__EXPORT int board_app_initialize(uintptr_t arg) { int result = OK; px4_platform_init(); /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); return result; }
__EXPORT int nsh_archinitialize(void) { /* configure the high-resolution time/callout interface */ hrt_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); return OK; }
__EXPORT int nsh_archinitialize(void) { /* the interruption subsystem is not initialized when stm32_boardinitialize() is called */ stm32_gpiosetevent(GPIO_FORCE_BOOTLOADER, true, false, false, _bootloader_force_pin_callback); /* configure power supply control/sense pins */ stm32_configgpio(GPIO_VDD_5V_SENSORS_EN); /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ dma_alloc_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); led_off(LED_BLUE); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); return OK; }
__EXPORT int nsh_archinitialize(void) { int result; /* configure the high-resolution time/callout interface */ hrt_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); board_pwr_init(1); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); led_off(LED_BLUE); #if defined(FLASH_BASED_PARAMS) static sector_descriptor_t sector_map[] = { {1, 16 * 1024, 0x08004000}, {2, 16 * 1024, 0x08008000}, {0, 0, 0}, }; /* Initalizee the flashfs layer to use heap allocated memory */ result = parameter_flashfs_init(sector_map, NULL, 0); if (result != OK) { message("[boot] FAILED to init params in FLASH %d\n", result); up_ledon(LED_AMBER); return -ENODEV; } #endif return OK; }
__EXPORT int nsh_archinitialize(void) { int result; /* configure the high-resolution time/callout interface */ hrt_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); led_off(LED_BLUE); /* Get the SPI port for the microSD slot */ spi = up_spiinitialize(CONFIG_NSH_MMCSDSPIPORTNO); if (!spi) { message("[boot] FAILED to initialize SPI port %d\n", CONFIG_NSH_MMCSDSPIPORTNO); up_ledon(LED_AMBER); return -ENODEV; } /* Now bind the SPI interface to the MMCSD driver */ result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi); if (result != OK) { message("[boot] FAILED to bind SPI port 2 to the MMCSD driver\n"); up_ledon(LED_AMBER); return -ENODEV; } return OK; }
/* * Get absolute time. */ hrt_abstime hrt_absolute_time(void) { struct timespec ts; if (!px4_timestart) { px4_clock_gettime(CLOCK_MONOTONIC, &ts); px4_timestart = ts_to_abstime(&ts); } px4_clock_gettime(CLOCK_MONOTONIC, &ts); return ts_to_abstime(&ts) - px4_timestart; }
/* * Get absolute time. */ hrt_abstime hrt_absolute_time(void) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts_to_abstime(&ts); }
int px4_sem_timedwait(px4_sem_t *sem, const struct timespec *ts) { work_s _hpwork = {}; // Get the current time. struct timespec ts_now; px4_clock_gettime(CLOCK_MONOTONIC, &ts_now); // We get an absolute time but want to calculate a timeout in us. hrt_abstime timeout_us = ts_to_abstime((struct timespec *)ts) - ts_to_abstime(&ts_now); // Create a timer to unblock. hrt_work_queue(&_hpwork, (worker_t)&timer_cb, (void *)sem, timeout_us); sem_wait(sem); hrt_work_cancel(&_hpwork); return 0; }
__EXPORT int board_app_initialize(uintptr_t arg) { int result = OK; #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); return result; }
__EXPORT int nsh_archinitialize(void) { /* configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN2); /* BATT_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN3); /* BATT_CURRENT_SENS */ stm32_configgpio(GPIO_ADC1_IN4); /* VDD_5V_SENS */ stm32_configgpio(GPIO_ADC1_IN11); /* BATT2_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN13); /* BATT2_CURRENT_SENS */ /* configure power supply control/sense pins */ stm32_configgpio(GPIO_VDD_3V3_PERIPH_EN); stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN); stm32_configgpio(GPIO_VDD_5V_PERIPH_EN); stm32_configgpio(GPIO_VDD_5V_HIPOWER_EN); stm32_configgpio(GPIO_VDD_BRICK_VALID); stm32_configgpio(GPIO_VDD_BRICK2_VALID); stm32_configgpio(GPIO_VDD_5V_PERIPH_OC); stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC); stm32_configgpio(GPIO_VBUS_VALID); // stm32_configgpio(GPIO_SBUS_INV); // stm32_configgpio(GPIO_8266_GPIO0); // stm32_configgpio(GPIO_SPEKTRUM_PWR_EN); // stm32_configgpio(GPIO_8266_PD); // stm32_configgpio(GPIO_8266_RST); // stm32_configgpio(GPIO_BTN_SAFETY_FMU); /* configure the GPIO pins to outputs and keep them low */ stm32_configgpio(GPIO_GPIO0_OUTPUT); stm32_configgpio(GPIO_GPIO1_OUTPUT); stm32_configgpio(GPIO_GPIO2_OUTPUT); stm32_configgpio(GPIO_GPIO3_OUTPUT); stm32_configgpio(GPIO_GPIO4_OUTPUT); stm32_configgpio(GPIO_GPIO5_OUTPUT); /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ dma_alloc_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_ICM, false); SPI_SELECT(spi1, PX4_SPIDEV_BARO, false); SPI_SELECT(spi1, PX4_SPIDEV_LIS, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); SPI_SELECT(spi1, PX4_SPIDEV_EEPROM, false); up_udelay(20); /* Get the SPI port for the FRAM */ spi2 = up_spiinitialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); /* Configure SPI 5-based devices */ spi5 = up_spiinitialize(PX4_SPI_EXT0); if (!spi5) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_EXT0); up_ledon(LED_RED); return -ENODEV; } /* Default SPI5 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi5, 10000000); SPI_SETBITS(spi5, 8); SPI_SETMODE(spi5, SPIDEV_MODE3); SPI_SELECT(spi5, PX4_SPIDEV_EXT0, false); /* Configure SPI 6-based devices */ spi6 = up_spiinitialize(PX4_SPI_EXT1); if (!spi6) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_EXT1); up_ledon(LED_RED); return -ENODEV; } /* Default SPI6 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi6, 10000000); SPI_SETBITS(spi6, 8); SPI_SETMODE(spi6, SPIDEV_MODE3); SPI_SELECT(spi6, PX4_SPIDEV_EXT1, false); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }
__EXPORT int nsh_archinitialize(void) { /* configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN2); /* BATT_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN3); /* BATT_CURRENT_SENS */ stm32_configgpio(GPIO_ADC1_IN4); /* VDD_5V_SENS */ stm32_configgpio(GPIO_ADC1_IN13); /* FMU_AUX_ADC_1 */ stm32_configgpio(GPIO_ADC1_IN14); /* FMU_AUX_ADC_2 */ stm32_configgpio(GPIO_ADC1_IN15); /* PRESSURE_SENS */ /* configure power supply control/sense pins */ stm32_configgpio(GPIO_VDD_5V_PERIPH_EN); stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN); stm32_configgpio(GPIO_VDD_BRICK_VALID); stm32_configgpio(GPIO_VDD_SERVO_VALID); stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC); stm32_configgpio(GPIO_VDD_5V_PERIPH_OC); #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ dma_alloc_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { syslog(LOG_ERR, "[boot] FAILED to initialize SPI port 1\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi1, PX4_SPIDEV_BARO, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); syslog(LOG_INFO, "[boot] Initialized SPI port 1 (SENSORS)\n"); /* Get the SPI port for the FRAM */ spi2 = up_spiinitialize(2); if (!spi2) { syslog(LOG_ERR, "[boot] FAILED to initialize SPI port 2\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); syslog(LOG_INFO, "[boot] Initialized SPI port 2 (RAMTRON FRAM)\n"); spi4 = up_spiinitialize(4); /* Default SPI4 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi4, 10000000); SPI_SETBITS(spi4, 8); SPI_SETMODE(spi4, SPIDEV_MODE3); SPI_SELECT(spi4, PX4_SPIDEV_EXT0, false); SPI_SELECT(spi4, PX4_SPIDEV_EXT1, false); syslog(LOG_INFO, "[boot] Initialized SPI port 4\n"); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { syslog(LOG_ERR, "[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { syslog(LOG_ERR, "[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); syslog(LOG_INFO, "[boot] Initialized SDIO\n"); #endif return OK; }
__EXPORT int nsh_archinitialize(void) { /* configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN10); /* used by VBUS valid */ stm32_configgpio(GPIO_ADC1_IN11); /* J1 breakout */ stm32_configgpio(GPIO_ADC1_IN12); /* J1 breakout */ stm32_configgpio(GPIO_ADC1_IN13); /* J1 breakout */ #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ dma_alloc_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure Sensors on SPI bus #3 */ spi3 = up_spiinitialize(3); if (!spi3) { message("[boot] FAILED to initialize SPI port 3\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default: 1MHz, 8 bits, Mode 3 */ SPI_SETFREQUENCY(spi3, 10000000); SPI_SETBITS(spi3, 8); SPI_SETMODE(spi3, SPIDEV_MODE3); SPI_SELECT(spi3, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi3, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi3, PX4_SPIDEV_BARO, false); up_udelay(20); message("[boot] Initialized SPI port 3 (SENSORS)\n"); /* Configure FRAM on SPI bus #4 */ spi4 = up_spiinitialize(4); if (!spi4) { message("[boot] FAILED to initialize SPI port 4\n"); board_led_on(LED_AMBER); return -ENODEV; } /* Default: ~10MHz, 8 bits, Mode 3 */ SPI_SETFREQUENCY(spi4, 10 * 1000 * 1000); SPI_SETBITS(spi4, 8); SPI_SETMODE(spi4, SPIDEV_MODE0); SPI_SELECT(spi4, SPIDEV_FLASH, false); message("[boot] Initialized SPI port 4 (FRAM)\n"); return OK; }
__EXPORT int nsh_archinitialize(void) { /* configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN2); /* BATT_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN3); /* BATT_CURRENT_SENS */ stm32_configgpio(GPIO_ADC1_IN4); /* VDD_5V_SENS */ // stm32_configgpio(GPIO_ADC1_IN10); /* used by VBUS valid */ // stm32_configgpio(GPIO_ADC1_IN11); /* unused */ // stm32_configgpio(GPIO_ADC1_IN12); /* used by MPU6000 CS */ stm32_configgpio(GPIO_ADC1_IN13); /* FMU_AUX_ADC_1 */ stm32_configgpio(GPIO_ADC1_IN14); /* FMU_AUX_ADC_2 */ stm32_configgpio(GPIO_ADC1_IN15); /* PRESSURE_SENS */ /* configure power supply control/sense pins */ stm32_configgpio(GPIO_VDD_5V_PERIPH_EN); stm32_configgpio(GPIO_VDD_3V3_SENSORS_EN); stm32_configgpio(GPIO_VDD_BRICK_VALID); stm32_configgpio(GPIO_VDD_SERVO_VALID); stm32_configgpio(GPIO_VDD_5V_HIPOWER_OC); stm32_configgpio(GPIO_VDD_5V_PERIPH_OC); /* configure the high-resolution time/callout interface */ hrt_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi1, PX4_SPIDEV_BARO, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); message("[boot] Successfully initialized SPI port 1\n"); /* Get the SPI port for the FRAM */ spi2 = up_spiinitialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (F4 max) and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi2, 375000000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); message("[boot] Successfully initialized SPI port 2\n"); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("nsh_archinitialize: Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("nsh_archinitialize: Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); message("[boot] Initialized SDIO\n"); #endif return OK; }
__EXPORT int nsh_archinitialize(void) { int result; /* configure the high-resolution time/callout interface */ #ifdef CONFIG_HRT_TIMER hrt_init(); #endif /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ #ifdef SERIAL_HAVE_DMA { static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); } #endif message("\r\n"); // initial LED state drv_led_start(); up_ledoff(LED_BLUE); up_ledoff(LED_AMBER); up_ledon(LED_BLUE); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\r\n"); up_ledon(LED_AMBER); return -ENODEV; } // Default SPI1 to 1MHz and de-assert the known chip selects. SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_ACCEL, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); message("[boot] Successfully initialized SPI port 1\r\n"); /* Get the SPI port for the microSD slot */ message("[boot] Initializing SPI port 3\n"); spi3 = up_spiinitialize(3); if (!spi3) { message("[boot] FAILED to initialize SPI port 3\n"); up_ledon(LED_AMBER); return -ENODEV; } message("[boot] Successfully initialized SPI port 3\n"); /* Now bind the SPI interface to the MMCSD driver */ result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi3); if (result != OK) { message("[boot] FAILED to bind SPI port 3 to the MMCSD driver\n"); up_ledon(LED_AMBER); return -ENODEV; } message("[boot] Successfully bound SPI port 3 to the MMCSD driver\n"); stm32_configgpio(GPIO_ADC1_IN10); stm32_configgpio(GPIO_ADC1_IN11); //stm32_configgpio(GPIO_ADC1_IN12); // XXX is this available? //stm32_configgpio(GPIO_ADC1_IN13); // jumperable to MPU6000 DRDY on some boards return OK; }
__EXPORT int nsh_archinitialize(void) { int result; message("\n"); /* configure always-on ADC pins */ stm32_configgpio(GPIO_ADC1_IN1); stm32_configgpio(GPIO_ADC1_IN2); stm32_configgpio(GPIO_ADC1_IN3); stm32_configgpio(GPIO_ADC1_IN10); /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ dma_alloc_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial BUZZER state */ drv_buzzer_start(); buzzer_off(BUZZER_EXT); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); led_off(LED_BLUE); led_off(LED_GREEN); led_off(LED_EXT1); led_off(LED_EXT2); /* Configure SPI-based devices */ message("[boot] Initializing SPI port 1\n"); spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\r\n"); led_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, SPIDEV_WIRELESS, false); SPI_SELECT(spi1, SPIDEV_MS5611, false); up_udelay(20); message("[boot] Successfully initialized SPI port 1\r\n"); message("[boot] Initializing SPI port 2\n"); spi2 = up_spiinitialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\r\n"); led_on(LED_AMBER); return -ENODEV; } /* Default SPI2 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi2, 10000000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_MPU6000, false); message("[boot] Successfully initialized SPI port 2\n"); /* Get the SPI port for the microSD slot */ message("[boot] Initializing SPI port 3\n"); spi3 = up_spiinitialize(3); if (!spi3) { message("[boot] FAILED to initialize SPI port 3\n"); led_on(LED_AMBER); return -ENODEV; } /* Default SPI3 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi3, 10000000); SPI_SETBITS(spi3, 8); SPI_SETMODE(spi3, SPIDEV_MODE3); SPI_SELECT(spi3, SPIDEV_MMCSD, false); SPI_SELECT(spi3, SPIDEV_FLASH, false); message("[boot] Successfully initialized SPI port 3\n"); /* Now bind the SPI interface to the MMCSD driver */ result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi3); if (result != OK) { message("[boot] FAILED to bind SPI port 3 to the MMCSD driver\n"); led_on(LED_AMBER); return -ENODEV; } message("[boot] Successfully bound SPI port 3 to the MMCSD driver\n"); return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); param_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); /* Configure SPI-based devices */ spi3 = px4_spibus_initialize(3); if (!spi3) { message("[boot] FAILED to initialize SPI port 3\n"); board_autoled_on(LED_AMBER); return -ENODEV; } /* Default SPI3 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi3, 10000000); SPI_SETBITS(spi3, 8); SPI_SETMODE(spi3, SPIDEV_MODE3); SPI_SELECT(spi3, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi3, PX4_SPIDEV_ACCEL_MAG, false); SPI_SELECT(spi3, PX4_SPIDEV_BARO, false); up_udelay(20); /* Get the SPI port for the FRAM */ spi4 = px4_spibus_initialize(4); if (!spi4) { message("[boot] FAILED to initialize SPI port 4\n"); board_autoled_on(LED_AMBER); return -ENODEV; } /* Default SPI4 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi4, 12 * 1000 * 1000); SPI_SETBITS(spi4, 8); SPI_SETMODE(spi4, SPIDEV_MODE3); SPI_SELECT(spi4, SPIDEV_FLASH(0), false); return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { /* Ensure the power is on 1 ms before we drive the GPIO pins */ usleep(1000); if (OK == determin_hw_version(&hw_version, & hw_revision)) { switch (hw_version) { case HW_VER_FMUV2_STATE: break; case HW_VER_FMUV3_STATE: hw_type[1]++; hw_type[2] = '0'; /* Has CAN2 transceiver Remove pull up */ stm32_configgpio(GPIO_CAN2_RX); break; case HW_VER_FMUV2MINI_STATE: /* Detection for a Pixhack3 */ stm32_configgpio(HW_VER_PA8); up_udelay(10); bool isph3 = stm32_gpioread(HW_VER_PA8); stm32_configgpio(HW_VER_PA8_INIT); if (isph3) { /* Pixhack3 looks like a FMuV3 Cube */ hw_version = HW_VER_FMUV3_STATE; hw_type[1]++; hw_type[2] = '0'; message("\nPixhack V3 detected, forcing to fmu-v3"); } else { /* It is a mini */ hw_type[2] = 'M'; } break; default: /* questionable px4_fmu-v2 hardware, try forcing regular FMUv2 (not much else we can do) */ message("\nbad version detected, forcing to fmu-v2"); hw_version = HW_VER_FMUV2_STATE; break; } message("\nFMUv2 ver 0x%1X : Rev %x %s\n", hw_version, hw_revision, hw_type); } /* configure SPI interfaces */ stm32_spiinitialize(); px4_platform_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); if (board_hardfault_init(2, true) != 0) { led_on(LED_AMBER); } /* Configure SPI-based devices */ spi1 = stm32_spibus_initialize(PX4_SPI_BUS_SENSORS); if (!spi1) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_SENSORS); led_on(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); up_udelay(20); /* Get the SPI port for the FRAM */ spi2 = stm32_spibus_initialize(PX4_SPI_BUS_RAMTRON); if (!spi2) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_RAMTRON); led_on(LED_AMBER); return -ENODEV; } /* Default SPI2 to 37.5 MHz (40 MHz rounded to nearest valid divider, F4 max) * and de-assert the known chip selects. */ // XXX start with 10.4 MHz in FRAM usage and go up to 37.5 once validated SPI_SETFREQUENCY(spi2, 12 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); spi4 = stm32_spibus_initialize(PX4_SPI_BUS_EXT); if (!spi4) { message("[boot] FAILED to initialize SPI port %d\n", PX4_SPI_BUS_EXT); led_on(LED_AMBER); return -ENODEV; } /* Default SPI4 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi4, 10000000); SPI_SETBITS(spi4, 8); SPI_SETMODE(spi4, SPIDEV_MODE3); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { led_on(LED_AMBER); message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { led_on(LED_AMBER); message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }
__EXPORT int nsh_archinitialize(void) { int result; message("\r\n"); /* configure ADC pins */ stm32_configgpio(GPIO_ADC1_IN10); /* BATT_VOLTAGE_SENS */ stm32_configgpio(GPIO_ADC1_IN11); /* BATT_CURRENT_SENS */ stm32_configgpio(GPIO_ADC1_IN14); /* SONAR */ /* configure power supply control/sense pins */ stm32_configgpio(GPIO_SBUS_INV); #ifdef GPIO_RC_OUT stm32_configgpio(GPIO_RC_OUT); /* Serial RC output pin */ stm32_gpiowrite(GPIO_RC_OUT, 1); /* set it high to pull RC input up */ #endif /* configure the GPIO pins to outputs and keep them low */ stm32_configgpio(GPIO_GPIO0_OUTPUT); stm32_configgpio(GPIO_GPIO1_OUTPUT); stm32_configgpio(GPIO_GPIO2_OUTPUT); stm32_configgpio(GPIO_GPIO3_OUTPUT); stm32_configgpio(GPIO_GPIO4_OUTPUT); stm32_configgpio(GPIO_GPIO5_OUTPUT); stm32_configgpio(GPIO_GPIO6_OUTPUT); stm32_configgpio(GPIO_GPIO7_OUTPUT); stm32_configgpio(GPIO_GPIO8_OUTPUT); stm32_configgpio(GPIO_GPIO9_OUTPUT); stm32_configgpio(GPIO_GPI10_OUTPUT); stm32_configgpio(GPIO_GPI11_OUTPUT); stm32_configgpio(GPIO_GPI12_OUTPUT); stm32_configgpio(GPIO_GPI13_OUTPUT); stm32_configgpio(GPIO_GPI14_OUTPUT); /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ dma_alloc_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_RED); led_off(LED_GREEN); led_off(LED_BLUE); /* Configure SPI-based devices */ message("[boot] Initializing SPI port 1\r\n"); spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\r\n"); up_ledon(LED_RED); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, SPIDEV_MS5611, false); SPI_SELECT(spi1, SPIDEV_EXP_MS5611, false); SPI_SELECT(spi1, SPIDEV_EXP_MPU6000, false); SPI_SELECT(spi1, SPIDEV_EXP_HMC5983, false); up_udelay(20); message("[boot] Successfully initialized SPI port 1\r\n"); message("[boot] Initializing SPI port 2\r\n"); spi2 = up_spiinitialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\r\n"); up_ledon(LED_RED); return -ENODEV; } /* Default SPI2 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi2, 10000000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_MPU9250, false); SPI_SELECT(spi2, SPIDEV_IMU_MS5611, false); SPI_SELECT(spi2, SPIDEV_IMU_MPU6000, false); SPI_SELECT(spi2, SPIDEV_IMU_HMC5983, false); message("[boot] Successfully initialized SPI port 2\r\n"); /* Get the SPI port for the microSD slot */ #ifdef CONFIG_MMCSD message("[boot] Initializing SPI port 3\r\n"); spi3 = up_spiinitialize(3); if (!spi3) { message("[boot] FAILED to initialize SPI port 3\r\n"); up_ledon(LED_RED); return -ENODEV; } /* Default SPI3 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi3, 10000000); SPI_SETBITS(spi3, 8); SPI_SETMODE(spi3, SPIDEV_MODE3); SPI_SELECT(spi3, SPIDEV_MMCSD, false); SPI_SELECT(spi3, SPIDEV_FLASH, false); message("[boot] Successfully initialized SPI port 3\r\n"); /* Now bind the SPI interface to the MMCSD driver */ result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi3); if (result != OK) { message("[boot] FAILED to bind SPI port 3 to the MMCSD driver\r\n"); led_on(LED_AMBER); return -ENODEV; } message("[boot] Successfully bound SPI port 3 to the MMCSD driver\r\n"); #endif return OK; }
int nsh_archinitialize(void) { int result; /* INIT 1 Lowest level NuttX initialization has been done at this point, LEDs and UARTs are configured */ /* INIT 2 Configuring PX4 low-level peripherals, these will be always needed */ /* configure the high-resolution time/callout interface */ #ifdef CONFIG_HRT_TIMER hrt_init(); #endif /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ #ifdef SERIAL_HAVE_DMA { static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); } #endif message("\r\n"); up_ledoff(LED_BLUE); up_ledoff(LED_AMBER); up_ledon(LED_BLUE); /* Configure user-space led driver */ px4fmu_led_init(); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\r\n"); up_ledon(LED_AMBER); return -ENODEV; } // Setup 10 MHz clock (maximum rate the BMA180 can sustain) SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_ACCEL, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); message("[boot] Successfully initialized SPI port 1\r\n"); /* initialize SPI peripherals redundantly */ int gyro_attempts = 0; int gyro_fail = 0; while (gyro_attempts < 5) { gyro_fail = l3gd20_attach(spi1, PX4_SPIDEV_GYRO); gyro_attempts++; if (gyro_fail == 0) break; up_udelay(1000); } if (gyro_fail) message("[boot] FAILED to attach L3GD20 gyro\r\n"); int acc_attempts = 0; int acc_fail = 0; while (acc_attempts < 5) { acc_fail = bma180_attach(spi1, PX4_SPIDEV_ACCEL); acc_attempts++; if (acc_fail == 0) break; up_udelay(1000); } if (acc_fail) message("[boot] FAILED to attach BMA180 accelerometer\r\n"); int mpu_attempts = 0; int mpu_fail = 0; while (mpu_attempts < 1) { mpu_fail = mpu6000_attach(spi1, PX4_SPIDEV_MPU); mpu_attempts++; if (mpu_fail == 0) break; up_udelay(200); } if (mpu_fail) message("[boot] FAILED to attach MPU 6000 gyro/acc\r\n"); /* initialize I2C2 bus */ i2c2 = up_i2cinitialize(2); if (!i2c2) { message("[boot] FAILED to initialize I2C bus 2\r\n"); up_ledon(LED_AMBER); return -ENODEV; } /* set I2C2 speed */ I2C_SETFREQUENCY(i2c2, 400000); i2c3 = up_i2cinitialize(3); if (!i2c3) { message("[boot] FAILED to initialize I2C bus 3\r\n"); up_ledon(LED_AMBER); return -ENODEV; } /* set I2C3 speed */ I2C_SETFREQUENCY(i2c3, 400000); int mag_attempts = 0; int mag_fail = 0; while (mag_attempts < 5) { mag_fail = hmc5883l_attach(i2c2); mag_attempts++; if (mag_fail == 0) break; up_udelay(1000); } if (mag_fail) message("[boot] FAILED to attach HMC5883L magnetometer\r\n"); int baro_attempts = 0; int baro_fail = 0; while (baro_attempts < 5) { baro_fail = ms5611_attach(i2c2); baro_attempts++; if (baro_fail == 0) break; up_udelay(1000); } if (baro_fail) message("[boot] FAILED to attach MS5611 baro at addr #1 or #2 (0x76 or 0x77)\r\n"); /* try to attach, don't fail if device is not responding */ (void)eeprom_attach(i2c3, FMU_BASEBOARD_EEPROM_ADDRESS, FMU_BASEBOARD_EEPROM_TOTAL_SIZE_BYTES, FMU_BASEBOARD_EEPROM_PAGE_SIZE_BYTES, FMU_BASEBOARD_EEPROM_PAGE_WRITE_TIME_US, "/dev/baseboard_eeprom", 1); int eeprom_attempts = 0; int eeprom_fail; while (eeprom_attempts < 5) { /* try to attach, fail if device does not respond */ eeprom_fail = eeprom_attach(i2c2, FMU_ONBOARD_EEPROM_ADDRESS, FMU_ONBOARD_EEPROM_TOTAL_SIZE_BYTES, FMU_ONBOARD_EEPROM_PAGE_SIZE_BYTES, FMU_ONBOARD_EEPROM_PAGE_WRITE_TIME_US, "/dev/eeprom", 1); eeprom_attempts++; if (eeprom_fail == OK) break; up_udelay(1000); } if (eeprom_fail) message("[boot] FAILED to attach FMU EEPROM\r\n"); /* Report back sensor status */ if (acc_fail || gyro_fail || mag_fail || baro_fail || eeprom_fail) { up_ledon(LED_AMBER); } #if defined(CONFIG_STM32_SPI3) /* Get the SPI port */ message("[boot] Initializing SPI port 3\r\n"); spi3 = up_spiinitialize(3); if (!spi3) { message("[boot] FAILED to initialize SPI port 3\r\n"); up_ledon(LED_AMBER); return -ENODEV; } message("[boot] Successfully initialized SPI port 3\r\n"); /* Now bind the SPI interface to the MMCSD driver */ result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi3); if (result != OK) { message("[boot] FAILED to bind SPI port 3 to the MMCSD driver\r\n"); up_ledon(LED_AMBER); return -ENODEV; } message("[boot] Successfully bound SPI port 3 to the MMCSD driver\r\n"); #endif /* SPI3 */ /* initialize I2C1 bus */ i2c1 = up_i2cinitialize(1); if (!i2c1) { message("[boot] FAILED to initialize I2C bus 1\r\n"); up_ledon(LED_AMBER); return -ENODEV; } /* set I2C1 speed */ I2C_SETFREQUENCY(i2c1, 400000); /* INIT 3: MULTIPORT-DEPENDENT INITIALIZATION */ /* Get board information if available */ /* Initialize the user GPIOs */ px4fmu_gpio_init(); #ifdef CONFIG_ADC int adc_state = adc_devinit(); if (adc_state != OK) { /* Try again */ adc_state = adc_devinit(); if (adc_state != OK) { /* Give up */ message("[boot] FAILED adc_devinit: %d\r\n", adc_state); return -ENODEV; } } #endif /* configure the tone generator */ #ifdef CONFIG_TONE_ALARM tone_alarm_init(); #endif return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { int result; #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); #if defined(CONFIG_STM32_BBSRAM) /* NB. the use of the console requires the hrt running * to poll the DMA */ /* Using Battery Backed Up SRAM */ int filesizes[CONFIG_STM32_BBSRAM_FILES + 1] = BSRAM_FILE_SIZES; stm32_bbsraminitialize(BBSRAM_PATH, filesizes); #if defined(CONFIG_STM32_SAVE_CRASHDUMP) /* Panic Logging in Battery Backed Up Files */ /* * In an ideal world, if a fault happens in flight the * system save it to BBSRAM will then reboot. Upon * rebooting, the system will log the fault to disk, recover * the flight state and continue to fly. But if there is * a fault on the bench or in the air that prohibit the recovery * or committing the log to disk, the things are too broken to * fly. So the question is: * * Did we have a hard fault and not make it far enough * through the boot sequence to commit the fault data to * the SD card? */ /* Do we have an uncommitted hard fault in BBSRAM? * - this will be reset after a successful commit to SD */ int hadCrash = hardfault_check_status("boot"); if (hadCrash == OK) { message("[boot] There is a hard fault logged. Hold down the SPACE BAR," \ " while booting to halt the system!\n"); /* Yes. So add one to the boot count - this will be reset after a successful * commit to SD */ int reboots = hardfault_increment_reboot("boot", false); /* Also end the misery for a user that holds for a key down on the console */ int bytesWaiting; ioctl(fileno(stdin), FIONREAD, (unsigned long)((uintptr_t) &bytesWaiting)); if (reboots > 2 || bytesWaiting != 0) { /* Since we can not commit the fault dump to disk. Display it * to the console. */ hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); message("[boot] There were %d reboots with Hard fault that were not committed to disk - System halted %s\n", reboots, (bytesWaiting == 0 ? "" : " Due to Key Press\n")); /* For those of you with a debugger set a break point on up_assert and * then set dbgContinue = 1 and go. */ /* Clear any key press that got us here */ static volatile bool dbgContinue = false; int c = '>'; while (!dbgContinue) { switch (c) { case EOF: case '\n': case '\r': case ' ': continue; default: putchar(c); putchar('\n'); switch (c) { case 'D': case 'd': hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); break; case 'C': case 'c': hardfault_rearm("boot"); hardfault_increment_reboot("boot", true); break; case 'B': case 'b': dbgContinue = true; break; default: break; } // Inner Switch message("\nEnter B - Continue booting\n" \ "Enter C - Clear the fault log\n" \ "Enter D - Dump fault log\n\n?>"); fflush(stdout); if (!dbgContinue) { c = getchar(); } break; } // outer switch } // for } // inner if } // outer if #endif // CONFIG_STM32_SAVE_CRASHDUMP #endif // CONFIG_STM32_BBSRAM /* initial LED state */ drv_led_start(); led_off(LED_RED); led_off(LED_GREEN); led_off(LED_BLUE); led_off(LED_TX); led_off(LED_RX); result = board_i2c_initialize(); if (result != OK) { led_on(LED_RED); return -ENODEV; } return OK; }
__EXPORT int nsh_archinitialize(void) { int result; /* configure always-on ADC pins */ stm32_configgpio(GPIO_ADC1_IN10); stm32_configgpio(GPIO_ADC1_IN11); /* IN12 and IN13 further below */ /* configure the high-resolution time/callout interface */ hrt_init(); /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); /* initial LED state */ drv_led_start(); led_off(LED_AMBER); led_off(LED_BLUE); /* Configure SPI-based devices */ spi1 = up_spiinitialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\r\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_ACCEL, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); /* * If SPI2 is enabled in the defconfig, we loose some ADC pins as chip selects. * Keep the SPI2 init optional and conditionally initialize the ADC pins */ #ifdef CONFIG_STM32_SPI2 spi2 = up_spiinitialize(2); /* Default SPI2 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi2, 10000000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi2, PX4_SPIDEV_ACCEL_MAG, false); message("[boot] Initialized SPI port2 (ADC IN12/13 blocked)\n"); #else spi2 = NULL; message("[boot] Enabling IN12/13 instead of SPI2\n"); /* no SPI2, use pins for ADC */ stm32_configgpio(GPIO_ADC1_IN12); stm32_configgpio(GPIO_ADC1_IN13); // jumperable to MPU6000 DRDY on some boards #endif /* Get the SPI port for the microSD slot */ spi3 = up_spiinitialize(3); if (!spi3) { message("[boot] FAILED to initialize SPI port 3\n"); up_ledon(LED_AMBER); return -ENODEV; } /* Now bind the SPI interface to the MMCSD driver */ result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi3); if (result != OK) { message("[boot] FAILED to bind SPI port 3 to the MMCSD driver\n"); up_ledon(LED_AMBER); return -ENODEV; } return OK; }
__EXPORT int board_app_initialize(uintptr_t arg) { #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* configure the high-resolution time/callout interface */ hrt_init(); /* configure the DMA allocator */ if (board_dma_alloc_init() < 0) { message("DMA alloc FAILED"); } /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); #if defined(CONFIG_STM32_BBSRAM) /* NB. the use of the console requires the hrt running * to poll the DMA */ /* Using Battery Backed Up SRAM */ int filesizes[CONFIG_STM32_BBSRAM_FILES + 1] = BSRAM_FILE_SIZES; stm32_bbsraminitialize(BBSRAM_PATH, filesizes); #if defined(CONFIG_STM32_SAVE_CRASHDUMP) /* Panic Logging in Battery Backed Up Files */ /* * In an ideal world, if a fault happens in flight the * system save it to BBSRAM will then reboot. Upon * rebooting, the system will log the fault to disk, recover * the flight state and continue to fly. But if there is * a fault on the bench or in the air that prohibit the recovery * or committing the log to disk, the things are too broken to * fly. So the question is: * * Did we have a hard fault and not make it far enough * through the boot sequence to commit the fault data to * the SD card? */ /* Do we have an uncommitted hard fault in BBSRAM? * - this will be reset after a successful commit to SD */ int hadCrash = hardfault_check_status("boot"); if (hadCrash == OK) { message("[boot] There is a hard fault logged. Hold down the SPACE BAR," \ " while booting to halt the system!\n"); /* Yes. So add one to the boot count - this will be reset after a successful * commit to SD */ int reboots = hardfault_increment_reboot("boot", false); /* Also end the misery for a user that holds for a key down on the console */ int bytesWaiting; ioctl(fileno(stdin), FIONREAD, (unsigned long)((uintptr_t) &bytesWaiting)); if (reboots > 2 || bytesWaiting != 0) { /* Since we can not commit the fault dump to disk. Display it * to the console. */ hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); message("[boot] There were %d reboots with Hard fault that were not committed to disk - System halted %s\n", reboots, (bytesWaiting == 0 ? "" : " Due to Key Press\n")); /* For those of you with a debugger set a break point on up_assert and * then set dbgContinue = 1 and go. */ /* Clear any key press that got us here */ static volatile bool dbgContinue = false; int c = '>'; while (!dbgContinue) { switch (c) { case EOF: case '\n': case '\r': case ' ': continue; default: putchar(c); putchar('\n'); switch (c) { case 'D': case 'd': hardfault_write("boot", fileno(stdout), HARDFAULT_DISPLAY_FORMAT, false); break; case 'C': case 'c': hardfault_rearm("boot"); hardfault_increment_reboot("boot", true); break; case 'B': case 'b': dbgContinue = true; break; default: break; } // Inner Switch message("\nEnter B - Continue booting\n" \ "Enter C - Clear the fault log\n" \ "Enter D - Dump fault log\n\n?>"); fflush(stdout); if (!dbgContinue) { c = getchar(); } break; } // outer switch } // for } // inner if } // outer if #endif // CONFIG_STM32_SAVE_CRASHDUMP #endif // CONFIG_STM32_BBSRAM /* initial LED state */ drv_led_start(); led_off(LED_RED); led_off(LED_GREEN); led_off(LED_BLUE); /* Configure SPI-based devices */ spi1 = stm32_spibus_initialize(1); if (!spi1) { message("[boot] FAILED to initialize SPI port 1\n"); board_autoled_on(LED_RED); return -ENODEV; } /* Default SPI1 to 1MHz and de-assert the known chip selects. */ SPI_SETFREQUENCY(spi1, 10000000); SPI_SETBITS(spi1, 8); SPI_SETMODE(spi1, SPIDEV_MODE3); SPI_SELECT(spi1, PX4_SPIDEV_GYRO, false); SPI_SELECT(spi1, PX4_SPIDEV_HMC, false); SPI_SELECT(spi1, PX4_SPIDEV_MPU, false); up_udelay(20); /* Get the SPI port for the FRAM */ spi2 = stm32_spibus_initialize(2); if (!spi2) { message("[boot] FAILED to initialize SPI port 2\n"); board_autoled_on(LED_RED); return -ENODEV; } /* Default SPI2 to 12MHz and de-assert the known chip selects. * MS5611 has max SPI clock speed of 20MHz */ // XXX start with 10.4 MHz and go up to 20 once validated SPI_SETFREQUENCY(spi2, 20 * 1000 * 1000); SPI_SETBITS(spi2, 8); SPI_SETMODE(spi2, SPIDEV_MODE3); SPI_SELECT(spi2, SPIDEV_FLASH, false); SPI_SELECT(spi2, PX4_SPIDEV_BARO, false); #ifdef CONFIG_MMCSD /* First, get an instance of the SDIO interface */ sdio = sdio_initialize(CONFIG_NSH_MMCSDSLOTNO); if (!sdio) { message("[boot] Failed to initialize SDIO slot %d\n", CONFIG_NSH_MMCSDSLOTNO); return -ENODEV; } /* Now bind the SDIO interface to the MMC/SD driver */ int ret = mmcsd_slotinitialize(CONFIG_NSH_MMCSDMINOR, sdio); if (ret != OK) { message("[boot] Failed to bind SDIO to the MMC/SD driver: %d\n", ret); return ret; } /* Then let's guess and say that there is a card in the slot. There is no card detect GPIO. */ sdio_mediachange(sdio, true); #endif return OK; }
int nsh_archinitialize(void) { int result; /* INIT 1 Lowest level NuttX initialization has been done at this point, LEDs and UARTs are configured */ /* INIT 2 Configuring PX4 low-level peripherals, these will be always needed */ /* configure the high-resolution time/callout interface */ #ifdef CONFIG_HRT_TIMER hrt_init(); #endif /* configure CPU load estimation */ #ifdef CONFIG_SCHED_INSTRUMENTATION cpuload_initialize_once(); #endif /* set up the serial DMA polling */ #ifdef SERIAL_HAVE_DMA { static struct hrt_call serial_dma_call; struct timespec ts; /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ ts.tv_sec = 0; ts.tv_nsec = 1000000; hrt_call_every(&serial_dma_call, ts_to_abstime(&ts), ts_to_abstime(&ts), (hrt_callout)stm32_serial_dma_poll, NULL); } #endif message("\r\n"); up_ledoff(LED_BLUE); up_ledoff(LED_AMBER); up_ledon(LED_BLUE); /* Configure user-space led driver */ px4fmu_led_init(); i2c2 = up_i2cinitialize(2); if (!i2c2) { message("[boot] FAILED to initialize I2C bus 3\r\n"); up_ledon(LED_AMBER); return -ENODEV; } /* set I2C3 speed */ I2C_SETFREQUENCY(i2c2, 400000); /* try to attach, don't fail if device is not responding */ (void)eeprom_attach(i2c2, FMU_BASEBOARD_EEPROM_ADDRESS, FMU_BASEBOARD_EEPROM_TOTAL_SIZE_BYTES, FMU_BASEBOARD_EEPROM_PAGE_SIZE_BYTES, FMU_BASEBOARD_EEPROM_PAGE_WRITE_TIME_US, "/dev/baseboard_eeprom", 1); int eeprom_attempts = 0; int eeprom_fail; while (eeprom_attempts < 5) { /* try to attach, fail if device does not respond */ eeprom_fail = eeprom_attach(i2c2, FMU_ONBOARD_EEPROM_ADDRESS, FMU_ONBOARD_EEPROM_TOTAL_SIZE_BYTES, FMU_ONBOARD_EEPROM_PAGE_SIZE_BYTES, FMU_ONBOARD_EEPROM_PAGE_WRITE_TIME_US, "/dev/eeprom", 1); eeprom_attempts++; if (eeprom_fail == OK) break; up_udelay(1000); } if (eeprom_fail) message("[boot] FAILED to attach FMU EEPROM\r\n"); /* Report back sensor status */ if (eeprom_fail) { up_ledon(LED_AMBER); } #if defined(CONFIG_STM32_SPI3) /* Get the SPI port */ message("[boot] Initializing SPI port 3\r\n"); spi3 = up_spiinitialize(3); if (!spi3) { message("[boot] FAILED to initialize SPI port 3\r\n"); up_ledon(LED_AMBER); return -ENODEV; } message("[boot] Successfully initialized SPI port 3\r\n"); /* Now bind the SPI interface to the MMCSD driver */ result = mmcsd_spislotinitialize(CONFIG_NSH_MMCSDMINOR, CONFIG_NSH_MMCSDSLOTNO, spi3); if (result != OK) { message("[boot] FAILED to bind SPI port 3 to the MMCSD driver\r\n"); up_ledon(LED_AMBER); return -ENODEV; } message("[boot] Successfully bound SPI port 3 to the MMCSD driver\r\n"); #endif /* SPI3 */ /* INIT 3: MULTIPORT-DEPENDENT INITIALIZATION */ /* Get board information if available */ /* Initialize the user GPIOs */ px4fmu_gpio_init(); #ifdef CONFIG_ADC int adc_state = adc_devinit(); if (adc_state != OK) { /* Try again */ adc_state = adc_devinit(); if (adc_state != OK) { /* Give up */ message("[boot] FAILED adc_devinit: %d\r\n", adc_state); return -ENODEV; } } #endif /* configure the tone generator */ #ifdef CONFIG_TONE_ALARM tone_alarm_init(); #endif return OK; }