bool Engine::validWalkableTile(MapChunk *tmap, int x, int y) { if(tmap == NULL) return false; sf::Vector2i tpos(x,y); //check that tile is within map dimensions sf::Vector2i mapdim = tmap->getDimensions(); if(x < 0 || y < 0 || x >= mapdim.x || y >= mapdim.y) return false; //check that tile is walkable MapTile *ttile = getMapTile( tmap->getTile(x,y) ); if(!ttile->isWalkable()) return false; //check that there are no actors there std::vector<Monster*> *actors = tmap->getMapMonsters(); for(int i = 0; i < int(actors->size()); i++) { if((*actors)[i]->getPosition() == tpos) return false; } //check if player is there if( m_Player->getPosition() == tpos) return false; return true; }
void LabelStyle::draw() { Label *w = static_cast<Label*>(getWidget()); Rect rect(Position(), w->getSize()); Color bg = getBGColor(); TextPosition tpos(rect, getTextHAlign(), getTextVAlign(), getTextHSpacing(), getTextVSpacing()); //iuiGetRenderer()->drawRect(rect, bg); iuiGetRenderer()->drawFont(tpos, getFontColor(), w->getText().c_str(), w->getText().size()); }
bool CollisionTester::FrustumPointTest( const Frustum& frus, const CVector3& pnt ) { CVector4 tpos( pnt ); bool bv = frus.mNearPlane.IsPointInFront( tpos ); bv &= frus.mFarPlane.IsPointInFront( tpos ); bv &= frus.mLeftPlane.IsPointInFront( tpos ); bv &= frus.mRightPlane.IsPointInFront( tpos ); bv &= frus.mTopPlane.IsPointInFront( tpos ); bv &= frus.mBottomPlane.IsPointInFront( tpos ); return bv; }
//------------------------------------------------------------------------ //chr safe to remove? bool CGunTurret::IsTargetCloaked(IActor *pActor) const { // cloak check if(m_turretparams.find_cloaked) return false; bool cloaked = false; // if destinationId assigned, target can always be found if(m_destinationId && pActor->GetEntityId() == m_destinationId) return false; if(cloaked && m_turretparams.light_fov != 0.f) { // if cloaked, target can only be found with searchlight // check if target inside light cone const Matrix34 &weaponTM = GetEntity()->GetSlotWorldTM(eIGS_ThirdPerson); Vec3 wpos(weaponTM.GetTranslation()); Vec3 wdir(weaponTM.GetColumn1()); Vec3 tpos(GetTargetPos(pActor->GetEntity())); float epsilon = 0.8f; Quat rot = Quat::CreateRotationAA(epsilon*0.5f*DEG2RAD(m_turretparams.light_fov), weaponTM.GetColumn2()); Vec3 a = wpos + m_turretparams.mg_range*(wdir*rot); Vec3 b = wpos + m_turretparams.mg_range*(wdir*rot.GetInverted()); bool inside = Overlap::PointInTriangle(tpos, wpos, a, b, weaponTM.GetColumn2()); if(inside) { rot = Quat::CreateRotationAA(0.5f*DEG2RAD(m_turretparams.light_fov), weaponTM.GetColumn0()); a = wpos + m_turretparams.mg_range*(wdir*rot); b = wpos + m_turretparams.mg_range*(wdir*rot.GetInverted()); inside = Overlap::PointInTriangle(tpos, wpos, a, b, weaponTM.GetColumn0()); } cloaked = !inside; if(g_pGameCVars->i_debug_turrets == eGTD_Search) { IRenderAuxGeom *pGeom = gEnv->pRenderer->GetIRenderAuxGeom(); pGeom->SetRenderFlags(e_Def3DPublicRenderflags); float color[] = {1,1,1,1}; Vec3 points[] = {wpos, a, b}; pGeom->DrawPolyline(points, 3, true, ColorB(0,255,0,255)); if(inside) gEnv->pRenderer->Draw2dLabel(200,200,1.4f,color,false,"target inside cone"); } } return cloaked; }
/** * @function GoalDist * @brief Calculate geometric distance from the goal to the End Effector Body Node */ double B1RRT::GoalDist( Eigen::VectorXd _nodeConfig, Eigen::VectorXd _targetPose ) { world->mRobots[robotId]->setDofs( _nodeConfig, links ); Eigen::MatrixXd pose = world->mRobots[robotId]->getNode( EEId )->getWorldTransform(); double dist; Eigen::VectorXd pos(3); pos << pose(0,3), pose(1,3), pose(2,3); Eigen::VectorXd tpos(3); tpos << _targetPose(0), _targetPose(1), _targetPose(2); dist = ( pos - tpos ).norm(); return dist; }
void ToggleButtonStyle::draw() { ToggleButton *w = static_cast<ToggleButton*>(getWidget()); Rect rect(Position(), w->getSize()); TextPosition tpos(rect, getTextHAlign(), getTextVAlign(), getTextHSpacing(), getTextVSpacing()); Color bg = getBGColor(); if(w->isPressing() || w->isPressed()) { bg += vec4(0.4f, 0.4f, 0.4f, 0.0f); } else if(w->isHovered()) { bg += vec4(0.2f, 0.2f, 0.2f, 0.0f); } iuiGetRenderer()->drawRect(rect, bg); iuiGetRenderer()->drawOutlineRect(rect, getBorderColor()); iuiGetRenderer()->drawFont(tpos, getFontColor(), w->getText().c_str(), w->getText().size()); }
float DetourCrowdComponent::getDistanceToGoal() const { if( !m_isInCrowd ) { return -1.0f; } dtCrowd* crowd = DetourCrowdManager::instance()->getCrowd(); const dtCrowdAgent* ag = crowd->getAgent(m_crowdId); Vec3f tpos(ag->targetPos[0],ag->targetPos[1],ag->targetPos[2]); Vec3f vpos(ag->npos[0],ag->npos[1],ag->npos[2]); Vec3f curEntityToTargetVec = tpos - vpos; return curEntityToTargetVec.length(); }
void ModelInstance::draw2(const Vec3D& ofs, const float rot) { Vec3D tpos(ofs + pos); rotate(ofs.x,ofs.z,&tpos.x,&tpos.z,rot*PI/180.0f); if ( (tpos - gWorld->camera).lengthSquared() > (gWorld->doodaddrawdistance2*model->rad*sc) ) return; if (!gWorld->frustum.intersectsSphere(tpos, model->rad*sc)) return; glPushMatrix(); glTranslatef(pos.x, pos.y, pos.z); Vec3D vdir(-dir.z,dir.x,dir.y); glQuaternionRotate(vdir,w); glScalef(sc,-sc,-sc); model->draw(); glPopMatrix(); }
void EntitiesEditor::drawBoxHelpers(Renderer2D &out, const IBox &box) const { int3 pos = box.min, bbox = box.max - box.min; int3 tsize = asXZY(m_tile_map.dimensions(), 32); drawLine(out, int3(0, pos.y, pos.z), int3(tsize.x, pos.y, pos.z), Color(0, 255, 0, 127)); drawLine(out, int3(0, pos.y, pos.z + bbox.z), int3(tsize.x, pos.y, pos.z + bbox.z), Color(0, 255, 0, 127)); drawLine(out, int3(pos.x, pos.y, 0), int3(pos.x, pos.y, tsize.z), Color(0, 255, 0, 127)); drawLine(out, int3(pos.x + bbox.x, pos.y, 0), int3(pos.x + bbox.x, pos.y, tsize.z), Color(0, 255, 0, 127)); int3 tpos(pos.x, 0, pos.z); drawBBox(out, IBox(tpos, tpos + int3(bbox.x, pos.y, bbox.z)), Color(0, 0, 255, 127)); drawLine(out, int3(0, 0, pos.z), int3(tsize.x, 0, pos.z), Color(0, 0, 255, 127)); drawLine(out, int3(0, 0, pos.z + bbox.z), int3(tsize.x, 0, pos.z + bbox.z), Color(0, 0, 255, 127)); drawLine(out, int3(pos.x, 0, 0), int3(pos.x, 0, tsize.z), Color(0, 0, 255, 127)); drawLine(out, int3(pos.x + bbox.x, 0, 0), int3(pos.x + bbox.x, 0, tsize.z), Color(0, 0, 255, 127)); }
void DetourCrowdComponent::update( dtCrowd* crowd) { if( m_pendingAddToSim ) { addBackToSim(); return; } const dtCrowdAgent* ag = crowd->getAgent(m_crowdId); if( ag->active && m_isInCrowd ) { const float* pos = ag->npos; const float* vel = ag->vel; Vec3f velo( vel[0], vel[1], vel[2] ); Vec3f veloRot = velo.toRotation(); // Scenegraph expects degree, Bullet radians. This should be fixed in those components. // Rotate: degree (Scenegraph) float yrot = radToDeg(veloRot.y); yrot -= 180.f; // Rotate: radian (Bullet Physics) //float yrot = veloRot.y - Math::Pi; //const float* trans = GameEngine::getEntityTransformation(m_owner->worldId()); // The entity travels on the navigation mesh. GameEngine::setEntityTranslation( m_owner->worldId(), pos[0], pos[1] + m_yOffset, pos[2] ); GameEngine::setEntityRotation( m_owner->worldId(), 0, yrot, 0); Vec3f tpos(ag->targetPos[0],ag->targetPos[1],ag->targetPos[2]); Vec3f vpos(ag->npos[0],ag->npos[1],ag->npos[2]); Vec3f curEntityToTargetVec = tpos - vpos; if( curEntityToTargetVec.length() < m_targetRadius ) { // Target reached. Remove from sim and add obstacle. tempRemoveFromSim(); GameEvent targetReachedEv( GameEvent::E_TARGET_REACHED, 0, 0 ); GameEngine::sendEvent( m_worldId, &targetReachedEv ); } } }
bool CollisionTester::FrustumSphereTest( const Frustum& frus, const Sphere& sph ) { float nrad = -sph.mRadius; CVector4 tpos( sph.mCenter ); float nd = frus.mNearPlane.GetPointDistance( tpos ); float fd = frus.mFarPlane.GetPointDistance( tpos ); float ld = frus.mLeftPlane.GetPointDistance( tpos ); float rd = frus.mRightPlane.GetPointDistance( tpos ); float td = frus.mTopPlane.GetPointDistance( tpos ); float bd = frus.mBottomPlane.GetPointDistance( tpos ); if(nd < nrad) return false; if(fd < nrad) return false; if(ld < nrad) return false; if(rd < nrad) return false; if(td < nrad) return false; if(bd < nrad) return false; return true; }
void EditboxStyle::draw() { Editbox *w = static_cast<Editbox*>(getWidget()); Rect rect(Position(), w->getSize()); TextPosition tpos(rect, getTextHAlign(), getTextVAlign(), getTextHSpacing(), getTextVSpacing()); Color bg = getBGColor(); if(w->isFocused()) { bg += vec4(0.4f, 0.4f, 0.4f, 0.0f); } else if(w->isHovered()) { bg += vec4(0.2f, 0.2f, 0.2f, 0.0f); } iuiGetRenderer()->drawRect(rect, bg); iuiGetRenderer()->drawOutlineRect(rect, getBorderColor()); iuiGetRenderer()->drawFont(tpos, getFontColor(), w->getText().c_str(), w->getText().size()); if(w->isFocused() && ist::GetTick()%1000<500) { vec2 tsize = iuiGetRenderer()->computeTextSize(w->getText().c_str(), w->getCursorPos()); Line l(Position(tsize.x, 0.0f), Position(tsize.x, tsize.y)); iuiGetRenderer()->drawLine(l, getBorderColor()); } }
void TransformDrawEngine::SoftwareTransformAndDraw( int prim, u8 *decoded, LinkedShader *program, int vertexCount, u32 vertType, void *inds, int indexType, const DecVtxFormat &decVtxFormat, int maxIndex) { bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); // TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts. #if defined(MOBILE_DEVICE) if (vertexCount > 0x10000/3) vertexCount = 0x10000/3; #endif float uscale = 1.0f; float vscale = 1.0f; bool scaleUV = false; if (throughmode) { uscale /= gstate_c.curTextureWidth; vscale /= gstate_c.curTextureHeight; } else { scaleUV = !g_Config.bPrescaleUV; } bool skinningEnabled = vertTypeIsSkinningEnabled(vertType); int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); float widthFactor = (float) w / (float) gstate_c.curTextureWidth; float heightFactor = (float) h / (float) gstate_c.curTextureHeight; Lighter lighter(vertType); float fog_end = getFloat24(gstate.fog1); float fog_slope = getFloat24(gstate.fog2); VertexReader reader(decoded, decVtxFormat, vertType); for (int index = 0; index < maxIndex; index++) { reader.Goto(index); float v[3] = {0, 0, 0}; float c0[4] = {1, 1, 1, 1}; float c1[4] = {0, 0, 0, 0}; float uv[3] = {0, 0, 1}; float fogCoef = 1.0f; if (throughmode) { // Do not touch the coordinates or the colors. No lighting. reader.ReadPos(v); if (reader.hasColor0()) { reader.ReadColor0(c0); for (int j = 0; j < 4; j++) { c1[j] = 0.0f; } } else { c0[0] = gstate.getMaterialAmbientR() / 255.f; c0[1] = gstate.getMaterialAmbientG() / 255.f; c0[2] = gstate.getMaterialAmbientB() / 255.f; c0[3] = gstate.getMaterialAmbientA() / 255.f; } if (reader.hasUV()) { reader.ReadUV(uv); uv[0] *= uscale; uv[1] *= vscale; } fogCoef = 1.0f; // Scale UV? } else { // We do software T&L for now float out[3], norm[3]; float pos[3], nrm[3]; Vec3f normal(0, 0, 1); reader.ReadPos(pos); if (reader.hasNormal()) reader.ReadNrm(nrm); if (!skinningEnabled) { Vec3ByMatrix43(out, pos, gstate.worldMatrix); if (reader.hasNormal()) { Norm3ByMatrix43(norm, nrm, gstate.worldMatrix); normal = Vec3f(norm).Normalized(); } } else { float weights[8]; reader.ReadWeights(weights); // Skinning Vec3f psum(0,0,0); Vec3f nsum(0,0,0); for (int i = 0; i < vertTypeGetNumBoneWeights(vertType); i++) { if (weights[i] != 0.0f) { Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12); Vec3f tpos(out); psum += tpos * weights[i]; if (reader.hasNormal()) { Norm3ByMatrix43(norm, nrm, gstate.boneMatrix+i*12); Vec3f tnorm(norm); nsum += tnorm * weights[i]; } } } // Yes, we really must multiply by the world matrix too. Vec3ByMatrix43(out, psum.AsArray(), gstate.worldMatrix); if (reader.hasNormal()) { Norm3ByMatrix43(norm, nsum.AsArray(), gstate.worldMatrix); normal = Vec3f(norm).Normalized(); } } // Perform lighting here if enabled. don't need to check through, it's checked above. float unlitColor[4] = {1, 1, 1, 1}; if (reader.hasColor0()) { reader.ReadColor0(unlitColor); } else { unlitColor[0] = gstate.getMaterialAmbientR() / 255.f; unlitColor[1] = gstate.getMaterialAmbientG() / 255.f; unlitColor[2] = gstate.getMaterialAmbientB() / 255.f; unlitColor[3] = gstate.getMaterialAmbientA() / 255.f; } float litColor0[4]; float litColor1[4]; lighter.Light(litColor0, litColor1, unlitColor, out, normal); if (gstate.isLightingEnabled()) { // Don't ignore gstate.lmode - we should send two colors in that case for (int j = 0; j < 4; j++) { c0[j] = litColor0[j]; } if (lmode) { // Separate colors for (int j = 0; j < 4; j++) { c1[j] = litColor1[j]; } } else { // Summed color into c0 for (int j = 0; j < 4; j++) { c0[j] = ((c0[j] + litColor1[j]) > 1.0f) ? 1.0f : (c0[j] + litColor1[j]); } } } else { if (reader.hasColor0()) { for (int j = 0; j < 4; j++) { c0[j] = unlitColor[j]; } } else { c0[0] = gstate.getMaterialAmbientR() / 255.f; c0[1] = gstate.getMaterialAmbientG() / 255.f; c0[2] = gstate.getMaterialAmbientB() / 255.f; c0[3] = gstate.getMaterialAmbientA() / 255.f; } if (lmode) { for (int j = 0; j < 4; j++) { c1[j] = 0.0f; } } } float ruv[2] = {0.0f, 0.0f}; if (reader.hasUV()) reader.ReadUV(ruv); // Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights. switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // UV mapping case GE_TEXMAP_UNKNOWN: // Seen in Riviera. Unsure of meaning, but this works. // Texture scale/offset is only performed in this mode. if (scaleUV) { uv[0] = ruv[0]*gstate_c.uv.uScale + gstate_c.uv.uOff; uv[1] = ruv[1]*gstate_c.uv.vScale + gstate_c.uv.vOff; } else { uv[0] = ruv[0]; uv[1] = ruv[1]; } uv[2] = 1.0f; break; case GE_TEXMAP_TEXTURE_MATRIX: { // Projection mapping Vec3f source; switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: // Use model space XYZ as source source = pos; break; case GE_PROJMAP_UV: // Use unscaled UV as source source = Vec3f(ruv[0], ruv[1], 0.0f); break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source if (reader.hasNormal()) { source = Vec3f(norm).Normalized(); } else { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); source = Vec3f(0.0f, 0.0f, 1.0f); } break; case GE_PROJMAP_NORMAL: // Use non-normalized normal as source! if (reader.hasNormal()) { source = Vec3f(norm); } else { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); source = Vec3f(0.0f, 0.0f, 1.0f); } break; } float uvw[3]; Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix); uv[0] = uvw[0]; uv[1] = uvw[1]; uv[2] = uvw[2]; } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use two light sources to generate U and V. { Vec3f lightpos0 = Vec3f(gstate_c.lightpos[gstate.getUVLS0()]).Normalized(); Vec3f lightpos1 = Vec3f(gstate_c.lightpos[gstate.getUVLS1()]).Normalized(); uv[0] = (1.0f + Dot(lightpos0, normal))/2.0f; uv[1] = (1.0f - Dot(lightpos1, normal))/2.0f; uv[2] = 1.0f; } break; default: // Illegal ERROR_LOG_REPORT(G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode()); break; } uv[0] = uv[0] * widthFactor; uv[1] = uv[1] * heightFactor; // Transform the coord by the view matrix. Vec3ByMatrix43(v, out, gstate.viewMatrix); fogCoef = (v[2] + fog_end) * fog_slope; } // TODO: Write to a flexible buffer, we don't always need all four components. memcpy(&transformed[index].x, v, 3 * sizeof(float)); transformed[index].fog = fogCoef; memcpy(&transformed[index].u, uv, 3 * sizeof(float)); if (gstate_c.flipTexture) { transformed[index].v = 1.0f - transformed[index].v; } for (int i = 0; i < 4; i++) { transformed[index].color0[i] = c0[i] * 255.0f; } for (int i = 0; i < 3; i++) { transformed[index].color1[i] = c1[i] * 255.0f; } } // Here's the best opportunity to try to detect rectangles used to clear the screen, and // replace them with real OpenGL clears. This can provide a speedup on certain mobile chips. // Disabled for now - depth does not come out exactly the same. // // An alternative option is to simply ditch all the verts except the first and last to create a single // rectangle out of many. Quite a small optimization though. if (false && maxIndex > 1 && gstate.isModeClear() && prim == GE_PRIM_RECTANGLES && IsReallyAClear(maxIndex)) { u32 clearColor; memcpy(&clearColor, transformed[0].color0, 4); float clearDepth = transformed[0].z; const float col[4] = { ((clearColor & 0xFF)) / 255.0f, ((clearColor & 0xFF00) >> 8) / 255.0f, ((clearColor & 0xFF0000) >> 16) / 255.0f, ((clearColor & 0xFF000000) >> 24) / 255.0f, }; bool colorMask = gstate.isClearModeColorMask(); bool alphaMask = gstate.isClearModeAlphaMask(); glstate.colorMask.set(colorMask, colorMask, colorMask, alphaMask); if (alphaMask) { glstate.stencilTest.set(true); // Clear stencil // TODO: extract the stencilValue properly, see below int stencilValue = 0; glstate.stencilFunc.set(GL_ALWAYS, stencilValue, 255); } else { // Don't touch stencil glstate.stencilTest.set(false); } glstate.scissorTest.set(false); bool depthMask = gstate.isClearModeDepthMask(); int target = 0; if (colorMask || alphaMask) target |= GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT; if (depthMask) target |= GL_DEPTH_BUFFER_BIT; glClearColor(col[0], col[1], col[2], col[3]); #ifdef USING_GLES2 glClearDepthf(clearDepth); #else glClearDepth(clearDepth); #endif glClearStencil(0); // TODO - take from alpha? glClear(target); return; }
/** \brief Project a real-world coordinate. * * \param rpos Real world coordinate position. * \return 2D pixel position. */ math::vec2i project(const math::vec3f &rpos) const { math::vec4f tpos(rpos.x(), rpos.y(), rpos.z(), 1.0f); std::cout << "Projected position: " << get_matrix_stack() * tpos << std::endl; return this->convertTo2D(get_matrix_stack() * tpos); }
void TransformAndDrawPrim(void *verts, void *inds, int prim, int vertexCount, LinkedShader *program, float *customUV, int forceIndexType) { // First, decode the verts and apply morphing VertexDecoder dec; dec.SetVertexType(gstate.vertType); dec.DecodeVerts(decoded, verts, inds, prim, vertexCount); bool useTexCoord = false; // Check if anything needs updating if (gstate.textureChanged) { if (gstate.textureMapEnable && !(gstate.clearmode & 1)) { PSPSetTexture(); useTexCoord = true; } } // Then, transform and draw in one big swoop (urgh!) // need to move this to the shader. // We're gonna have to keep software transforming RECTANGLES, unless we use a geom shader which we can't on OpenGL ES 2.0. // Usually, though, these primitives don't use lighting etc so it's no biggie performance wise, but it would be nice to get rid of // this code. // Actually, if we find the camera-relative right and down vectors, it might even be possible to add the extra points in pre-transformed // space and thus make decent use of hardware transform. // Actually again, single quads could be drawn more efficiently using GL_TRIANGLE_STRIP, no need to duplicate verts as for // GL_TRIANGLES. Still need to sw transform to compute the extra two corners though. // Temporary storage for RECTANGLES emulation float v2[3] = {0}; float uv2[2] = {0}; int numTrans = 0; TransformedVertex *trans = &transformed[0]; // TODO: Could use glDrawElements in some cases, see below. // TODO: Split up into multiple draw calls for Android where you can't guarantee support for more than 0x10000 verts. int i = 0; #ifdef ANDROID if (vertexCount > 0x10000/3) vertexCount = 0x10000/3; #endif for (int i = 0; i < vertexCount; i++) { int indexType = (gstate.vertType & GE_VTYPE_IDX_MASK); if (forceIndexType != -1) { indexType = forceIndexType; } int index; if (indexType == GE_VTYPE_IDX_8BIT) { index = ((u8*)inds)[i]; } else if (indexType == GE_VTYPE_IDX_16BIT) { index = ((u16*)inds)[i]; } else { index = i; } float v[3] = {0,0,0}; float c[4] = {1,1,1,1}; float uv[2] = {0,0}; if (gstate.vertType & GE_VTYPE_THROUGH_MASK) { // Do not touch the coordinates or the colors. No lighting. for (int j=0; j<3; j++) v[j] = decoded[index].pos[j]; // TODO : check if has color for (int j=0; j<4; j++) c[j] = decoded[index].color[j]; // TODO : check if has uv for (int j=0; j<2; j++) uv[j] = decoded[index].uv[j]; //Rescale UV? } else { //We do software T&L for now float out[3], norm[3]; if ((gstate.vertType & GE_VTYPE_WEIGHT_MASK) == GE_VTYPE_WEIGHT_NONE) { Vec3ByMatrix43(out, decoded[index].pos, gstate.worldMatrix); Norm3ByMatrix43(norm, decoded[index].normal, gstate.worldMatrix); } else { Vec3 psum(0,0,0); Vec3 nsum(0,0,0); int nweights = (gstate.vertType & GE_VTYPE_WEIGHT_MASK) >> GE_VTYPE_WEIGHT_SHIFT; for (int i = 0; i < nweights; i++) { Vec3ByMatrix43(out, decoded[index].pos, gstate.boneMatrix+i*12); Norm3ByMatrix43(norm, decoded[index].normal, gstate.boneMatrix+i*12); Vec3 tpos(out), tnorm(norm); psum += tpos*decoded[index].weights[i]; nsum += tnorm*decoded[index].weights[i]; } nsum.Normalize(); psum.Write(out); nsum.Write(norm); } // Perform lighting here if enabled. don't need to check through, it's checked above. float dots[4] = {0,0,0,0}; if (program->a_color0 != -1) { //c[1] = norm[1]; float litColor[4] = {0,0,0,0}; Light(litColor, decoded[index].color, out, norm, dots); if (gstate.lightingEnable & 1) { memcpy(c, litColor, sizeof(litColor)); } else { // no lighting? copy the color. for (int j=0; j<4; j++) c[j] = decoded[index].color[j]; } } else { // no color in the fragment program??? for (int j=0; j<4; j++) c[j] = decoded[index].color[j]; } if (customUV) { uv[0] = customUV[index * 2 + 0]*gstate.uScale + gstate.uOff; uv[1] = customUV[index * 2 + 1]*gstate.vScale + gstate.vOff; } else { // Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights. switch (gstate.texmapmode & 0x3) { case 0: // UV mapping // Texture scale/offset is only performed in this mode. uv[0] = decoded[index].uv[0]*gstate.uScale + gstate.uOff; uv[1] = decoded[index].uv[1]*gstate.vScale + gstate.vOff; break; case 1: { // Projection mapping Vec3 source; switch ((gstate.texmapmode >> 8) & 0x3) { case 0: // Use model space XYZ as source source = decoded[index].pos; break; case 1: // Use unscaled UV as source source = Vec3(decoded[index].uv[0], decoded[index].uv[1], 0.0f); break; case 2: // Use normalized normal as source source = Vec3(norm).Normalized(); break; case 3: // Use non-normalized normal as source! source = Vec3(norm); break; } float uvw[3]; Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix); uv[0] = uvw[0]; uv[1] = uvw[1]; } break; case 2: // Shade mapping { int lightsource1 = gstate.texshade & 0x3; int lightsource2 = (gstate.texshade >> 8) & 0x3; uv[0] = dots[lightsource1]; uv[1] = dots[lightsource2]; } break; case 3: // Illegal break; } } // Transform the coord by the view matrix. Should this be done before or after texcoord generation? Vec3ByMatrix43(v, out, gstate.viewMatrix); } // We need to tesselate axis-aligned rectangles, as they're only specified by two coordinates. if (prim == GE_PRIM_RECTANGLES) { if ((i & 1) == 0) { // Save this vertex so we can generate when we get the next one. Color is taken from the last vertex. memcpy(v2, v, sizeof(float)*3); memcpy(uv2,uv,sizeof(float)*2); } else { // We have to turn the rectangle into two triangles, so 6 points. Sigh. // top left trans->x = v[0]; trans->y = v[1]; trans->z = v[2]; trans->uv[0] = uv[0]; trans->uv[1] = uv[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // top right trans->x = v2[0]; trans->y = v[1]; trans->z = v[2]; trans->uv[0] = uv2[0]; trans->uv[1] = uv[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // bottom right trans->x = v2[0]; trans->y = v2[1]; trans->z = v[2]; trans->uv[0] = uv2[0]; trans->uv[1] = uv2[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // bottom left trans->x = v[0]; trans->y = v2[1]; trans->z = v[2]; trans->uv[0] = uv[0]; trans->uv[1] = uv2[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // top left trans->x = v[0]; trans->y = v[1]; trans->z = v[2]; trans->uv[0] = uv[0]; trans->uv[1] = uv[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; // bottom right trans->x = v2[0]; trans->y = v2[1]; trans->z = v[2]; trans->uv[0] = uv2[0]; trans->uv[1] = uv2[1]; memcpy(trans->color, c, 4*sizeof(float)); trans++; numTrans += 6; } } else { memcpy(&trans->x, v, 3*sizeof(float)); memcpy(trans->color, c, 4*sizeof(float)); memcpy(trans->uv, uv, 2*sizeof(float)); trans++; numTrans++; } } glEnableVertexAttribArray(program->a_position); if (useTexCoord && program->a_texcoord != -1) glEnableVertexAttribArray(program->a_texcoord); if (program->a_color0 != -1) glEnableVertexAttribArray(program->a_color0); const int vertexSize = sizeof(*trans); glVertexAttribPointer(program->a_position, 3, GL_FLOAT, GL_FALSE, vertexSize, transformed); if (useTexCoord && program->a_texcoord != -1) glVertexAttribPointer(program->a_texcoord, 2, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)transformed) + 3 * 4); if (program->a_color0 != -1) glVertexAttribPointer(program->a_color0, 4, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)transformed) + 5 * 4); // NOTICE_LOG(G3D,"DrawPrimitive: %i", numTrans); glDrawArrays(glprim[prim], 0, numTrans); glDisableVertexAttribArray(program->a_position); if (useTexCoord && program->a_texcoord != -1) glDisableVertexAttribArray(program->a_texcoord); if (program->a_color0 != -1) glDisableVertexAttribArray(program->a_color0); /* if (((gstate.vertType ) & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_8BIT) { glDrawElements(glprim, vertexCount, GL_UNSIGNED_BYTE, inds); } else if (((gstate.vertType ) & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT) { glDrawElements(glprim, vertexCount, GL_UNSIGNED_SHORT, inds); } else {*/ }
void TestTriangulationWidget::paintEvent(QPaintEvent *) { QPainter paint(this); QPen pen; QBrush brush; brush.setColor(Qt::blue); for(int i=0; i < points_.size(); i++) { if(i == selected_id0_) { pen.setColor(Qt::red); } else if(i == selected_id1_) { pen.setColor(Qt::green); } else { pen.setColor(Qt::blue); } pen.setWidth(3); paint.setPen(pen); QPoint tpos((int)points_[i][0],(int)points_[i][1]); paint.drawEllipse(tpos,5,5); } for(int i=0; i < edges_.size(); i++) { if(boundary_markers_[i]) { pen.setColor(Qt::red); } else { pen.setColor(Qt::green); } pen.setWidth(3); Vec3 p0 = points_[edges_[i][0]]; Vec3 p1 = points_[edges_[i][1]]; paint.setPen(pen); paint.drawLine((int)p0[0],(int)p0[1],(int)p1[0],(int)p1[1]); } for(int i=0; i < new_points_.size(); i++) { pen.setColor(Qt::black); pen.setWidth(2); paint.setPen(pen); QPoint tpos((int)new_points_[i][0],(int)new_points_[i][1]); paint.drawEllipse(tpos,2,2); } for(int i=0; i < triangles_.size(); i++) { pen.setColor(Qt::blue); pen.setWidth(1); paint.setPen(pen); for(int j=0; j < 3; j++) { Vec3 p0 = new_points_[triangles_[i][j]]; Vec3 p1 = new_points_[triangles_[i][(j+1)%3]]; paint.setPen(pen); paint.drawLine((int)p0[0],(int)p0[1],(int)p1[0],(int)p1[1]); } } }
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning. // The rest of the transform pipeline like lighting will go as normal, either hardware or software. // The implementation is initially a bit inefficient but shouldn't be a big deal. // An intermediate buffer of not-easy-to-predict size is stored at bufPtr. u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, VertexDecoder *dec, int lowerBound, int upperBound, u32 vertType) { // First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate // implementation of the vertex decoder. dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound); // OK, morphing eliminated but bones still remain to be taken care of. // Let's do a partial software transform where we only do skinning. VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType); SimpleVertex *sverts = (SimpleVertex *)outPtr; const u8 defaultColor[4] = { (u8)gstate.getMaterialAmbientR(), (u8)gstate.getMaterialAmbientG(), (u8)gstate.getMaterialAmbientB(), (u8)gstate.getMaterialAmbientA(), }; // Let's have two separate loops, one for non skinning and one for skinning. if (!g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) { int numBoneWeights = vertTypeGetNumBoneWeights(vertType); for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } if (vertType & GE_VTYPE_COL_MASK) { reader.ReadColor0_8888(sv.color); } else { memcpy(sv.color, defaultColor, 4); } float nrm[3], pos[3]; float bnrm[3], bpos[3]; if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tesselation anyway, not sure if any need to supply reader.ReadNrm(nrm); } else { nrm[0] = 0; nrm[1] = 0; nrm[2] = 1.0f; } reader.ReadPos(pos); // Apply skinning transform directly float weights[8]; reader.ReadWeights(weights); // Skinning Vec3Packedf psum(0,0,0); Vec3Packedf nsum(0,0,0); for (int w = 0; w < numBoneWeights; w++) { if (weights[w] != 0.0f) { Vec3ByMatrix43(bpos, pos, gstate.boneMatrix+w*12); Vec3Packedf tpos(bpos); psum += tpos * weights[w]; Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix+w*12); Vec3Packedf tnorm(bnrm); nsum += tnorm * weights[w]; } } sv.pos = psum; sv.nrm = nsum; } } else { for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } else { sv.uv[0] = 0; // This will get filled in during tesselation sv.uv[1] = 0; } if (vertType & GE_VTYPE_COL_MASK) { reader.ReadColor0_8888(sv.color); } else { memcpy(sv.color, defaultColor, 4); } if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tesselation anyway, not sure if any need to supply reader.ReadNrm((float *)&sv.nrm); } else { sv.nrm.x = 0; sv.nrm.y = 0; sv.nrm.z = 1.0f; } reader.ReadPos((float *)&sv.pos); } } // Okay, there we are! Return the new type (but keep the index bits) return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & (GE_VTYPE_IDX_MASK | GE_VTYPE_THROUGH)); }
void SoftwareTransform( int prim, int vertexCount, u32 vertType, u16 *&inds, int indexType, const DecVtxFormat &decVtxFormat, int &maxIndex, TransformedVertex *&drawBuffer, int &numTrans, bool &drawIndexed, const SoftwareTransformParams *params, SoftwareTransformResult *result) { u8 *decoded = params->decoded; FramebufferManagerCommon *fbman = params->fbman; TextureCacheCommon *texCache = params->texCache; TransformedVertex *transformed = params->transformed; TransformedVertex *transformedExpanded = params->transformedExpanded; float ySign = 1.0f; bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); // TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts. #if defined(MOBILE_DEVICE) if (vertexCount > 0x10000/3) vertexCount = 0x10000/3; #endif float uscale = 1.0f; float vscale = 1.0f; if (throughmode) { uscale /= gstate_c.curTextureWidth; vscale /= gstate_c.curTextureHeight; } bool skinningEnabled = vertTypeIsSkinningEnabled(vertType); const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); float widthFactor = (float) w / (float) gstate_c.curTextureWidth; float heightFactor = (float) h / (float) gstate_c.curTextureHeight; Lighter lighter(vertType); float fog_end = getFloat24(gstate.fog1); float fog_slope = getFloat24(gstate.fog2); // Same fixup as in ShaderManager.cpp if (my_isinf(fog_slope)) { // not really sure what a sensible value might be. fog_slope = fog_slope < 0.0f ? -10000.0f : 10000.0f; } if (my_isnan(fog_slope)) { // Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988 // Just put the fog far away at a large finite distance. // Infinities and NaNs are rather unpredictable in shaders on many GPUs // so it's best to just make it a sane calculation. fog_end = 100000.0f; fog_slope = 1.0f; } VertexReader reader(decoded, decVtxFormat, vertType); if (throughmode) { for (int index = 0; index < maxIndex; index++) { // Do not touch the coordinates or the colors. No lighting. reader.Goto(index); // TODO: Write to a flexible buffer, we don't always need all four components. TransformedVertex &vert = transformed[index]; reader.ReadPos(vert.pos); if (reader.hasColor0()) { reader.ReadColor0_8888(vert.color0); } else { vert.color0_32 = gstate.getMaterialAmbientRGBA(); } if (reader.hasUV()) { reader.ReadUV(vert.uv); vert.u *= uscale; vert.v *= vscale; } else { vert.u = 0.0f; vert.v = 0.0f; } // Ignore color1 and fog, never used in throughmode anyway. // The w of uv is also never used (hardcoded to 1.0.) } } else { // Okay, need to actually perform the full transform. for (int index = 0; index < maxIndex; index++) { reader.Goto(index); float v[3] = {0, 0, 0}; Vec4f c0 = Vec4f(1, 1, 1, 1); Vec4f c1 = Vec4f(0, 0, 0, 0); float uv[3] = {0, 0, 1}; float fogCoef = 1.0f; // We do software T&L for now float out[3]; float pos[3]; Vec3f normal(0, 0, 1); Vec3f worldnormal(0, 0, 1); reader.ReadPos(pos); if (!skinningEnabled) { Vec3ByMatrix43(out, pos, gstate.worldMatrix); if (reader.hasNormal()) { reader.ReadNrm(normal.AsArray()); if (gstate.areNormalsReversed()) { normal = -normal; } Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix); worldnormal = worldnormal.Normalized(); } } else { float weights[8]; reader.ReadWeights(weights); if (reader.hasNormal()) reader.ReadNrm(normal.AsArray()); // Skinning Vec3f psum(0, 0, 0); Vec3f nsum(0, 0, 0); for (int i = 0; i < vertTypeGetNumBoneWeights(vertType); i++) { if (weights[i] != 0.0f) { Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12); Vec3f tpos(out); psum += tpos * weights[i]; if (reader.hasNormal()) { Vec3f norm; Norm3ByMatrix43(norm.AsArray(), normal.AsArray(), gstate.boneMatrix+i*12); nsum += norm * weights[i]; } } } // Yes, we really must multiply by the world matrix too. Vec3ByMatrix43(out, psum.AsArray(), gstate.worldMatrix); if (reader.hasNormal()) { normal = nsum; if (gstate.areNormalsReversed()) { normal = -normal; } Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix); worldnormal = worldnormal.Normalized(); } } // Perform lighting here if enabled. don't need to check through, it's checked above. Vec4f unlitColor = Vec4f(1, 1, 1, 1); if (reader.hasColor0()) { reader.ReadColor0(&unlitColor.x); } else { unlitColor = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA()); } if (gstate.isLightingEnabled()) { float litColor0[4]; float litColor1[4]; lighter.Light(litColor0, litColor1, unlitColor.AsArray(), out, worldnormal); // Don't ignore gstate.lmode - we should send two colors in that case for (int j = 0; j < 4; j++) { c0[j] = litColor0[j]; } if (lmode) { // Separate colors for (int j = 0; j < 4; j++) { c1[j] = litColor1[j]; } } else { // Summed color into c0 (will clamp in ToRGBA().) for (int j = 0; j < 4; j++) { c0[j] += litColor1[j]; } } } else { if (reader.hasColor0()) { for (int j = 0; j < 4; j++) { c0[j] = unlitColor[j]; } } else { c0 = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA()); } if (lmode) { // c1 is already 0. } } float ruv[2] = {0.0f, 0.0f}; if (reader.hasUV()) reader.ReadUV(ruv); // Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights. switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // UV mapping case GE_TEXMAP_UNKNOWN: // Seen in Riviera. Unsure of meaning, but this works. // We always prescale in the vertex decoder now. uv[0] = ruv[0]; uv[1] = ruv[1]; uv[2] = 1.0f; break; case GE_TEXMAP_TEXTURE_MATRIX: { // Projection mapping Vec3f source; switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: // Use model space XYZ as source source = pos; break; case GE_PROJMAP_UV: // Use unscaled UV as source source = Vec3f(ruv[0], ruv[1], 0.0f); break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source source = normal.Normalized(); if (!reader.hasNormal()) { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); } break; case GE_PROJMAP_NORMAL: // Use non-normalized normal as source! source = normal; if (!reader.hasNormal()) { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); } break; } float uvw[3]; Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix); uv[0] = uvw[0]; uv[1] = uvw[1]; uv[2] = uvw[2]; } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use two light sources to generate U and V. { Vec3f lightpos0 = Vec3f(&lighter.lpos[gstate.getUVLS0() * 3]).Normalized(); Vec3f lightpos1 = Vec3f(&lighter.lpos[gstate.getUVLS1() * 3]).Normalized(); uv[0] = (1.0f + Dot(lightpos0, worldnormal))/2.0f; uv[1] = (1.0f + Dot(lightpos1, worldnormal))/2.0f; uv[2] = 1.0f; } break; default: // Illegal ERROR_LOG_REPORT(G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode()); break; } uv[0] = uv[0] * widthFactor; uv[1] = uv[1] * heightFactor; // Transform the coord by the view matrix. Vec3ByMatrix43(v, out, gstate.viewMatrix); fogCoef = (v[2] + fog_end) * fog_slope; // TODO: Write to a flexible buffer, we don't always need all four components. memcpy(&transformed[index].x, v, 3 * sizeof(float)); transformed[index].fog = fogCoef; memcpy(&transformed[index].u, uv, 3 * sizeof(float)); transformed[index].color0_32 = c0.ToRGBA(); transformed[index].color1_32 = c1.ToRGBA(); // The multiplication by the projection matrix is still performed in the vertex shader. // So is vertex depth rounding, to simulate the 16-bit depth buffer. } } // Here's the best opportunity to try to detect rectangles used to clear the screen, and // replace them with real clears. This can provide a speedup on certain mobile chips. // // An alternative option is to simply ditch all the verts except the first and last to create a single // rectangle out of many. Quite a small optimization though. // Experiment: Disable on PowerVR (see issue #6290) // TODO: This bleeds outside the play area in non-buffered mode. Big deal? Probably not. bool reallyAClear = false; if (maxIndex > 1 && prim == GE_PRIM_RECTANGLES && gstate.isModeClear()) { int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; reallyAClear = IsReallyAClear(transformed, maxIndex, scissorX2, scissorY2); } if (reallyAClear && gl_extensions.gpuVendor != GPU_VENDOR_POWERVR) { // && g_Config.iRenderingMode != FB_NON_BUFFERED_MODE) { // If alpha is not allowed to be separate, it must match for both depth/stencil and color. Vulkan requires this. bool alphaMatchesColor = gstate.isClearModeColorMask() == gstate.isClearModeAlphaMask(); bool depthMatchesStencil = gstate.isClearModeAlphaMask() == gstate.isClearModeDepthMask(); if (params->allowSeparateAlphaClear || (alphaMatchesColor && depthMatchesStencil)) { result->color = transformed[1].color0_32; // Need to rescale from a [0, 1] float. This is the final transformed value. result->depth = ToScaledDepth((s16)(int)(transformed[1].z * 65535.0f)); result->action = SW_CLEAR; return; } } // This means we're using a framebuffer (and one that isn't big enough.) if (gstate_c.curTextureHeight < (u32)h && maxIndex >= 2) { // Even if not rectangles, this will detect if either of the first two are outside the framebuffer. // HACK: Adding one pixel margin to this detection fixes issues in Assassin's Creed : Bloodlines, // while still keeping BOF working (see below). const float invTexH = 1.0f / gstate_c.curTextureHeight; // size of one texel. bool tlOutside; bool tlAlmostOutside; bool brOutside; // If we're outside heightFactor, then v must be wrapping or clamping. Avoid this workaround. // If we're <= 1.0f, we're inside the framebuffer (workaround not needed.) // We buffer that 1.0f a little more with a texel to avoid some false positives. tlOutside = transformed[0].v <= heightFactor && transformed[0].v > 1.0f + invTexH; brOutside = transformed[1].v <= heightFactor && transformed[1].v > 1.0f + invTexH; // Careful: if br is outside, but tl is well inside, this workaround still doesn't make sense. // We go with halfway, since we overestimate framebuffer heights sometimes but not by much. tlAlmostOutside = transformed[0].v <= heightFactor && transformed[0].v >= 0.5f; if (tlOutside || (brOutside && tlAlmostOutside)) { // Okay, so we're texturing from outside the framebuffer, but inside the texture height. // Breath of Fire 3 does this to access a render surface at an offset. const u32 bpp = fbman->GetTargetFormat() == GE_FORMAT_8888 ? 4 : 2; const u32 prevH = texCache->AttachedDrawingHeight(); const u32 fb_size = bpp * fbman->GetTargetStride() * prevH; const u32 prevYOffset = gstate_c.curTextureYOffset; if (texCache->SetOffsetTexture(fb_size)) { const float oldWidthFactor = widthFactor; const float oldHeightFactor = heightFactor; widthFactor = (float) w / (float) gstate_c.curTextureWidth; heightFactor = (float) h / (float) gstate_c.curTextureHeight; // We've already baked in the old gstate_c.curTextureYOffset, so correct. const float yDiff = (float) (prevH + prevYOffset - gstate_c.curTextureYOffset) / (float) h; for (int index = 0; index < maxIndex; ++index) { transformed[index].u *= widthFactor / oldWidthFactor; // Inverse it back to scale to the new FBO, and add 1.0f to account for old FBO. transformed[index].v = (transformed[index].v / oldHeightFactor - yDiff) * heightFactor; } } } } // Step 2: expand rectangles. drawBuffer = transformed; numTrans = 0; drawIndexed = false; if (prim != GE_PRIM_RECTANGLES) { // We can simply draw the unexpanded buffer. numTrans = vertexCount; drawIndexed = true; } else { bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE; if (useBufferedRendering) ySign = -ySign; float flippedMatrix[16]; if (!throughmode) { memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float)); const bool invertedY = useBufferedRendering ? (gstate_c.vpHeight < 0) : (gstate_c.vpHeight > 0); if (invertedY) { flippedMatrix[1] = -flippedMatrix[1]; flippedMatrix[5] = -flippedMatrix[5]; flippedMatrix[9] = -flippedMatrix[9]; flippedMatrix[13] = -flippedMatrix[13]; } const bool invertedX = gstate_c.vpWidth < 0; if (invertedX) { flippedMatrix[0] = -flippedMatrix[0]; flippedMatrix[4] = -flippedMatrix[4]; flippedMatrix[8] = -flippedMatrix[8]; flippedMatrix[12] = -flippedMatrix[12]; } } //rectangles always need 2 vertices, disregard the last one if there's an odd number vertexCount = vertexCount & ~1; numTrans = 0; drawBuffer = transformedExpanded; TransformedVertex *trans = &transformedExpanded[0]; const u16 *indsIn = (const u16 *)inds; u16 *newInds = inds + vertexCount; u16 *indsOut = newInds; maxIndex = 4 * vertexCount; for (int i = 0; i < vertexCount; i += 2) { const TransformedVertex &transVtxTL = transformed[indsIn[i + 0]]; const TransformedVertex &transVtxBR = transformed[indsIn[i + 1]]; // We have to turn the rectangle into two triangles, so 6 points. // This is 4 verts + 6 indices. // bottom right trans[0] = transVtxBR; // top right trans[1] = transVtxBR; trans[1].y = transVtxTL.y; trans[1].v = transVtxTL.v; // top left trans[2] = transVtxBR; trans[2].x = transVtxTL.x; trans[2].y = transVtxTL.y; trans[2].u = transVtxTL.u; trans[2].v = transVtxTL.v; // bottom left trans[3] = transVtxBR; trans[3].x = transVtxTL.x; trans[3].u = transVtxTL.u; // That's the four corners. Now process UV rotation. if (throughmode) RotateUVThrough(trans); else RotateUV(trans, flippedMatrix, ySign); // Triangle: BR-TR-TL indsOut[0] = i * 2 + 0; indsOut[1] = i * 2 + 1; indsOut[2] = i * 2 + 2; // Triangle: BL-BR-TL indsOut[3] = i * 2 + 3; indsOut[4] = i * 2 + 0; indsOut[5] = i * 2 + 2; trans += 4; indsOut += 6; numTrans += 6; } inds = newInds; drawIndexed = true; // We don't know the color until here, so we have to do it now, instead of in StateMapping. // Might want to reconsider the order of things later... if (gstate.isModeClear() && gstate.isClearModeAlphaMask()) { result->setStencil = true; if (vertexCount > 1) { // Take the bottom right alpha value of the first rect as the stencil value. // Technically, each rect could individually fill its stencil, but most of the // time they use the same one. result->stencilValue = transformed[indsIn[1]].color0[3]; } else { result->stencilValue = 0; } } } result->action = SW_DRAW_PRIMITIVES; }
bool SpriteModel::load_model(string filepath, vector<VertexPos>& vertexbuffer, vector<int>& indexbuffer, vector<SubSet>& sets) { if (!dread.load_all_blocks(filepath)) return false; dread.analysis_blocks(); int count = dread.get_data_num_by_name("model"); vector< vector<string> > res0 = dread.get_data_by_name("draw_vertice"); vector< vector<string> > res1 = dread.get_data_by_name("colli_vertice"); vector< vector<string> > res2 = dread.get_data_by_name("shapetype"); vector< vector<string> > res3 = dread.get_data_by_name("bodytype"); vector< vector<string> > res4 = dread.get_data_by_name("texcoord"); vector< vector<string> > res5 = dread.get_data_by_name("index"); //note that every model must define animation(because of my laziness) vector< vector<string> > res6 = dread.get_data_by_name("animation");//animation number is size/3; read each of them and pushback vector< vector<string> > res7 = dread.get_data_by_name("interval"); vector< vector<string> > res8 = dread.get_data_by_name("defanime"); vector< vector<string> > res9 = dread.get_data_by_name("distvh"); vector< vector<string> > res10 = dread.get_data_by_name("zorder"); if (!(res0.size() == count && res1.size() == count && res2.size() == count && res3.size() == count && res4.size() == count &&res5.size() == count && res6.size() == count && res7.size() == count && res8.size() == count && res9.size() == count && res10.size() == count)) { MessageBox(0, "syntax error: coponents' number doesn't match!", 0, 0); return false; } stringstream ss; for (int i = 0; i < count; i++) { vector<b2Shape::Type> shapetype; b2BodyType bodytype; int setnum = 0; vector< vector<b2Vec2> > vertdraw; vector< vector<b2Vec2> > vertcolli; vector<animation> animes; int interval = 0; int defanime = 0; float distv, disth; //animation int flag = 1; animation a; a = { 0, 1, 1, -1, 0, 0, 0, 0 }; bool isanime = true; for (int j = 0; j < res6[i].size(); j++) { ss << res6[i][j]; switch (flag) { case 1: ss >> a.framecount; if (a.framecount == 0) { isanime = false; } break; case 2: ss >> a.column; break; case 3: ss >> a.startcolumn; break; case 4: ss >> a.origin_texco_transX; break; case 5: ss >> a.origin_texco_transY; flag = 0; animes.push_back(a); break; } ss.clear(); flag++; if (isanime == false) { break; } } //intervel ss << res7[i][0]; ss >> interval; ss.clear(); //defanime ss << res8[i][0]; ss >> defanime; ss.clear(); //distvh ss << res9[i][0]; ss >> distv; ss.clear(); ss << res9[i][1]; ss >> disth; ss.clear(); //shapetype for (int j = 0; j < res2[i].size(); j++) { if (res2[i][j] == "edge") { shapetype.push_back(b2Shape::Type::e_edge); } else if (res2[i][j] == "closeedge") { shapetype.push_back(b2Shape::Type::e_closeedge); } else if (res2[i][j] == "circle") { shapetype.push_back(b2Shape::Type::e_circle); } else if (res2[i][j] == "polygon") { shapetype.push_back(b2Shape::Type::e_polygon); } } //bodytype if (res3[i][0] == "static") bodytype = b2BodyType::b2_staticBody; else if (res3[i][0] == "dynamic") bodytype = b2BodyType::b2_dynamicBody; else if (res3[i][0] == "kinematic") bodytype = b2BodyType::b2_kinematicBody; //setnum setnum = i; //vertdraw and vertcolli vector<b2Vec2> vertdrawgroup; for (int j = 0; j < res0[i].size(); ) { if (res0[i][j] == "*-*") { vertdraw.push_back(vertdrawgroup); vertdrawgroup.clear(); j++; continue; } //else b2Vec2 tpos(0, 0); ss << res0[i][j]; ss >> tpos.x; ss.clear(); ss << res0[i][j + 1]; ss >> tpos.y; ss.clear(); vertdrawgroup.push_back(tpos); j += 2; } vector<b2Vec2> vertcolligroup; for (int j = 0; j < res1[i].size(); ) { if (res1[i][j] == "*-*") { vertcolli.push_back(vertcolligroup); vertcolligroup.clear(); j++; continue; } //else b2Vec2 tpos(0, 0); ss << res1[i][j]; ss >> tpos.x; ss.clear(); ss << res1[i][j + 1]; ss >> tpos.y; ss.clear(); vertcolligroup.push_back(tpos); j += 2; } //Model SModel sm = { bodytype, shapetype, vertdraw, vertcolli, setnum, animes, interval, defanime, distv, disth }; Models.push_back(sm); } //create vertex, index buffer and subsets //subsets for (int i = 0; i < count; i++) { SubSet s; sets.push_back(s); } //vertex ss.clear(); for (int i = 0; i < count; i++) { if (res0[i].size() != res4[i].size()) { MessageBox(0, "vertdraw and texcoords doesn't match!", 0, 0); return false; } ss.clear(); ss << res10[i][0]; double zorder = 0.0; ss >> zorder; ss.clear(); sets[i].basevertexlocation = vertexbuffer.size(); for (int j = 0; j < res0[i].size(); ) { if (res0[i][j] == "*-*" && res4[i][j] == "*-*") { j++; continue; } VertexPos tpos = { XMFLOAT3(0, 0, zorder), XMFLOAT2(0, 0) }; //vertex ss << res0[i][j]; ss >> tpos.pos.x; ss.clear(); ss << res0[i][j + 1]; ss >> tpos.pos.y; ss.clear(); //texcoords ss << res4[i][j]; ss >> tpos.tex0.x; ss.clear(); ss << res4[i][j + 1]; ss >> tpos.tex0.y; ss.clear(); vertexbuffer.push_back(tpos); j += 2; } } //index for (int i = 0; i < count; i++) { sets[i].startindexlocation = indexbuffer.size(); for (int j = 0; j < res5[i].size(); j++) { int t = 0; ss << res5[i][j]; ss >> t; indexbuffer.push_back(t); sets[i].indexcount++; ss.clear(); } } return true; }
void RNMarchingCubesBase<T>::RenderT(sInt start,sInt count,sInt thread) { for(sInt i_=start;i_<start+count;i_++) { HashContainer *hc = ThreadHashConts[i_]; PartContainer *con = hc->FirstPart; const sInt s = 1<<base; const sInt m = (s+1); const sInt mm = (s+1)*(s+1); sF32 S = Para.GridSize/s; sVector31 tpos(hc->IX*Para.GridSize,hc->IY*Para.GridSize,hc->IZ*Para.GridSize); // sInt size = (s+2)*(s+1)*(s+1); typename T::FieldType *pot = PotData[thread]; funcinfo fi; // calculate potential and normal sClear(fi); fi.tresh = 1/(Para.Influence*Para.Influence); fi.treshf = 1.0f/fi.tresh-0.00001f; fi.iso = Para.IsoValue; // reorganize array for SIMD sInt pn4 = 0; PartContainer *cp = con; while(cp) { pn4 += (cp->Count+3)/4; cp = cp->Next; } fi.tresh4 = _mm_load_ps1(&fi.tresh); fi.treshf4 = _mm_load_ps1(&fi.treshf); fi.one = _mm_set_ps1(1.0f); fi.epsilon = _mm_set_ps1(0.01f); fi.pn4 = pn4; fi.parts4 = SimdParts[thread]; sInt i4 = 0; typename T::PartType far; far.x = 1024*1024; far.y = 0; far.z = 0; cp = con; while(cp) { sInt pn = cp->Count; typename T::PartType *p = cp->Parts; switch(pn&3) { case 1: p[pn+2] = far; case 2: p[pn+1] = far; case 3: p[pn+0] = far; case 0: break; } for(sInt i=0;i<(pn+3)/4;i++) { fi.parts4[i4].x.m128_f32[0] = p[0].x; fi.parts4[i4].x.m128_f32[1] = p[1].x; fi.parts4[i4].x.m128_f32[2] = p[2].x; fi.parts4[i4].x.m128_f32[3] = p[3].x; fi.parts4[i4].y.m128_f32[0] = p[0].y; fi.parts4[i4].y.m128_f32[1] = p[1].y; fi.parts4[i4].y.m128_f32[2] = p[2].y; fi.parts4[i4].y.m128_f32[3] = p[3].y; fi.parts4[i4].z.m128_f32[0] = p[0].z; fi.parts4[i4].z.m128_f32[1] = p[1].z; fi.parts4[i4].z.m128_f32[2] = p[2].z; fi.parts4[i4].z.m128_f32[3] = p[3].z; if(T::Color) { fi.parts4[i4].cr.m128_f32[0] = ((p[0].c>>16)&255)/255.0f; fi.parts4[i4].cr.m128_f32[1] = ((p[1].c>>16)&255)/255.0f; fi.parts4[i4].cr.m128_f32[2] = ((p[2].c>>16)&255)/255.0f; fi.parts4[i4].cr.m128_f32[3] = ((p[3].c>>16)&255)/255.0f; fi.parts4[i4].cg.m128_f32[0] = ((p[0].c>> 8)&255)/255.0f; fi.parts4[i4].cg.m128_f32[1] = ((p[1].c>> 8)&255)/255.0f; fi.parts4[i4].cg.m128_f32[2] = ((p[2].c>> 8)&255)/255.0f; fi.parts4[i4].cg.m128_f32[3] = ((p[3].c>> 8)&255)/255.0f; fi.parts4[i4].cb.m128_f32[0] = ((p[0].c>> 0)&255)/255.0f; fi.parts4[i4].cb.m128_f32[1] = ((p[1].c>> 0)&255)/255.0f; fi.parts4[i4].cb.m128_f32[2] = ((p[2].c>> 0)&255)/255.0f; fi.parts4[i4].cb.m128_f32[3] = ((p[3].c>> 0)&255)/255.0f; } p+=4; i4++; } cp = cp->Next; } sVERIFY(i4==fi.pn4); // pass 1: skip every second vertex for(sInt z=0;z<s+1;z++) { for(sInt y=0;y<s+1;y++) { for(sInt x=0;x<s+1;x++) { sVector31 v = sVector30(x,y,z) * S + tpos; func(v,pot[z*mm+y*m+x],fi); } } } // subdivision schemes if(subdiv==0) // none { // i don't understand, but manually inlining this makes things a bit faster... // MC.March(Para.BaseGrid,pot,S,tpos); switch(base) { case 0: MC.March_0_1(pot,S,tpos,thread); break; case 1: MC.March_1_1(pot,S,tpos,thread); break; case 2: MC.March_2_1(pot,S,tpos,thread); break; case 3: MC.March_3_1(pot,S,tpos,thread); break; case 4: MC.March_4_1(pot,S,tpos,thread); break; case 5: MC.March_5_1(pot,S,tpos,thread); break; default: sVERIFYFALSE; } } else // subdiv once { typename T::FieldType pot2[4][3][3]; sVector31 v; typename T::FieldType pot2y[s][4]; sInt lastyz[s]; for(sInt i=0;i<s;i++) lastyz[i] = -2; for(sInt z=0;z<s;z++) { sInt LastY = -2; for(sInt y=0;y<s;y++) { sInt LastX = -2; for(sInt x=0;x<s;x++) { sU32 flo,ma,mo; flo = *(sU32 *)&pot[(z+0)*mm+(y+0)*m+(x+0)].w; ma = flo; mo = flo; flo = *(sU32 *)&pot[(z+0)*mm+(y+0)*m+(x+1)].w; ma &= flo; mo |= flo; flo = *(sU32 *)&pot[(z+0)*mm+(y+1)*m+(x+0)].w; ma &= flo; mo |= flo; flo = *(sU32 *)&pot[(z+0)*mm+(y+1)*m+(x+1)].w; ma &= flo; mo |= flo; flo = *(sU32 *)&pot[(z+1)*mm+(y+0)*m+(x+0)].w; ma &= flo; mo |= flo; flo = *(sU32 *)&pot[(z+1)*mm+(y+0)*m+(x+1)].w; ma &= flo; mo |= flo; flo = *(sU32 *)&pot[(z+1)*mm+(y+1)*m+(x+0)].w; ma &= flo; mo |= flo; flo = *(sU32 *)&pot[(z+1)*mm+(y+1)*m+(x+1)].w; ma &= flo; mo |= flo; if((ma&0x80000000)==0 && (mo&0x80000000)!=0) { // get the dots we already have pot2[0][0][0] = pot[(z+0)*mm+(y+0)*m+(x+0)]; pot2[0][0][2] = pot[(z+0)*mm+(y+0)*m+(x+1)]; pot2[0][2][0] = pot[(z+0)*mm+(y+1)*m+(x+0)]; pot2[0][2][2] = pot[(z+0)*mm+(y+1)*m+(x+1)]; pot2[2][0][0] = pot[(z+1)*mm+(y+0)*m+(x+0)]; pot2[2][0][2] = pot[(z+1)*mm+(y+0)*m+(x+1)]; pot2[2][2][0] = pot[(z+1)*mm+(y+1)*m+(x+0)]; pot2[2][2][2] = pot[(z+1)*mm+(y+1)*m+(x+1)]; // reuse last x2 for current x0 if(LastX==x-1) { pot2[1][0][0] = pot2[1][0][2]; pot2[0][1][0] = pot2[0][1][2]; pot2[1][1][0] = pot2[1][1][2]; pot2[2][1][0] = pot2[2][1][2]; pot2[1][2][0] = pot2[1][2][2]; } else { v = sVector30(x+0.0f,y+0.0f,z+0.5f) * S + tpos; func(v,pot2[1][0][0],fi); v = sVector30(x+0.0f,y+0.5f,z+0.0f) * S + tpos; func(v,pot2[0][1][0],fi); v = sVector30(x+0.0f,y+0.5f,z+0.5f) * S + tpos; func(v,pot2[1][1][0],fi); v = sVector30(x+0.0f,y+0.5f,z+1.0f) * S + tpos; func(v,pot2[2][1][0],fi); v = sVector30(x+0.0f,y+1.0f,z+0.5f) * S + tpos; func(v,pot2[1][2][0],fi); } LastX = x; // resuse last y2 for current y0 if(LastY==y-1 && lastyz[x]==z) { pot2[0][0][1] = pot2y[x][0]; pot2[1][0][1] = pot2y[x][1]; pot2[2][0][1] = pot2y[x][2]; pot2[1][0][2] = pot2y[x][3]; } else { v = sVector30(x+0.5f,y+0.0f,z+0.0f) * S + tpos; func(v,pot2[0][0][1],fi); v = sVector30(x+0.5f,y+0.0f,z+0.5f) * S + tpos; func(v,pot2[1][0][1],fi); v = sVector30(x+0.5f,y+0.0f,z+1.0f) * S + tpos; func(v,pot2[2][0][1],fi); v = sVector30(x+1.0f,y+0.0f,z+0.5f) * S + tpos; func(v,pot2[1][0][2],fi); } v = sVector30(x+0.5f,y+1.0f,z+0.0f) * S + tpos; func(v,pot2[0][2][1],fi); pot2y[x][0] = pot2[0][2][1]; v = sVector30(x+0.5f,y+1.0f,z+0.5f) * S + tpos; func(v,pot2[1][2][1],fi); pot2y[x][1] = pot2[1][2][1]; v = sVector30(x+0.5f,y+1.0f,z+1.0f) * S + tpos; func(v,pot2[2][2][1],fi); pot2y[x][2] = pot2[2][2][1]; v = sVector30(x+1.0f,y+1.0f,z+0.5f) * S + tpos; func(v,pot2[1][2][2],fi); pot2y[x][3] = pot2[1][2][2]; LastY = y; lastyz[x] = z; // do the rest, don't bother caching v = sVector30(x+0.5f,y+0.5f,z+0.0f) * S + tpos; func(v,pot2[0][1][1],fi); v = sVector30(x+0.5f,y+0.5f,z+0.5f) * S + tpos; func(v,pot2[1][1][1],fi); v = sVector30(x+0.5f,y+0.5f,z+1.0f) * S + tpos; func(v,pot2[2][1][1],fi); v = sVector30(x+1.0f,y+0.5f,z+0.0f) * S + tpos; func(v,pot2[0][1][2],fi); v = sVector30(x+1.0f,y+0.5f,z+0.5f) * S + tpos; func(v,pot2[1][1][2],fi); v = sVector30(x+1.0f,y+0.5f,z+1.0f) * S + tpos; func(v,pot2[2][1][2],fi); // render it MC.March_1_1(&pot2[0][0][0],S/2,tpos+sVector30(x*S,y*S,z*S),thread); } } } } } } }