/** * @brief Internal TAL reset function * * @param set_default_pib Defines whether PIB values need to be set * to its default values * * @return MAC_SUCCESS if the transceiver state is changed to TRX_OFF and the * current device part number and version number are correct; * FAILURE otherwise */ static retval_t internal_tal_reset(bool set_default_pib) { if (trx_reset() != MAC_SUCCESS) { return FAILURE; } /* * Generate a seed for the random number generator in function rand(). * This is required (for example) as seed for the CSMA-CA algorithm. */ tal_generate_rand_seed(); /* Configure the transceiver register values. */ trx_config(); if (set_default_pib) { /* Set the default PIB values */ init_tal_pib(); /* implementation can be found in 'tal_pib.c' */ } else { /* nothing to do - the current TAL PIB attribute values are used */ } /* * Write all PIB values to the transceiver * that are needed by the transceiver itself. */ write_all_tal_pib_to_trx(); /* implementation can be found in 'tal_pib.c' */ /* Reset TAL variables. */ tal_state = TAL_IDLE; #ifdef BEACON_SUPPORT tal_csma_state = CSMA_IDLE; #endif /* BEACON_SUPPORT */ #if ((MAC_START_REQUEST_CONFIRM == 1) && (defined BEACON_SUPPORT)) tal_beacon_transmission = false; #endif /* ((MAC_START_REQUEST_CONFIRM == 1) && (defined BEACON_SUPPORT)) */ tal_rx_on_required = false; return MAC_SUCCESS; }
static trx_retval_t internal_tal_reset(void) { if (trx_reset() != TRX_SUCCESS) { return TRX_FAILURE; } /* Write the transceiver values except of the CSMA seed. */ trx_config(); /* * Generate a seed for the random number generator in function rand(). * This is required (for example) as seed for the CSMA-CA algorithm. */ generate_rand_seed(); /* Reset TAL variables. */ tal_state = TAL_IDLE; return TRX_SUCCESS; }
/** * @brief Sets transceiver state * * @param trx_cmd needs to be one of the trx commands * * @return current trx state */ tal_trx_status_t set_trx_state(trx_cmd_t trx_cmd) { if (tal_trx_status == TRX_SLEEP) { /* * Since the wake-up procedure relies on the Awake IRQ and * the global interrupts may be disabled at this point of time, * we need to make sure that the global interrupts are enabled * during wake-up procedure. * Once the TRX is awake, the original state of the global interrupts * will be restored. */ /* Reset wake-up interrupt flag. */ tal_awake_end_flag = false; /* Set callback function for the awake interrupt. */ pal_trx_irq_init(trx_irq_awake_handler_cb); /* The pending transceiver interrupts on the microcontroller are cleared. */ pal_trx_irq_flag_clr(); pal_trx_irq_en(); /* Enable transceiver main interrupt. */ /* Save current state of global interrupts. */ ENTER_CRITICAL_REGION(); /* Force enabling of global interrupts. */ ENABLE_GLOBAL_IRQ(); /* Leave trx sleep mode. */ PAL_SLP_TR_LOW(); /* Poll wake-up interrupt flag until set within ISR. */ while (!tal_awake_end_flag); /* Restore original state of global interrupts. */ LEAVE_CRITICAL_REGION(); /* Clear existing interrupts */ pal_trx_reg_read(RG_IRQ_STATUS); /* Re-install default IRQ handler for main interrupt. */ pal_trx_irq_init(trx_irq_handler_cb); /* Re-enable TRX_END interrupt */ pal_trx_reg_write(RG_IRQ_MASK, TRX_IRQ_DEFAULT); #if (ANTENNA_DIVERSITY == 1) /* Enable antenna diversity. */ pal_trx_bit_write(SR_ANT_EXT_SW_EN, ANT_EXT_SW_ENABLE); #endif #ifdef EXT_RF_FRONT_END_CTRL /* Enable RF front end control */ pal_trx_bit_write(SR_PA_EXT_EN, 1); #endif tal_trx_status = TRX_OFF; if ((trx_cmd == CMD_TRX_OFF) || (trx_cmd == CMD_FORCE_TRX_OFF)) { return TRX_OFF; } } #ifdef ENABLE_DEEP_SLEEP else if (tal_trx_status == TRX_DEEP_SLEEP) { /* Leave trx sleep mode. */ PAL_SLP_TR_LOW(); /* Check if trx has left deep sleep. */ tal_trx_status_t trx_state; do { trx_state = (tal_trx_status_t)pal_trx_reg_read(RG_TRX_STATUS); } while (trx_state != TRX_OFF); tal_trx_status = TRX_OFF; /* Using deep sleep, the transceiver's registers need to be restored. */ trx_config(); /* * Write all PIB values to the transceiver * that are needed by the transceiver itself. */ write_all_tal_pib_to_trx(); /* implementation can be found in 'tal_pib.c' */ if ((trx_cmd == CMD_TRX_OFF) || (trx_cmd == CMD_FORCE_TRX_OFF)) { return TRX_OFF; } } #endif switch (trx_cmd) /* requested state */ { case CMD_SLEEP: #ifdef ENABLE_DEEP_SLEEP /* Fall through. */ case CMD_DEEP_SLEEP: #endif pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF); #if (ANTENNA_DIVERSITY == 1) /* * Disable antenna diversity: to reduce the power consumption or * avoid leakage current of an external RF switch during SLEEP. */ pal_trx_bit_write(SR_ANT_EXT_SW_EN, ANT_EXT_SW_DISABLE); #endif #ifdef EXT_RF_FRONT_END_CTRL /* Disable RF front end control */ pal_trx_bit_write(SR_PA_EXT_EN, 0); #endif /* Clear existing interrupts */ pal_trx_reg_read(RG_IRQ_STATUS); /* * Enable Awake_end interrupt. * This is used for save wake-up from sleep later. */ pal_trx_bit_write(SR_IRQ_MASK, TRX_IRQ_4_CCA_ED_DONE); #ifdef ENABLE_DEEP_SLEEP if (trx_cmd == CMD_DEEP_SLEEP) { pal_trx_reg_write(RG_TRX_STATE, CMD_PREP_DEEP_SLEEP); tal_trx_status = TRX_DEEP_SLEEP; } else { /* * Enable Awake_end interrupt. * This is used for save wake-up from sleep later. */ pal_trx_bit_write(SR_IRQ_MASK, TRX_IRQ_4_CCA_ED_DONE); tal_trx_status = TRX_SLEEP; } #else /* * Enable Awake_end interrupt. * This is used for save wake-up from sleep later. */ pal_trx_bit_write(SR_IRQ_MASK, TRX_IRQ_4_CCA_ED_DONE); tal_trx_status = TRX_SLEEP; #endif PAL_WAIT_1_US(); PAL_SLP_TR_HIGH(); pal_timer_delay(TRX_OFF_TO_SLEEP_TIME_CLKM_CYCLES); /* Transceiver register cannot be read during TRX_SLEEP or DEEP_SLEEP. */ return tal_trx_status; case CMD_TRX_OFF: switch (tal_trx_status) { case TRX_OFF: break; default: pal_trx_reg_write(RG_TRX_STATE, CMD_TRX_OFF); PAL_WAIT_1_US(); break; } break; case CMD_FORCE_TRX_OFF: switch (tal_trx_status) { case TRX_OFF: break; default: pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_TRX_OFF); PAL_WAIT_1_US(); break; } break; case CMD_PLL_ON: switch (tal_trx_status) { case PLL_ON: break; case TRX_OFF: switch_pll_on(); break; case RX_ON: case RX_AACK_ON: case TX_ARET_ON: pal_trx_reg_write(RG_TRX_STATE, CMD_PLL_ON); PAL_WAIT_1_US(); break; case BUSY_RX: case BUSY_TX: case BUSY_RX_AACK: case BUSY_TX_ARET: /* do nothing if trx is busy */ break; default: ASSERT("state transition not handled" == 0); break; } break; case CMD_FORCE_PLL_ON: switch (tal_trx_status) { case TRX_OFF: switch_pll_on(); break; case PLL_ON: break; default: pal_trx_reg_write(RG_TRX_STATE, CMD_FORCE_PLL_ON); break; } break; case CMD_RX_ON: switch (tal_trx_status) { case RX_ON: break; case PLL_ON: case RX_AACK_ON: case TX_ARET_ON: pal_trx_reg_write(RG_TRX_STATE, CMD_RX_ON); PAL_WAIT_1_US(); break; case TRX_OFF: switch_pll_on(); pal_trx_reg_write(RG_TRX_STATE, CMD_RX_ON); PAL_WAIT_1_US(); break; case BUSY_RX: case BUSY_TX: case BUSY_RX_AACK: case BUSY_TX_ARET: /* do nothing if trx is busy */ break; default: ASSERT("state transition not handled" == 0); break; } break; case CMD_RX_AACK_ON: switch (tal_trx_status) { case RX_AACK_ON: break; case TX_ARET_ON: case PLL_ON: case RX_ON: pal_trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON); PAL_WAIT_1_US(); break; case TRX_OFF: switch_pll_on(); // state change from TRX_OFF to RX_AACK_ON can be done directly, too pal_trx_reg_write(RG_TRX_STATE, CMD_RX_AACK_ON); PAL_WAIT_1_US(); break; case BUSY_RX: case BUSY_TX: case BUSY_RX_AACK: case BUSY_TX_ARET: /* do nothing if trx is busy */ break; default: ASSERT("state transition not handled" == 0); break; } break; case CMD_TX_ARET_ON: switch (tal_trx_status) { case TX_ARET_ON: break; case PLL_ON: case RX_ON: case RX_AACK_ON: pal_trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON); PAL_WAIT_1_US(); break; case TRX_OFF: switch_pll_on(); // state change from TRX_OFF to TX_ARET_ON can be done directly, too pal_trx_reg_write(RG_TRX_STATE, CMD_TX_ARET_ON); PAL_WAIT_1_US(); break; case BUSY_RX: case BUSY_TX: case BUSY_RX_AACK: case BUSY_TX_ARET: /* do nothing if trx is busy */ break; default: ASSERT("state transition not handled" == 0); break; } break; default: /* CMD_NOP, CMD_TX_START */ ASSERT("trx command not handled" == 0); break; } do { tal_trx_status = (tal_trx_status_t)pal_trx_bit_read(SR_TRX_STATUS); } while (tal_trx_status == STATE_TRANSITION_IN_PROGRESS); return tal_trx_status; } /* set_trx_state() */
/** * @brief Resets TAL state machine and sets the default PIB values if requested * * @param trx_id Transceiver identifier * @param set_default_pib Defines whether PIB values need to be set * to its default values * * @return * - @ref MAC_SUCCESS if the transceiver state is changed to TRX_OFF * - @ref FAILURE otherwise * @ingroup apiTalApi */ retval_t tal_reset(trx_id_t trx_id, bool set_default_pib) { rf_cmd_state_t previous_trx_state[NUM_TRX]; previous_trx_state[RF09] = trx_state[RF09]; previous_trx_state[RF24] = trx_state[RF24]; /* Reset the actual device or part of the device */ if (trx_reset(trx_id) != MAC_SUCCESS) { return FAILURE; } /* Init Trx if necessary, e.g. trx was in deep sleep */ if (((previous_trx_state[RF09] == RF_SLEEP) && (previous_trx_state[RF24] == RF_SLEEP)) || (trx_id == RFBOTH)) { trx_init(); /* Initialize generic trx functionality */ } if (trx_id == RFBOTH) { for (uint8_t i = 0; i < NUM_TRX; i++) { /* Clean TAL and removed any pending tasks */ cleanup_tal((trx_id_t)i); /* Configure the transceiver register values. */ trx_config((trx_id_t)i); if (set_default_pib) { /* Set the default PIB values */ init_tal_pib((trx_id_t)i); /* see 'tal_pib.c' */ calculate_pib_values(trx_id); } else { /* nothing to do - the current TAL PIB attribute *values are used */ } write_all_tal_pib_to_trx((trx_id_t)i); /* see *'tal_pib.c' */ config_phy((trx_id_t)i); /* Reset TAL variables. */ tal_state[(trx_id_t)i] = TAL_IDLE; tx_state[(trx_id_t)i] = TX_IDLE; #ifdef ENABLE_FTN_PLL_CALIBRATION /* Stop FTN timer */ stop_ftn_timer((trx_id_t)i); #endif /* ENABLE_FTN_PLL_CALIBRATION */ } } else { /* Maintain other trx */ trx_id_t other_trx_id; if (trx_id == RF09) { other_trx_id = RF24; } else { other_trx_id = RF09; } if (tal_state[other_trx_id] == TAL_SLEEP) { /* Switch other trx back to sleep again */ uint16_t reg_offset = RF_BASE_ADDR_OFFSET * other_trx_id; #ifdef IQ_RADIO pal_dev_reg_write(RF215_BB, reg_offset + RG_RF09_CMD, RF_SLEEP); pal_dev_reg_write(RF215_RF, reg_offset + RG_RF09_CMD, RF_SLEEP); #else trx_reg_write(reg_offset + RG_RF09_CMD, RF_SLEEP); #endif TAL_RF_IRQ_CLR_ALL(trx_id); } /* Clean TAL and removed any pending tasks */ cleanup_tal(trx_id); /* Configure the transceiver register values. */ trx_config(trx_id); if (set_default_pib) { /* Set the default PIB values */ init_tal_pib(trx_id); /* see 'tal_pib.c' */ calculate_pib_values(trx_id); } else { /* nothing to do - the current TAL PIB attribute values *are used */ } write_all_tal_pib_to_trx(trx_id); /* see 'tal_pib.c' */ config_phy(trx_id); /* Reset TAL variables. */ tal_state[trx_id] = TAL_IDLE; tx_state[trx_id] = TX_IDLE; #ifdef ENABLE_FTN_PLL_CALIBRATION /* Stop FTN timer */ stop_ftn_timer(trx_id); #endif /* ENABLE_FTN_PLL_CALIBRATION */ } /* * Configure interrupt handling. * Install a handler for the transceiver interrupt. */ #ifdef IQ_RADIO trx_irq_init(RF215_BB, bb_irq_handler_cb); trx_irq_init(RF215_RF, rf_irq_handler_cb); pal_trx_irq_en(RF215_BB); /* Enable transceiver main interrupt. */ pal_trx_irq_en(RF215_RF); /* Enable transceiver main interrupt. */ #else trx_irq_init((FUNC_PTR)trx_irq_handler_cb); pal_trx_irq_en(); /* Enable transceiver main interrupt. */ #endif return MAC_SUCCESS; }
/** * @brief Initializes the TAL * * This function is called to initialize the TAL. The transceiver is * initialized, the TAL PIBs are set to their default values, and the TAL state * machine is set to TAL_IDLE state. * * @return MAC_SUCCESS if the transceiver state is changed to TRX_OFF and the * current device part number and version number are correct; * FAILURE otherwise */ retval_t tal_init(void) { /* Init the PAL and by this means also the transceiver interface */ if (pal_init() != MAC_SUCCESS) { return FAILURE; } /* Reset trx */ if (trx_reset(RFBOTH) != MAC_SUCCESS) { return FAILURE; } /* Check if RF215 is connected */ if ((trx_reg_read( RG_RF_PN) != 0x34) || (trx_reg_read( RG_RF_VN) != 0x01)) { return FAILURE; } /* Initialize trx */ trx_init(); if (tal_timer_init() != MAC_SUCCESS) { return FAILURE; } /* Initialize the buffer management */ bmm_buffer_init(); /* Configure both trx and set default PIB values */ for (uint8_t trx_id = 0; trx_id < NUM_TRX; trx_id++) { /* Configure transceiver */ trx_config((trx_id_t)trx_id); #ifdef RF215V1 /* Calibrate LO */ calibrate_LO((trx_id_t)trx_id); #endif /* Set the default PIB values */ init_tal_pib((trx_id_t)trx_id); /* see 'tal_pib.c' */ calculate_pib_values((trx_id_t)trx_id); /* * Write all PIB values to the transceiver * that are needed by the transceiver itself. */ write_all_tal_pib_to_trx((trx_id_t)trx_id); /* see 'tal_pib.c' **/ config_phy((trx_id_t)trx_id); tal_rx_buffer[trx_id] = bmm_buffer_alloc(LARGE_BUFFER_SIZE); if (tal_rx_buffer[trx_id] == NULL) { return FAILURE; } /* Init incoming frame queue */ qmm_queue_init(&tal_incoming_frame_queue[trx_id]); tal_state[trx_id] = TAL_IDLE; tx_state[trx_id] = TX_IDLE; } /* Init seed of rand() */ tal_generate_rand_seed(); #ifndef DISABLE_IEEE_ADDR_CHECK for (uint8_t trx_id = 0; trx_id < 2; trx_id++) { /* Check if a valid IEEE address is available. */ /* * This while loop is on purpose, since just in the * rare case that such an address is randomly * generated again, we must repeat this. */ while ((tal_pib[trx_id].IeeeAddress == 0x0000000000000000) || (tal_pib[trx_id].IeeeAddress == ((uint64_t)-1))) { /* * In case no valid IEEE address is available, a random * IEEE address will be generated to be able to run the * applications for demonstration purposes. * In production code this can be omitted. */ /* * The proper seed for function rand() has already been *generated * in function tal_generate_rand_seed(). */ uint8_t *ptr_pib = (uint8_t *)&tal_pib[trx_id].IeeeAddress; for (uint8_t i = 0; i < 8; i++) { *ptr_pib++ = (uint8_t)rand(); /* * Note: * Even if casting the 16 bit rand value back to *8 bit, * and running the loop 8 timers (instead of *only 4 times) * may look cumbersome, it turns out that the *code gets * smaller using 8-bit here. * And timing is not an issue at this place... */ } } } #endif #ifdef IQ_RADIO /* Init BB IRQ handler */ pal_trx_irq_flag_clr(RF215_BB); trx_irq_init(RF215_BB, bb_irq_handler_cb); pal_trx_irq_en(RF215_BB); /* Init RF IRQ handler */ pal_trx_irq_flag_clr(RF215_RF); trx_irq_init(RF215_RF, rf_irq_handler_cb); pal_trx_irq_en(RF215_RF); #else /* * Configure interrupt handling. * Install a handler for the radio and the baseband interrupt. */ pal_trx_irq_flag_clr(); trx_irq_init((FUNC_PTR)trx_irq_handler_cb); pal_trx_irq_en(); /* Enable transceiver main interrupt. */ #endif #if ((defined SUPPORT_FSK) && (defined SUPPORT_MODE_SWITCH)) init_mode_switch(); #endif return MAC_SUCCESS; } /* tal_init() */