static int ddres(rtk_t *rtk, const nav_t *nav, double dt, const double *x, const double *P, const int *sat, double *y, double *e, double *azel, const int *iu, const int *ir, int ns, double *v, double *H, double *R, int *vflg,char **msg) { prcopt_t *opt=&rtk->opt; double bl,dr[3],posu[3],posr[3],*im; double *tropr,*tropu,*dtdxr,*dtdxu,*Ri,*Rj,s,lami,lamj,*Hi=NULL; int i,j,k,f,nv=0,nb[6]= {0},b=0,sysi,sysj,nf=1; bl=baseline(x,rtk->rb,dr); ecef2pos(x,posu); ecef2pos(rtk->rb,posr); sysi=sysj=SYS_GPS; Ri=mat(ns*2+2,1); Rj=mat (ns*2+2,1); im=mat(ns,1); tropu=mat(ns,1); tropr=mat(ns,1); dtdxu=mat(ns,3); dtdxr=mat(ns,3); for (i=0; i<MAX_SAT; i++) { rtk->ssat[i].resp=rtk->ssat[i].resc=0.0; } for (f=0; f<2; f++) { /* search reference satellite with highest elevation */ for (i=-1,j=0; j<ns; j++) { if (validobs(iu[j],ir[j],f,1,y)) continue; if (i<0||azel[1+iu[j]*2]>=azel[1+iu[i]*2]) i=j; } if (i<0) continue; /* make double difference */ for (j=0; j<ns; j++) { if (i==j) continue; if (validobs(iu[j],ir[j],f,1,y)) continue; lami=lamj=LAM1; if (H) Hi=H+nv*rtk->nx; /* double-differenced residual */ v[nv]=(y[f+iu[i]*2]-y[f+ir[i]*2])- (y[f+iu[j]*2]-y[f+ir[j]*2]); /* partial derivatives by rover position */ if (H) { for (k=0; k<3; k++) { Hi[k]=-e[k+iu[i]*3]+e[k+iu[j]*3]; } } /* double-differenced phase-bias term */ if (f<1) { v[nv]-=lami*x[IB(sat[i],f,opt)]-lamj*x[IB(sat[j],f,opt)]; if (H) { Hi[IB(sat[i],f,opt)]= lami; Hi[IB(sat[j],f,opt)]=-lamj; } } if (f<1) rtk->ssat[sat[j]-1].resc=v[nv]; else rtk->ssat[sat[j]-1].resp=v[nv]; /* test innovation */ if (opt->maxinno>0.0&&fabs(v[nv])>opt->maxinno) { if (f<1) { rtk->ssat[sat[i]-1].rejc++; rtk->ssat[sat[j]-1].rejc++; } #ifdef _DEBUG_MSG (*msg)+=sprintf(*msg,"outlier rejected (sat=%3d-%3d %s%d v=%.3f)\n", sat[i],sat[j],f<1?"L":"P",f+1,v[nv]); #endif continue; } /* single-differenced measurement error variances */ Ri[nv]=varerr(sat[i],sysi,azel[1+iu[i]*2],bl,dt,f,opt); Rj[nv]=varerr(sat[j],sysj,azel[1+iu[j]*2],bl,dt,f,opt); /* set valid data flags */ if (f<1) rtk->ssat[sat[i]-1].vsat=rtk->ssat[sat[j]-1].vsat=1; //trace(4,"sat=%3d-%3d %s%d v=%13.3f R=%8.6f %8.6f\n",sat[i], // sat[j],f<nf?"L":"P",f%nf+1,v[nv],Ri[nv],Rj[nv]); vflg[nv++]=(sat[i]<<16)|(sat[j]<<8)|((f<nf?0:1)<<4); nb[b]++; } /* restore single-differenced residuals assuming sum equal zero */ if (f<nf) { for (j=0,s=0.0; j<MAX_SAT; j++) s+=rtk->ssat[j].resc; s/=nb[b]+1; for (j=0; j<MAX_SAT; j++) { if (j==sat[i]-1||rtk->ssat[j].resc!=0.0) rtk->ssat[j].resc-=s; } } else { for (j=0,s=0.0; j<MAX_SAT; j++) s+=rtk->ssat[j].resp; s/=nb[b]+1; for (j=0; j<MAX_SAT; j++) { if (j==sat[i]-1||rtk->ssat[j].resp!=0.0) rtk->ssat[j].resp-=s; } } b++; } /* end of system loop */ /* baseline length constraint for moving baseline */ /* double-differenced measurement error covariance */ ddcov(nb,b,Ri,Rj,nv,R); free(Ri); free(Rj); free(im); free(tropu); free(tropr); free(dtdxu); free(dtdxr); return nv; }
/* phase and code residuals --------------------------------------------------*/ static int res_ppp(int iter, const obsd_t *obs, int n, const double *rs, const double *dts, const double *vare, const int *svh, const nav_t *nav, const double *x, rtk_t *rtk, double *v, double *H, double *R, double *azel) { prcopt_t *opt=&rtk->opt; double r,rr[3],disp[3],pos[3],e[3],meas[2],dtdx[3],dantr[NFREQ]={0}; double dants[NFREQ]={0},var[MAXOBS*2],dtrp=0.0,vart=0.0,varm[2]={0}; int i,j,k,sat,sys,nv=0,nx=rtk->nx,brk,tideopt; trace(3,"res_ppp : n=%d nx=%d\n",n,nx); for (i=0;i<MAXSAT;i++) rtk->ssat[i].vsat[0]=0; for (i=0;i<3;i++) rr[i]=x[i]; /* earth tides correction */ if (opt->tidecorr) { tideopt=opt->tidecorr==1?1:7; /* 1:solid, 2:solid+otl+pole */ tidedisp(gpst2utc(obs[0].time),rr,tideopt,&nav->erp,opt->odisp[0], disp); for (i=0;i<3;i++) rr[i]+=disp[i]; } ecef2pos(rr,pos); for (i=0;i<n&&i<MAXOBS;i++) { sat=obs[i].sat; if (!(sys=satsys(sat,NULL))||!rtk->ssat[sat-1].vs) continue; /* geometric distance/azimuth/elevation angle */ if ((r=geodist(rs+i*6,rr,e))<=0.0|| satazel(pos,e,azel+i*2)<opt->elmin) continue; /* excluded satellite? */ if (satexclude(obs[i].sat,svh[i],opt)) continue; /* tropospheric delay correction */ if (opt->tropopt==TROPOPT_SAAS) { dtrp=tropmodel(obs[i].time,pos,azel+i*2,REL_HUMI); vart=SQR(ERR_SAAS); } else if (opt->tropopt==TROPOPT_SBAS) { dtrp=sbstropcorr(obs[i].time,pos,azel+i*2,&vart); } else if (opt->tropopt==TROPOPT_EST||opt->tropopt==TROPOPT_ESTG) { dtrp=prectrop(obs[i].time,pos,azel+i*2,opt,x+IT(opt),dtdx,&vart); } else if (opt->tropopt==TROPOPT_COR||opt->tropopt==TROPOPT_CORG) { dtrp=prectrop(obs[i].time,pos,azel+i*2,opt,x,dtdx,&vart); } /* satellite antenna model */ if (opt->posopt[0]) { satantpcv(rs+i*6,rr,nav->pcvs+sat-1,dants); } /* receiver antenna model */ antmodel(opt->pcvr,opt->antdel[0],azel+i*2,opt->posopt[1],dantr); /* phase windup correction */ if (opt->posopt[2]) { windupcorr(rtk->sol.time,rs+i*6,rr,&rtk->ssat[sat-1].phw); } /* ionosphere and antenna phase corrected measurements */ if (!corrmeas(obs+i,nav,pos,azel+i*2,&rtk->opt,dantr,dants, rtk->ssat[sat-1].phw,meas,varm,&brk)) { continue; } /* satellite clock and tropospheric delay */ r+=-CLIGHT*dts[i*2]+dtrp; trace(5,"sat=%2d azel=%6.1f %5.1f dtrp=%.3f dantr=%6.3f %6.3f dants=%6.3f %6.3f phw=%6.3f\n", sat,azel[i*2]*R2D,azel[1+i*2]*R2D,dtrp,dantr[0],dantr[1],dants[0], dants[1],rtk->ssat[sat-1].phw); for (j=0;j<2;j++) { /* for phase and code */ if (meas[j]==0.0) continue; for (k=0;k<nx;k++) H[k+nx*nv]=0.0; v[nv]=meas[j]-r; for (k=0;k<3;k++) H[k+nx*nv]=-e[k]; if (sys!=SYS_GLO) { v[nv]-=x[IC(0,opt)]; H[IC(0,opt)+nx*nv]=1.0; } else { v[nv]-=x[IC(1,opt)]; H[IC(1,opt)+nx*nv]=1.0; } if (opt->tropopt>=TROPOPT_EST) { for (k=0;k<(opt->tropopt>=TROPOPT_ESTG?3:1);k++) { H[IT(opt)+k+nx*nv]=dtdx[k]; } } if (j==0) { v[nv]-=x[IB(obs[i].sat,opt)]; H[IB(obs[i].sat,opt)+nx*nv]=1.0; } var[nv]=varerr(obs[i].sat,sys,azel[1+i*2],j,opt)+varm[j]+vare[i]+vart; if (j==0) rtk->ssat[sat-1].resc[0]=v[nv]; else rtk->ssat[sat-1].resp[0]=v[nv]; /* test innovation */ #if 0 if (opt->maxinno>0.0&&fabs(v[nv])>opt->maxinno) { #else if (opt->maxinno>0.0&&fabs(v[nv])>opt->maxinno&&sys!=SYS_GLO) { #endif trace(2,"ppp outlier rejected %s sat=%2d type=%d v=%.3f\n", time_str(obs[i].time,0),sat,j,v[nv]); rtk->ssat[sat-1].rejc[0]++; continue; } if (j==0) rtk->ssat[sat-1].vsat[0]=1; nv++; } } for (i=0;i<nv;i++) for (j=0;j<nv;j++) { R[i+j*nv]=i==j?var[i]:0.0; } trace(5,"x=\n"); tracemat(5,x, 1,nx,8,3); trace(5,"v=\n"); tracemat(5,v, 1,nv,8,3); trace(5,"H=\n"); tracemat(5,H,nx,nv,8,3); trace(5,"R=\n"); tracemat(5,R,nv,nv,8,5); return nv; } /* number of estimated states ------------------------------------------------*/ extern int pppnx(const prcopt_t *opt) { return NX(opt); } /* precise point positioning -------------------------------------------------*/ extern void pppos(rtk_t *rtk, const obsd_t *obs, int n, const nav_t *nav) { const prcopt_t *opt=&rtk->opt; double *rs,*dts,*var,*v,*H,*R,*azel,*xp,*Pp; int i,nv,info,svh[MAXOBS],stat=SOLQ_SINGLE; trace(3,"pppos : nx=%d n=%d\n",rtk->nx,n); rs=mat(6,n); dts=mat(2,n); var=mat(1,n); azel=zeros(2,n); for (i=0;i<MAXSAT;i++) rtk->ssat[i].fix[0]=0; /* temporal update of states */ udstate_ppp(rtk,obs,n,nav); trace(4,"x(0)="); tracemat(4,rtk->x,1,NR(opt),13,4); /* satellite positions and clocks */ satposs(obs[0].time,obs,n,nav,rtk->opt.sateph,rs,dts,var,svh); /* exclude measurements of eclipsing satellite */ if (rtk->opt.posopt[3]) { testeclipse(obs,n,nav,rs); } xp=mat(rtk->nx,1); Pp=zeros(rtk->nx,rtk->nx); matcpy(xp,rtk->x,rtk->nx,1); nv=n*rtk->opt.nf*2; v=mat(nv,1); H=mat(rtk->nx,nv); R=mat(nv,nv); for (i=0;i<rtk->opt.niter;i++) { /* phase and code residuals */ if ((nv=res_ppp(i,obs,n,rs,dts,var,svh,nav,xp,rtk,v,H,R,azel))<=0) break; /* measurement update */ matcpy(Pp,rtk->P,rtk->nx,rtk->nx); if ((info=filter(xp,Pp,H,v,R,rtk->nx,nv))) { trace(2,"ppp filter error %s info=%d\n",time_str(rtk->sol.time,0), info); break; } trace(4,"x(%d)=",i+1); tracemat(4,xp,1,NR(opt),13,4); stat=SOLQ_PPP; } if (stat==SOLQ_PPP) { /* postfit residuals */ res_ppp(1,obs,n,rs,dts,var,svh,nav,xp,rtk,v,H,R,azel); /* update state and covariance matrix */ matcpy(rtk->x,xp,rtk->nx,1); matcpy(rtk->P,Pp,rtk->nx,rtk->nx); /* ambiguity resolution in ppp */ if (opt->modear==ARMODE_PPPAR||opt->modear==ARMODE_PPPAR_ILS) { if (pppamb(rtk,obs,n,nav,azel)) stat=SOLQ_FIX; } /* update solution status */ rtk->sol.ns=0; for (i=0;i<n&&i<MAXOBS;i++) { if (!rtk->ssat[obs[i].sat-1].vsat[0]) continue; rtk->ssat[obs[i].sat-1].lock[0]++; rtk->ssat[obs[i].sat-1].outc[0]=0; rtk->ssat[obs[i].sat-1].fix [0]=4; rtk->sol.ns++; } rtk->sol.stat=stat; for (i=0;i<3;i++) { rtk->sol.rr[i]=rtk->x[i]; rtk->sol.qr[i]=(float)rtk->P[i+i*rtk->nx]; } rtk->sol.qr[3]=(float)rtk->P[1]; rtk->sol.qr[4]=(float)rtk->P[2+rtk->nx]; rtk->sol.qr[5]=(float)rtk->P[2]; rtk->sol.dtr[0]=rtk->x[IC(0,opt)]; rtk->sol.dtr[1]=rtk->x[IC(1,opt)]-rtk->x[IC(0,opt)]; for (i=0;i<n&&i<MAXOBS;i++) { rtk->ssat[obs[i].sat-1].snr[0]=MIN(obs[i].SNR[0],obs[i].SNR[1]); } for (i=0;i<MAXSAT;i++) { if (rtk->ssat[i].slip[0]&3) rtk->ssat[i].slipc[0]++; } } free(rs); free(dts); free(var); free(azel); free(xp); free(Pp); free(v); free(H); free(R); }
/* pseudorange residuals -----------------------------------------------------*/ static int rescode(int iter, const obsd_t *obs, int n, const double *rs, const double *dts, const double *vare, const int *svh, const nav_t *nav, const double *x, prcopt_t *opt, double *v, double *H, double *var, double *azel, int *vsat, double *resp, int *ns, rtk_t *rtk) { double r,dion,dtrp,vmeas,vion,vtrp,rr[3],pos[3],dtr,e[3],P; int i, j, nv = 0, sys, mask[4] = { 0 }; double azl = 0; for (i=0;i<3;i++) rr[i]=x[i]; dtr=x[3]; ecef2pos(rr,pos); for (i=*ns=0;i<n&&i<MAXOBS;i++) { vsat[i]=0; azel[i*2]=azel[1+i*2]=resp[i]=0.0; if (obs[i].sat>32){ //added by yuan; continue; } //���������ز�����α��Ͳ�����������ǵķ���; if ((fabs(obs[i].L[0]) < 0.0001) || (fabs(obs[i].P[0]) < 0.0001)){ continue; } if (!(sys=satsys(obs[i].sat,NULL))) continue; /* reject duplicated observation data */ if (i<n-1&&i<MAXOBS-1&&obs[i].sat==obs[i+1].sat) { i++; continue; } /* geometric distance/azimuth/elevation angle */ if ((r=geodist(rs+i*6,rr,e))<=0.0|| satazel(pos,e,azel+i*2)<opt->elmin) continue; azl = satazel(pos, e, azel + i * 2); /* psudorange with code bias correction */ if ((P=prange(obs+i,nav,azel+i*2,iter,opt,&vmeas))==0.0) continue; /* excluded satellite? */ if (satexclude(obs[i].sat,svh[i],opt)) continue; /* ionospheric corrections */ if (!ionocorr(obs[i].time,nav,obs[i].sat,pos,azel+i*2, iter>0?opt->ionoopt:IONOOPT_BRDC,&dion,&vion)) continue; /* tropospheric corrections */ if (!tropcorr(obs[i].time,nav,pos,azel+i*2, iter>0?opt->tropopt:TROPOPT_SAAS,&dtrp,&vtrp)) { continue; } /* pseudorange residual */ v[nv]=P-(r+dtr-CLIGHT*dts[i*2]+dion+dtrp); /* design matrix */ for (j=0;j<NX;j++) H[j+nv*NX]=j<3?-e[j]:(j==3?1.0:0.0); /* time system and receiver bias offset correction */ if (sys==SYS_GLO) {v[nv]-=x[4]; H[4+nv*NX]=1.0; mask[1]=1;} else if (sys==SYS_GAL) {v[nv]-=x[5]; H[5+nv*NX]=1.0; mask[2]=1;} else if (sys==SYS_CMP) {v[nv]-=x[6]; H[6+nv*NX]=1.0; mask[3]=1;} else mask[0]=1; vsat[i]=1; resp[i]=v[nv]; (*ns)++; rtk->sat_[nv] = obs[i].sat; //added by yuan; /* error variance */ if ((rtk->counter > 5) && (obs[i].mark_ < 4)){ var[nv++] = varerr(opt, azel[1 + i * 2], sys) + (4 - obs[i].mark_)*2 + vare[i] + vmeas + vion + vtrp; //varm:α���ز�����;vare:������������;vart:����������; //var[nv - 1] = var[nv - 1] * (4-obs[i].mark_); //�������ʧ���������������Ŵ�; } else{ var[nv++] = varerr(opt, azel[1 + i * 2], sys) + vare[i] + vmeas + vion + vtrp; //varm:α���ز�����;vare:������������;vart:����������; } } /* constraint to avoid rank-deficient */ for (i=0;i<4;i++) { if (mask[i]) continue; v[nv]=0.0; for (j=0;j<NX;j++) H[j+nv*NX]=j==i+3?1.0:0.0; var[nv++]=0.01; } return nv; }
/* pseudorange residuals -----------------------------------------------------*/ static int rescode(int iter, const obsd_t *obs, int n, const double *rs, const double *dts, const double *vare, const int *svh, const nav_t *nav, const double *x, const prcopt_t *opt, double *v, double *H, double *var, double *azel, int *vsat, double *resp, int *ns) { double r,dion,dtrp,vmeas,vion,vtrp,rr[3],pos[3],dtr,e[3],P,lam_L1; int i,j,nv=0,sys,mask[4]={0}; trace(3,"resprng : n=%d\n",n); for (i=0;i<3;i++) rr[i]=x[i]; dtr=x[3]; ecef2pos(rr,pos); for (i=*ns=0;i<n&&i<MAXOBS;i++) { vsat[i]=0; azel[i*2]=azel[1+i*2]=resp[i]=0.0; if (!(sys=satsys(obs[i].sat,NULL))) continue; /* reject duplicated observation data */ if (i<n-1&&i<MAXOBS-1&&obs[i].sat==obs[i+1].sat) { trace(2,"duplicated observation data %s sat=%2d\n", time_str(obs[i].time,3),obs[i].sat); i++; continue; } /* geometric distance/azimuth/elevation angle */ if ((r=geodist(rs+i*6,rr,e))<=0.0|| satazel(pos,e,azel+i*2)<opt->elmin) continue; /* psudorange with code bias correction */ if ((P=prange(obs+i,nav,azel+i*2,iter,opt,&vmeas))==0.0) continue; /* excluded satellite? */ if (satexclude(obs[i].sat,svh[i],opt)) continue; /* ionospheric corrections */ if (!ionocorr(obs[i].time,nav,obs[i].sat,pos,azel+i*2, iter>0?opt->ionoopt:IONOOPT_BRDC,&dion,&vion)) continue; /* GPS-L1 -> L1/B1 */ if ((lam_L1=nav->lam[obs[i].sat-1][0])>0.0) { dion*=SQR(lam_L1/lam_carr[0]); } /* tropospheric corrections */ if (!tropcorr(obs[i].time,nav,pos,azel+i*2, iter>0?opt->tropopt:TROPOPT_SAAS,&dtrp,&vtrp)) { continue; } /* pseudorange residual */ v[nv]=P-(r+dtr-CLIGHT*dts[i*2]+dion+dtrp); /* design matrix */ for (j=0;j<NX;j++) H[j+nv*NX]=j<3?-e[j]:(j==3?1.0:0.0); /* time system and receiver bias offset correction */ if (sys==SYS_GLO) {v[nv]-=x[4]; H[4+nv*NX]=1.0; mask[1]=1;} else if (sys==SYS_GAL) {v[nv]-=x[5]; H[5+nv*NX]=1.0; mask[2]=1;} else if (sys==SYS_CMP) {v[nv]-=x[6]; H[6+nv*NX]=1.0; mask[3]=1;} else mask[0]=1; vsat[i]=1; resp[i]=v[nv]; (*ns)++; /* error variance */ var[nv++]=varerr(opt,azel[1+i*2],sys)+vare[i]+vmeas+vion+vtrp; trace(4,"sat=%2d azel=%5.1f %4.1f res=%7.3f sig=%5.3f\n",obs[i].sat, azel[i*2]*R2D,azel[1+i*2]*R2D,resp[i],sqrt(var[nv-1])); } /* constraint to avoid rank-deficient */ for (i=0;i<4;i++) { if (mask[i]) continue; v[nv]=0.0; for (j=0;j<NX;j++) H[j+nv*NX]=j==i+3?1.0:0.0; var[nv++]=0.01; } return nv; }