsigned_int_type(),
            from_integer(2, size_type()));
      else if(mode=="__V4SI__") // vector of 4 ints, deprecated by gcc
        result=
          vector_typet(
            is_signed?signed_int_type():unsigned_int_type(),
            from_integer(4, size_type()));
      else // give up, just use subtype
        result=type.subtype();

      // save the location
      result.add_source_location()=type.source_location();

      if(type.subtype().id()==ID_c_enum_tag)
      {
        const irep_idt &tag_name=
          to_c_enum_tag_type(type.subtype()).get_identifier();

        symbol_tablet::symbolst::iterator entry=
          symbol_table.symbols.find(tag_name);
        assert(entry!=symbol_table.symbols.end());

        entry->second.type.subtype()=result;
      }

      type=result;
    }
    else if(underlying_type.id()==ID_floatbv)
    {
      typet result;

      if(mode=="__SF__") // 32 bits
        result=float_type();
      else if(mode=="__DF__") // 64 bits
        result=double_type();
      else if(mode=="__TF__") // 128 bits
        result=gcc_float128_type();
      else if(mode=="__V2SF__") // vector of 2 floats, deprecated by gcc
        result=vector_typet(float_type(), from_integer(2, size_type()));
      else if(mode=="__V2DF__") // vector of 2 doubles, deprecated by gcc
        result=vector_typet(double_type(), from_integer(2, size_type()));
      else if(mode=="__V4SF__") // vector of 4 floats, deprecated by gcc
        result=vector_typet(float_type(), from_integer(4, size_type()));
      else if(mode=="__V4DF__") // vector of 4 doubles, deprecated by gcc
        result=vector_typet(double_type(), from_integer(4, size_type()));
      else // give up, just use subtype
        result=type.subtype();

      // save the location
      result.add_source_location()=type.source_location();

      type=result;
    }
    else if(underlying_type.id()==ID_complex)
    {
      // gcc allows this, but clang doesn't -- see enums above
      typet result;

      if(mode=="__SC__") // 32 bits
        result=float_type();
      else if(mode=="__DC__") // 64 bits
        result=double_type();
      else if(mode=="__TC__") // 128 bits
        result=gcc_float128_type();
      else // give up, just use subtype
        result=type.subtype();

      // save the location
      result.add_source_location()=type.source_location();

      type=complex_typet(result);
    }
    else
    {
      error().source_location=type.source_location();
      error() << "attribute mode `" << mode
              << "' applied to inappropriate type `"
              << to_string(type) << "'" << eom;
      throw 0;
    }
  }

  // do a mild bit of rule checking

  if(type.get_bool(ID_C_restricted) &&
     type.id()!=ID_pointer &&
     type.id()!=ID_array)
  {
    error().source_location=type.source_location();
    error() << "only a pointer can be 'restrict'" << eom;
    throw 0;
  }
}
Пример #7
0
const boolbv_widtht::entryt &boolbv_widtht::get_entry(const typet &type) const
{
  // check cache first

  std::pair<cachet::iterator, bool> cache_result=
    cache.insert(std::pair<typet, entryt>(type, entryt()));
    
  entryt &entry=cache_result.first->second;

  if(!cache_result.second) // found!
    return entry;
    
  entry.total_width=0;
  
  const irep_idt type_id=type.id();

  if(type_id==ID_struct)
  {
    const struct_typet::componentst &components=
      to_struct_type(type).components();

    std::size_t offset=0;
    entry.members.resize(components.size());
  
    for(std::size_t i=0; i<entry.members.size(); i++)
    {
      std::size_t sub_width=operator()(components[i].type());
      entry.members[i].offset=offset;
      entry.members[i].width=sub_width;
      offset+=sub_width;
    }
    
    entry.total_width=offset;
  }
  else if(type_id==ID_union)
  {
    const union_typet::componentst &components=
      to_union_type(type).components();

    entry.members.resize(components.size());
    
    std::size_t max_width=0;
  
    for(std::size_t i=0; i<entry.members.size(); i++)
    {
      std::size_t sub_width=operator()(components[i].type());
      entry.members[i].width=sub_width;
      max_width=std::max(max_width, sub_width);
    }

    entry.total_width=max_width;
  }
  else if(type_id==ID_bool)
    entry.total_width=1;
  else if(type_id==ID_c_bool)
  {
    entry.total_width=to_c_bool_type(type).get_width();
    assert(entry.total_width!=0);
  }
  else if(type_id==ID_signedbv)
  {
    entry.total_width=to_signedbv_type(type).get_width();
    assert(entry.total_width!=0);
  }
  else if(type_id==ID_unsignedbv)
  {
    entry.total_width=to_unsignedbv_type(type).get_width();
    assert(entry.total_width!=0);
  }
  else if(type_id==ID_floatbv)
  {
    entry.total_width=to_floatbv_type(type).get_width();
    assert(entry.total_width!=0);
  }
  else if(type_id==ID_fixedbv)
  {
    entry.total_width=to_fixedbv_type(type).get_width();
    assert(entry.total_width!=0);
  }
  else if(type_id==ID_bv)
  {
    entry.total_width=to_bv_type(type).get_width();
    assert(entry.total_width!=0);
  }
  else if(type_id==ID_verilogbv)
  {
    // we encode with two bits
    entry.total_width=type.get_unsigned_int(ID_width)*2;
    assert(entry.total_width!=0);
  }
  else if(type_id==ID_range)
  {
    mp_integer from=string2integer(type.get_string(ID_from)),
                 to=string2integer(type.get_string(ID_to));

    mp_integer size=to-from+1;

    if(size>=1)
    {
      entry.total_width=integer2unsigned(address_bits(size));
      assert(entry.total_width!=0);
    }
  }
  else if(type_id==ID_array)
  {
    const array_typet &array_type=to_array_type(type);
    std::size_t sub_width=operator()(array_type.subtype());

    mp_integer array_size;

    if(to_integer(array_type.size(), array_size))
    {
      // we can still use the theory of arrays for this
      entry.total_width=0;
    }
    else
    {
      mp_integer total=array_size*sub_width;
      if(total>(1<<30)) // realistic limit
        throw "array too large for flattening";

      entry.total_width=integer2unsigned(total);
    }
  }
  else if(type_id==ID_vector)
  {
    const vector_typet &vector_type=to_vector_type(type);
    std::size_t sub_width=operator()(vector_type.subtype());

    mp_integer vector_size;

    if(to_integer(vector_type.size(), vector_size))
    {
      // we can still use the theory of arrays for this
      entry.total_width=0;
    }
    else
    {
      mp_integer total=vector_size*sub_width;
      if(total>(1<<30)) // realistic limit
        throw "vector too large for flattening";

      entry.total_width=integer2unsigned(vector_size*sub_width);
    }
  }
  else if(type_id==ID_complex)
  {
    std::size_t sub_width=operator()(type.subtype());
    entry.total_width=integer2unsigned(2*sub_width);
  }
  else if(type_id==ID_code)
  {
  }
  else if(type_id==ID_enum)
  {
    // get number of necessary bits

    std::size_t size=type.find(ID_elements).get_sub().size();
    entry.total_width=integer2unsigned(address_bits(size));
    assert(entry.total_width!=0);
  }
  else if(type_id==ID_c_enum)
  {
    // these have a subtype
    entry.total_width=type.subtype().get_unsigned_int(ID_width);
    assert(entry.total_width!=0);
  }
  else if(type_id==ID_incomplete_c_enum)
  {
    // no width
  }
  else if(type_id==ID_pointer ||
          type_id==ID_reference)
  {
    entry.total_width=config.ansi_c.pointer_width;
  }
  else if(type_id==ID_symbol)
    entry=get_entry(ns.follow(type));
  else if(type_id==ID_struct_tag)
    entry=get_entry(ns.follow_tag(to_struct_tag_type(type)));
  else if(type_id==ID_union_tag)
    entry=get_entry(ns.follow_tag(to_union_tag_type(type)));
  else if(type_id==ID_c_enum_tag)
    entry=get_entry(ns.follow_tag(to_c_enum_tag_type(type)));
  else if(type_id==ID_c_bit_field)
  {
    entry.total_width=to_c_bit_field_type(type).get_width();
  }
  
  return entry;
}
Пример #8
0
c_typecastt::c_typet c_typecastt::get_c_type(
  const typet &type) const
{
  unsigned width=type.get_int(ID_width);

  if(type.id()==ID_signedbv)
  {
    if(width<=config.ansi_c.char_width)
      return CHAR;
    else if(width<=config.ansi_c.short_int_width)
      return SHORT;
    else if(width<=config.ansi_c.int_width)
      return INT;
    else if(width<=config.ansi_c.long_int_width)
      return LONG;
    else if(width<=config.ansi_c.long_long_int_width)
      return LONGLONG;
    else
      return LARGE_SIGNED_INT;
  }
  else if(type.id()==ID_unsignedbv)
  {
    if(width<=config.ansi_c.char_width)
      return UCHAR;
    else if(width<=config.ansi_c.short_int_width)
      return USHORT;
    else if(width<=config.ansi_c.int_width)
      return UINT;
    else if(width<=config.ansi_c.long_int_width)
      return ULONG;
    else if(width<=config.ansi_c.long_long_int_width)
      return ULONGLONG;
    else
      return LARGE_UNSIGNED_INT;
  }
  else if(type.id()==ID_bool)
    return BOOL;
  else if(type.id()==ID_c_bool)
    return BOOL;
  else if(type.id()==ID_floatbv ||
          type.id()==ID_fixedbv)
  {
    if(width<=config.ansi_c.single_width)
      return SINGLE;
    else if(width<=config.ansi_c.double_width)
      return DOUBLE;
    else if(width<=config.ansi_c.long_double_width)
      return LONGDOUBLE;
    else if(width<=128)
      return FLOAT128;
  }
  else if(type.id()==ID_pointer)
  {
    if(type.subtype().id()==ID_empty)
      return VOIDPTR;
    else
      return PTR;
  }
  else if(type.id()==ID_array)
  {
    return PTR;
  }
  else if(type.id()==ID_c_enum ||
          type.id()==ID_c_enum_tag ||
          type.id()==ID_incomplete_c_enum)
  {
    return INT;
  }
  else if(type.id()==ID_symbol)
    return get_c_type(ns.follow(type));
  else if(type.id()==ID_rational)
    return RATIONAL;
  else if(type.id()==ID_real)
    return REAL;
  else if(type.id()==ID_complex)
    return COMPLEX;
  else if(type.id()==ID_c_bit_field)
    return get_c_type(to_c_bit_field_type(type).subtype());
    
  return OTHER;  
}
Пример #9
0
void add_padding(struct_typet &type, const namespacet &ns)
{
  struct_typet::componentst &components=type.components();

  // First do padding for bit-fields to make them
  // appear on byte boundaries.

  {  
    unsigned padding_counter=0;
    unsigned bit_field_bits=0;

    for(struct_typet::componentst::iterator
        it=components.begin();
        it!=components.end();
        it++)
    {
      if(it->type().id()==ID_c_bit_field &&
         to_c_bit_field_type(it->type()).get_width()!=0)
      {
        // count the bits
        unsigned width=to_c_bit_field_type(it->type()).get_width();
        bit_field_bits+=width;
      }
      else if(bit_field_bits!=0)
      {
        // not on a byte-boundary?
        if((bit_field_bits%8)!=0)
        {
          unsigned pad=8-bit_field_bits%8;
          c_bit_field_typet padding_type(unsignedbv_typet(pad), pad);
          
          struct_typet::componentt component;
          component.type()=padding_type;
          component.set_name("$bit_field_pad"+i2string(padding_counter++));
          component.set_is_padding(true);
          
          it=components.insert(it, component);
          it++; // skip over
        
          bit_field_bits+=pad;
        }

        bit_field_bits=0;
      }
    }

    // Add padding at the end?
    if((bit_field_bits%8)!=0)
    {
      unsigned pad=8-bit_field_bits%8;
      c_bit_field_typet padding_type(unsignedbv_typet(pad), pad);
      
      struct_typet::componentt component;
      component.type()=padding_type;
      component.set_name("$bit_field_pad"+i2string(padding_counter++));
      component.set_is_padding(true);
      
      components.push_back(component);
    }  
  }

  // Is the struct packed?
  if(type.get_bool(ID_C_packed))
    return; // done

  mp_integer offset=0;
  unsigned padding_counter=0;
  mp_integer max_alignment=0;
  unsigned bit_field_bits=0;

  for(struct_typet::componentst::iterator
      it=components.begin();
      it!=components.end();
      it++)
  {
    const typet &it_type=it->type();
    mp_integer a=1;
    
    if(it_type.id()==ID_c_bit_field)
    {
      a=alignment(to_c_bit_field_type(it_type).subtype(), ns);
      
      // A zero-width bit-field causes alignment to the base-type.
      if(to_c_bit_field_type(it_type).get_width()==0)
      {
      }
      else
      {
        // Otherwise, ANSI-C says that bit-fields do not get padded!
        // We consider the type for max_alignment, however.
        if(max_alignment<a) 
          max_alignment=a;
        
        unsigned w=to_c_bit_field_type(it_type).get_width();
        unsigned bytes;
        for(bytes=0; w>bit_field_bits; ++bytes, bit_field_bits+=8);
        bit_field_bits-=w;
        offset+=bytes;
        continue;
      }
    }
    else if(it->type().get_bool(ID_C_packed) ||
            ns.follow(it->type()).get_bool(ID_C_packed))
    {
      // the field or type is "packed"
    }
    else
      a=alignment(it_type, ns);
      
    // check minimum alignment
    if(a<config.ansi_c.alignment)
      a=config.ansi_c.alignment;
      
    if(max_alignment<a) 
      max_alignment=a;
      
    if(a!=1)
    {
      // we may need to align it
      mp_integer displacement=offset%a;

      if(displacement!=0)
      {
        mp_integer pad=a-displacement;
      
        unsignedbv_typet padding_type;
        padding_type.set_width(integer2unsigned(pad*8));
        
        struct_typet::componentt component;
        component.type()=padding_type;
        component.set_name("$pad"+i2string(padding_counter++));
        component.set_is_padding(true);
        
        it=components.insert(it, component);
        it++; // skip over
        
        offset+=pad;
      }
    }

    mp_integer size=pointer_offset_size(ns, it_type);

    if(size!=-1)
      offset+=size;
  }
  
  if(bit_field_bits!=0)
  {
    // these are now assumed to be multiples of 8
    offset+=bit_field_bits/8;
  }
  
  // any explicit alignment for the struct?
  if(type.find(ID_C_alignment).is_not_nil())
  {
    const exprt &alignment=
      static_cast<const exprt &>(type.find(ID_C_alignment));
    if(alignment.id()!=ID_default)
    {
      exprt tmp=alignment;
      simplify(tmp, ns);
      mp_integer tmp_i;
      if(!to_integer(tmp, tmp_i) && tmp_i>max_alignment)
        max_alignment=tmp_i;
    }
  }

  // There may be a need for 'end of struct' padding.
  // We use 'max_alignment'.
  
  if(max_alignment>1)
  {
    // we may need to align it
    mp_integer displacement=offset%max_alignment;

    if(displacement!=0)
    {
      mp_integer pad=max_alignment-displacement;
    
      unsignedbv_typet padding_type;
      padding_type.set_width(integer2unsigned(pad*8));

      // we insert after any final 'flexible member'
      struct_typet::componentt component;
      component.type()=padding_type;
      component.set_name("$pad"+i2string(padding_counter++));
      component.set_is_padding(true);
      
      components.push_back(component);
    }
  }

}
Пример #10
0
json_objectt json(
  const typet &type,
  const namespacet &ns)
{
  if(type.id()==ID_symbol)
    return json(ns.follow(type), ns);

  json_objectt result;

  if(type.id()==ID_unsignedbv)
  {
    result["name"]=json_stringt("integer");
    result["width"]=
      json_numbert(i2string(to_unsignedbv_type(type).get_width()));
  }
  else if(type.id()==ID_signedbv)
  {
    result["name"]=json_stringt("integer");
    result["width"]=json_numbert(i2string(to_signedbv_type(type).get_width()));
  }
  else if(type.id()==ID_floatbv)
  {
    result["name"]=json_stringt("float");
    result["width"]=json_numbert(i2string(to_floatbv_type(type).get_width()));
  }
  else if(type.id()==ID_bv)
  {
    result["name"]=json_stringt("integer");
    result["width"]=json_numbert(i2string(to_bv_type(type).get_width()));
  }
  else if(type.id()==ID_c_bit_field)
  {
    result["name"]=json_stringt("integer");
    result["width"]=
      json_numbert(i2string(to_c_bit_field_type(type).get_width()));
  }
  else if(type.id()==ID_c_enum_tag)
  {
    // we return the base type
    return json(ns.follow_tag(to_c_enum_tag_type(type)).subtype(), ns);
  }
  else if(type.id()==ID_fixedbv)
  {
    result["name"]=json_stringt("fixed");
    result["width"]=json_numbert(i2string(to_fixedbv_type(type).get_width()));
  }
  else if(type.id()==ID_pointer)
  {
    result["name"]=json_stringt("pointer");
    result["subtype"]=json(type.subtype(), ns);
  }
  else if(type.id()==ID_bool)
  {
    result["name"]=json_stringt("boolean");
  }
  else if(type.id()==ID_array)
  {
    result["name"]=json_stringt("array");
    result["subtype"]=json(type.subtype(), ns);
  }
  else if(type.id()==ID_vector)
  {
    result["name"]=json_stringt("vector");
    result["subtype"]=json(type.subtype(), ns);
    result["size"]=json(to_vector_type(type).size(), ns);
  }
  else if(type.id()==ID_struct)
  {
    result["name"]=json_stringt("struct");
    json_arrayt &members=result["members"].make_array();
    const struct_typet::componentst &components=
      to_struct_type(type).components();
    for(const auto & it : components)
    {
      json_objectt &e=members.push_back().make_object();
      e["name"]=json_stringt(id2string(it.get_name()));
      e["type"]=json(it.type(), ns);
    }
  }
  else if(type.id()==ID_union)
  {
    result["name"]=json_stringt("union");
    json_arrayt &members=result["members"].make_array();
    const union_typet::componentst &components=
      to_union_type(type).components();
    for(const auto & it : components)
    {
      json_objectt &e=members.push_back().make_object();
      e["name"]=json_stringt(id2string(it.get_name()));
      e["type"]=json(it.type(), ns);
    }
  }
  else
    result["name"]=json_stringt("unknown");

  return result;
}