Пример #1
0
int32_t pivot_lookat(struct Pivot* pivot, const Vec3f target) {
    int32_t result = -1;

    Vec4f right_axis = RIGHT_AXIS;
    Vec4f up_axis = UP_AXIS;
    Vec4f forward_axis = FORWARD_AXIS;

    struct Pivot world_pivot;
    pivot_combine(pivot->parent, pivot, &world_pivot);

    Vec4f target_direction;
    vec_sub(target, world_pivot.position, target_direction);

    float dot_yaw = vec_dot(target_direction, forward_axis);

    Quat rotation = {0};
    if( fabs(dot_yaw + 1.0f) < CUTE_EPSILON ) {
        // vector a and b point exactly in the opposite direction,
        // so it is a 180 degrees turn around the up-axis
        Quat rotation = {0};
        quat_from_axis_angle(up_axis, PI, rotation);
        quat_mul(world_pivot.orientation, rotation, rotation);
    } else if( fabs(dot_yaw - (1.0f)) < CUTE_EPSILON ) {
        // vector a and b point exactly in the same direction
        // so we return the identity quaternion
        quat_copy(world_pivot.orientation, rotation);
    } else {
        // - I look at the target by turning the pivot orientation using only
        // yaw and pitch movement
        // - I always rotate the pivot from its initial orientation (up and forward
        // basis vectors like initialized above), so this does not incrementally
        // advance the orientation
        quat_identity(rotation);

        // - to find the amount of yaw I project the target_direction into the
        //   up_axis plane, resulting in up_projection which is a vector that
        //   points from the up_axis plane to the tip of the target_direction
        Vec4f up_projection = {0};
        vec_mul1f(up_axis, vec_dot(target_direction, up_axis), up_projection);

        // - so then by subtracting the up_projection from the target_direction,
        //   I get a vector lying in the up_axis plane, pointing towards the target
        Vec4f yaw_direction = {0};
        vec_sub(target_direction, up_projection, yaw_direction);

        // - angle between yaw_direction and forward_axis is the amount of yaw we
        //   need to point the forward_axis toward the target
        float yaw = 0.0f;
        vec_angle(yaw_direction, forward_axis, &yaw);
        log_assert( ! isnan(yaw),
                    "vec_angle(%f %f %f, %f %f %f, %f);\n",
                    yaw_direction[0], yaw_direction[1], yaw_direction[2],
                    forward_axis[0], forward_axis[1], forward_axis[2],
                    yaw );

        // - I have to compute the cross product between yaw_direction and
        //   forward_axis and use the resulting yaw_axis
        Vec4f yaw_axis = {0};
        vec_cross(yaw_direction, forward_axis, yaw_axis);
        if( vec_nullp(yaw_axis) ) {
            vec_copy4f(up_axis, yaw_axis);
        }

        // - compute the yaw rotation
        Quat yaw_rotation = {0};
        quat_from_axis_angle(yaw_axis, yaw, yaw_rotation);

        // - to compute, just as with the yaw, I want an axis that lies on the plane that
        //   is spanned in this case by the right_axis, when the camera points toward the
        //   target
        // - I could compute an axis, but I already have a direction vector that points
        //   toward the target, the yaw_direction, I just have to normalize it to make it
        //   an axis (and put the result in forward_axis, since it now is the forward_axis
        //   of the yaw turned camera)
        Vec4f yaw_forward_axis = {0};
        vec_normalize(yaw_direction, yaw_forward_axis);

        // - then use the new forward axis with the old target_direction to compute the angle
        //   between those
        float pitch = 0.0f;
        vec_angle(target_direction, yaw_forward_axis, &pitch);
        log_assert( ! isnan(pitch),
                    "vec_angle(%f %f %f, %f %f %f, %f);\n",
                    target_direction[0], target_direction[1], target_direction[2],
                    yaw_forward_axis[0], yaw_forward_axis[1], yaw_forward_axis[2],
                    pitch );


        // - and just as in the yaw case we compute an rotation pitch_axis
        Vec4f pitch_axis = {0};
        vec_cross(target_direction, yaw_forward_axis, pitch_axis);
        if( vec_nullp(pitch_axis) ) {
            vec_copy4f(right_axis, pitch_axis);
        }

        // - and finally compute the pitch rotation and combine it with the yaw_rotation
        //   in the same step
        Quat pitch_rotation;
        quat_from_axis_angle(pitch_axis, pitch, pitch_rotation);
        Quat yaw_pitch_rotation;
        quat_mul(yaw_rotation, pitch_rotation, yaw_pitch_rotation);

        Quat inverted_orientation = {0};
        quat_invert(world_pivot.orientation, inverted_orientation);

        // - the int32_t I want to return indicates the cameras 'flip' status, that is, it is
        //   one when the camera angle was pitched so much that it flipped over and its
        //   up axis is now pointing downwards
        // - to find out if I am flipped over, I compute the flipped up_axis called
        //   flip_axis and then use the dot product between the flip_axis and up_axis
        //   to decide if I am flipped
        Vec4f flip_axis = {0};
        vec_rotate(up_axis, inverted_orientation, flip_axis);
        vec_rotate(flip_axis, yaw_pitch_rotation, flip_axis);

        float dot_pitch = vec_dot(up_axis, flip_axis);

        Vec4f target_axis = {0};
        vec_normalize(target_direction, target_axis);

        // - check if we are flipped and if we are, set result to 1 meaning we are flipped
        // - turn the camera around PI so that we can continue pitching, otherwise we just get
        //   stuck when trying to flip the camera over
        if( dot_pitch < 0.0f ) {
            result = 1;
            quat_from_axis_angle(target_axis, PI, rotation);
            quat_mul(yaw_pitch_rotation, rotation, yaw_pitch_rotation);
        }

        quat_copy(yaw_pitch_rotation, rotation);
    }

    if( ! isnan(rotation[0]) &&
        ! isnan(rotation[1]) &&
        ! isnan(rotation[2]) &&
        ! isnan(rotation[3]) )
    {
        quat_copy(rotation, pivot->orientation);
    }

    pivot->eye_distance = vec_length(target_direction);

    return result;
}
Пример #2
0
bool arcball_event(struct Arcball* arcball, SDL_Event event) {
    static int32_t mouse_down = 0;
    static const float rotation_slowness_factor = 0.25f;
    static int32_t next_flipped = 0;

    // - arcball rotation is performed by dragging the mouse, so I just keep track of when
    // a mouse button is pressed and released between calls to this function by setting a
    // static variable mouse_down to the button number when a button is pressed and back
    // to 0 when that button is released
    if( event.type == SDL_MOUSEBUTTONDOWN && mouse_down == 0 ) {
        mouse_down = event.button.button;
    } else if( event.type == SDL_MOUSEBUTTONUP && mouse_down == event.button.button ) {
        arcball->flipped = next_flipped;
        mouse_down = 0;
    }

    if( mouse_down == arcball->translate_button && event.type == SDL_MOUSEMOTION ) {
        SDL_MouseMotionEvent mouse = event.motion;
        float eye_distance = arcball->camera.pivot.eye_distance;

        // - when an mouse motion event occurs, and mouse_down to the translation_button so we compute
        // a camera translation
        // - the camera should pan around on the x-z-plane, keeping its height and orientation
        Quat inverted_orientation = {0};
        quat_invert(arcball->camera.pivot.orientation, inverted_orientation);

        // - the sideways translation is computed by taking the right_axis and orienting it with
        // the cameras orientation, the way I set up the lookat implementation this should always
        // result in a vector parallel to the x-z-plane
        Vec4f right_axis = RIGHT_AXIS;
        vec_rotate4f(right_axis, inverted_orientation, right_axis);
        if( mouse.xrel != 0 ) {
            // - then we'll just multiply the resulting axis with the mouse x relative movement, inversely
            // scaled by how far we are away from what we are looking at (farer means faster, nearer
            // means slower), the translation_factor is just a value that felt good when this was implemented
            Vec4f x_translation = {0};
            vec_mul1f(right_axis, (float)mouse.xrel/arcball->translate_factor*eye_distance, x_translation);

            // - finally just add the x_translation to the target and position so that the whole arcball moves
            vec_add(arcball->target, x_translation, arcball->target);
            vec_add(arcball->camera.pivot.position, x_translation, arcball->camera.pivot.position);
        }

        // - the z translation can't be done along the orientated forward axis because that would include
        // the camera pitch, here, same as above, we need an axis that is parallel to the x-z-plane
        Vec4f up_axis = UP_AXIS;
        if( mouse.yrel != 0 ) {
            // - luckily such an axis is easily computed from the crossproduct of the orientated right_axis and
            // the default up_axis, the result is an axis pointing in the direction of the cameras forward axis,
            // while still being parallel to the x-z-plane
            Vec4f forward_axis;
            vec_cross(right_axis, up_axis, forward_axis);

            // - same as above
            Vec4f z_translation;
            vec_mul1f(forward_axis, (float)mouse.yrel/arcball->translate_factor*eye_distance, z_translation);

            // - dito
            vec_add(arcball->target, z_translation, arcball->target);
            vec_add(arcball->camera.pivot.position, z_translation, arcball->camera.pivot.position);
        }
    } else if( mouse_down == arcball->rotate_button && event.type == SDL_MOUSEMOTION ) {
        SDL_MouseMotionEvent mouse = event.motion;

        // - above case was translation, this is an rotation occuring: mouse_down is equal to the
        // rotation_button and the event is a mouse motion
        // - the camera needs to rotate around the target while keeping its height, orientation and
        // without _any_ rolling

        // - we want only yaw and pitch movement
        // - yaw is easy, just use the fixed up_axis and create a rotation the rotates around it
        // by the mouse x relative movement (converted to radians)
        // - the flipped value indicates if the camera is flipped over, so we'll just use that to
        // change the sign of the yaw to make the mouse movement on the screen always correctly
        // relates to the movement of the rotation
        Vec4f up_axis = UP_AXIS;
        Quat yaw_rotation = {0};
        quat_from_axis_angle(up_axis, arcball->flipped * PI/180 * mouse.xrel * rotation_slowness_factor, yaw_rotation);

        // - pitch is a little more involved, I need to compute the orientated right axis and use
        // that to compute the pitch_rotation
        Quat inverted_orientation = {0};
        quat_invert(arcball->camera.pivot.orientation, inverted_orientation);

        Vec4f right_axis = RIGHT_AXIS;
        vec_rotate4f(right_axis, inverted_orientation, right_axis);

        Quat pitch_rotation = {0};
        quat_from_axis_angle(right_axis, -PI/180 * mouse.yrel * rotation_slowness_factor, pitch_rotation);

        // - combine yaw and pitch into a single rotation
        Quat rotation = {0};
        quat_mul(yaw_rotation, pitch_rotation, rotation);

        // - orbit is the position translated to the coordinate root
        // - the yaw and pitch rotation is applied to the orbit
        // - orbit is translated back and replaces the camera position
        Vec4f orbit = {0};
        vec_sub(arcball->camera.pivot.position, arcball->target, orbit);
        vec_rotate4f(orbit, rotation, orbit);
        vec_add(arcball->target, orbit, arcball->camera.pivot.position);

        // - after updating the position we just call lookat to compute the new
        // orientation, and also set the flipped state
        next_flipped = pivot_lookat(&arcball->camera.pivot, arcball->target);
    }

    if( event.type == SDL_MOUSEWHEEL ) {
        SDL_MouseWheelEvent wheel = event.wheel;

        // - zooming when mouse wheel event happens
        float* eye_distance = &arcball->camera.pivot.eye_distance;
        if( (*eye_distance > arcball->camera.frustum.z_near || wheel.y < 0) &&
            (*eye_distance < arcball->camera.frustum.z_far || wheel.y > 0))
        {
            // - just going back and forth along the oriented forward axis, using wheel
            // y motion inversly scaled by the eye_distance, similar to what is done
            // for the translation above (farer == faster zoom, nearer == slower zoom)
            Quat inverted_orientation = {0};
            quat_invert(arcball->camera.pivot.orientation, inverted_orientation);

            Vec4f forward_axis = FORWARD_AXIS;
            vec_rotate4f(forward_axis, inverted_orientation, forward_axis);

            Vec4f zoom = {0};
            vec_mul1f(forward_axis, wheel.y/arcball->zoom_factor*(*eye_distance), zoom);
            vec_add(arcball->camera.pivot.position, zoom, arcball->camera.pivot.position);

            // - eye_distance is kept in camera state, so we need to update it here
            *eye_distance = vlength(arcball->camera.pivot.position);
        }
    }

    return true;
}
Пример #3
0
int32_t main(int32_t argc, char *argv[]) {
    printf("<<watchlist//>>\n");

    if( init_sdl2() ) {
        return 1;
    }

    int32_t width = 1280;
    int32_t height = 720;

    SDL_Window* window;
    sdl2_window("cute3d: " __FILE__, SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, width, height, &window);

    SDL_GLContext* context;
    sdl2_glcontext(3, 2, window, &context);

    if( init_shader() ) {
        return 1;
    }

    if( init_vbo() ) {
        return 1;
    }

    if( init_canvas(1280,720) ) {
        return 1;
    }
    canvas_create("global_dynamic_canvas", &global_dynamic_canvas);
    canvas_create("global_static_canvas", &global_static_canvas);

    struct Vbo vbo = {0};
    vbo_create(&vbo);
    vbo_add_buffer(&vbo, SHADER_ATTRIBUTE_VERTEX, 3, GL_FLOAT, GL_STATIC_DRAW);
    vbo_add_buffer(&vbo, SHADER_ATTRIBUTE_VERTEX_NORMAL, 3, GL_FLOAT, GL_STATIC_DRAW);
    vbo_add_buffer(&vbo, SHADER_ATTRIBUTE_VERTEX_COLOR, 4, GL_UNSIGNED_BYTE, GL_STATIC_DRAW);

    struct Ibo ibo = {0};
    ibo_create(GL_TRIANGLES, GL_UNSIGNED_INT, GL_STATIC_DRAW, &ibo);

    struct CollisionEntity entity_a = {0};
    entity_create("red", (Color){ 255, 0, 0, 255 }, &vbo, &ibo, &entity_a);
    /* quat_mul_axis_angle(entity_a.pivot.orientation, (Vec4f)UP_AXIS, PI/4, entity_a.pivot.orientation); */
    /* quat_mul_axis_angle(entity_a.pivot.orientation, (Vec4f)RIGHT_AXIS, PI/2 + 0.2, entity_a.pivot.orientation); */
    vec_add(entity_a.pivot.position, (Vec4f){0.2, 0.15, 0.8, 1.0}, entity_a.pivot.position);

    struct CollisionEntity entity_b = {0};
    entity_create("green", (Color){ 0, 255, 0, 255 }, &vbo, &ibo, &entity_b);
    quat_mul_axis_angle(entity_b.pivot.orientation, (Vec4f)RIGHT_AXIS, PI/4 - 0.2, entity_b.pivot.orientation);
    quat_mul_axis_angle(entity_b.pivot.orientation, (Vec4f)UP_AXIS, PI/2 + 0.0, entity_b.pivot.orientation);

    struct Shader flat_shader = {0};
    shader_create(&flat_shader);
    shader_attach(&flat_shader, GL_VERTEX_SHADER, "prefix.vert", 1, "flat_shading.vert");
    shader_attach(&flat_shader, GL_FRAGMENT_SHADER, "prefix.frag", 1, "flat_shading.frag");
    shader_make_program(&flat_shader, SHADER_DEFAULT_NAMES, "flat_shader");

    Vec4f light_direction = { 0.2, -0.5, -1.0 };
    shader_set_uniform_3f(&flat_shader, flat_shader.program, SHADER_UNIFORM_LIGHT_DIRECTION, 3, GL_FLOAT, light_direction);

    Color ambiance = { 65, 25, 50, 255 };
    shader_set_uniform_4f(&flat_shader, flat_shader.program, SHADER_UNIFORM_AMBIENT_LIGHT, 4, GL_UNSIGNED_BYTE, ambiance);

    struct Arcball arcball = {0};
    arcball_create(width, height, (Vec4f){5.0, 3.0, 5.0, 1.0}, (Vec4f){0.0, 0.0, 0.0, 1.0}, 1.0, 1000.0, &arcball);

    size_t num_entities = 2;
    struct PickingSphere* picking_spheres[2];
    picking_spheres[0] = &entity_a.picking_sphere;
    picking_spheres[1] = &entity_b.picking_sphere;

    struct CollisionEntity* picking_entities[2];
    picking_entities[0] = &entity_a;
    picking_entities[1] = &entity_b;

    struct GameTime time = {0};
    gametime_create(1.0f / 60.0f, &time);

    draw_grid(&global_static_canvas, 0, (Mat)IDENTITY_MAT, (Color){127, 127, 127, 127}, 0.01f, 12.0f, 12.0f, 12);

    while (true) {

        SDL_Event event;
        while( sdl2_poll_event(&event) ) {
            if( sdl2_handle_quit(event) ) {
                goto done;
            }
            sdl2_handle_resize(event);

            if( picking_sphere_drag_event(&arcball.camera, num_entities, picking_spheres, event) ) {
                struct CollisionEntity* selected_entity = NULL;
                float nearest = -FLT_MIN;
                for( size_t i = 0; i < num_entities; i++ ) {
                    if( picking_spheres[i]->picked && ( picking_spheres[i]->front < nearest || nearest < 0.0f ) ) {
                        nearest = picking_spheres[i]->front;
                        selected_entity = picking_entities[i];
                    }
                }

                static int32_t last_x = -1;
                static int32_t last_y = -1;
                if( selected_entity != NULL ) {
                    if( last_x > -1 && last_y > -1 ) {
                        float distance = selected_entity->picking_sphere.front;

                        Vec4f a = {0};
                        camera_ray(&arcball.camera, CAMERA_PERSPECTIVE, last_x, last_y, a);
                        vec_mul1f(a, distance, a);

                        Vec4f b = {0};
                        camera_ray(&arcball.camera, CAMERA_PERSPECTIVE, event.motion.x, event.motion.y, b);
                        vec_mul1f(b, distance, b);

                        Vec4f move = {0};
                        vec_sub(b, a, move);
                        float length = vec_length(move);

                        move[1] = 0.0f;
                        vec_normalize(move, move);
                        vec_mul1f(move, length, move);

                        vec_add(selected_entity->pivot.position, move, selected_entity->pivot.position);
                    }

                    last_x = event.motion.x;
                    last_y = event.motion.y;
                }

                if( event.type == SDL_MOUSEBUTTONUP ) {
                    last_x = -1;
                    last_y = -1;
                }
            } else {
                arcball_handle_resize(&arcball, event);
                arcball_handle_mouse(&arcball, event);
            }
        }

        sdl2_gl_set_swap_interval(0);

        gametime_advance(&time, sdl2_time_delta());

        ogl_debug( glClearDepth(1.0f);
                   glClearColor(.0f, .0f, .0f, 1.0f);
                   glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); );

        Mat projection_mat = {0};
        Mat view_mat = {0};
        camera_matrices(&arcball.camera, CAMERA_PERSPECTIVE, projection_mat, view_mat);

        Mat identity = {0};
        mat_identity(identity);

        Mat transform_a = {0};
        pivot_world_transform(&entity_a.pivot, transform_a);
        //vbo_mesh_render(&entity_a.vbo_mesh, &flat_shader, &arcball.camera, transform_a);
        draw_halfedgemesh_wire(&global_dynamic_canvas, 0, transform_a, (Color){255, 0, 0, 255}, 0.02f, &entity_a.hemesh);

        Mat transform_b = {0};
        pivot_world_transform(&entity_b.pivot, transform_b);
        //vbo_mesh_render(&entity_b.vbo_mesh, &flat_shader, &arcball.camera, transform_b);
        draw_halfedgemesh_wire(&global_dynamic_canvas, 0, transform_b, (Color){0, 255, 0, 255}, 0.02f, &entity_b.hemesh);

        Mat between_transform = {0};
        pivot_between_transform(&entity_a.pivot, &entity_b.pivot, between_transform);

        Vec3f foo = {0};
        mat_mul_vec(between_transform, entity_a.hemesh.vertices.array[0].position, foo);

        struct CollisionConvexConvex collision = {0};
        struct CollisionParameter collision_parameter = {
            .face_tolerance = 0.9,
            .edge_tolerance = 0.95,
            .absolute_tolerance = 0.025
        };
        collision_create_convex_convex(&entity_a.hemesh, &entity_a.pivot,
                                       &entity_b.hemesh, &entity_b.pivot,
                                       collision_parameter,
                                       &collision);

        if( collision_test_convex_convex(&collision) ) {
            collision_contact_convex_convex(&collision);
            //printf("//collision: %d\n", collision_counter);

            const struct Contacts* contacts = &collision.contacts;
            VecP* m = contacts->points[contacts->num_contacts-1];
            for( int32_t i = 0; i < contacts->num_contacts; i++ ) {
                VecP* n = contacts->points[i];
                draw_line(&global_dynamic_canvas, 0, transform_b, (Color){255, 255, 255, 255}, 0.08f, m, n);
                m = n;
            }
        }

        gametime_integrate(&time);
        Vec4f screen_cursor = {0,0,0,1};
        text_show_fps(&global_dynamic_canvas, 0, screen_cursor, 0, 0, (Color){255, 255, 255, 255}, 20.0, "default_font", time.frame);

        canvas_render_layers(&global_static_canvas, 0, 0, &arcball.camera, (Mat)IDENTITY_MAT);

        canvas_render_layers(&global_dynamic_canvas, 0, 0, &arcball.camera, (Mat)IDENTITY_MAT);
        canvas_clear(&global_dynamic_canvas);

        sdl2_gl_swap_window(window);
    }


done:
    SDL_Quit();
    printf("done\n");
    return 0;
}