Пример #1
0
char *frrstr_join_vec(vector v, const char *join)
{
	char **argv;
	int argc;

	vector_to_array(v, (void ***)&argv, &argc);

	char *ret = frrstr_join((const char **)argv, argc, join);

	XFREE(MTYPE_TMP, argv);

	return ret;
}
Пример #2
0
void TestSceneManager3::populate() {
    // Build the vertex array using the lowest toplevel voxel per corner. Note, we're
    // leaving in vertex duplication so each voxel can have its own normals and tex-coords.
    // This will increase our sene complexity, but give us more control, as well.
    std::vector<Vector3> vertsArray;
    std::vector<Vector2> coordsArray;
    for (int x = 0; x < _world->getWidth(); x++) {
        for (int y = 0; y < _world->getHeight(); y++) {
            #define ADD_VECTOR(xOff, yOff) do { \
                vertsArray.push_back(getVectorForCorner(x + xOff, y + yOff)); \
                coordsArray.push_back(Vector2(xOff, yOff)); \
            } while (0)

            // Bottom left triangle.
            ADD_VECTOR(0, 0); ADD_VECTOR(1, 0); ADD_VECTOR(0, 1);

            // Top right triangle.
            ADD_VECTOR(0, 1); ADD_VECTOR(1, 0); ADD_VECTOR(1, 1);
            #undef ADD_VECTOR
        }    
    }

    // Calculate normals for each of the vertices.
    Vector3 *verts = new Vector3[vertsArray.size()];
    Vector3 *norms = new Vector3[vertsArray.size()];
    for (int i = 0; i < vertsArray.size(); i+=3) {
		Vector3 one = vertsArray[i+1] - vertsArray[i+0];
		Vector3 two = vertsArray[i+2] - vertsArray[i+1];
		Vector3 normal = one.crossProduct(two);
        normal.normalize();

        for (int j = 0; j < 3; j++) {
            verts[i+j] = vertsArray[i+j];
            norms[i+j] = normal;
        }
    }

    Entity *entity = createEntity(new WorldEntity(verts, norms, vector_to_array(coordsArray), vertsArray.size()), "world");
    entity->setMaterial(_materialManager->getOrLoadResource("grass"));
    getRootNode()->attach(entity);
}
Пример #3
0
void sm_icp(struct sm_params*params, struct sm_result*res) {
	res->valid = 0;

	LDP laser_ref  = params->laser_ref;
	LDP laser_sens = params->laser_sens;
	
	if(!ld_valid_fields(laser_ref) || 
	   !ld_valid_fields(laser_sens)) {
		return;
	}
	
	sm_debug("sm_icp: laser_sens has %d/%d; laser_ref has %d/%d rays valid\n",
		count_equal(laser_sens->valid, laser_sens->nrays, 1), laser_sens->nrays,
		count_equal(laser_ref->valid, laser_ref->nrays, 1), laser_ref->nrays);
	
	
	/** Mark as invalid the rays outside of (min_reading, max_reading] */
	ld_invalid_if_outside(laser_ref, params->min_reading, params->max_reading);
	ld_invalid_if_outside(laser_sens, params->min_reading, params->max_reading);
	
	sm_debug("sm_icp:  laser_sens has %d/%d; laser_ref has %d/%d rays valid (after removing outside interval [%f, %f])\n",
		count_equal(laser_sens->valid, laser_sens->nrays, 1), laser_sens->nrays,
		count_equal(laser_ref->valid, laser_ref->nrays, 1), laser_ref->nrays,
   	   params->min_reading, params->max_reading);
	
	if(JJ) jj_context_enter("sm_icp");
	
	egsl_push_named("sm_icp");
	
			
	if(params->use_corr_tricks || params->debug_verify_tricks)
		ld_create_jump_tables(laser_ref);
		
	ld_compute_cartesian(laser_ref);
	ld_compute_cartesian(laser_sens);

	if(params->do_alpha_test) {
		ld_simple_clustering(laser_ref, params->clustering_threshold);
		ld_compute_orientation(laser_ref, params->orientation_neighbourhood, params->sigma);
		ld_simple_clustering(laser_sens, params->clustering_threshold);
		ld_compute_orientation(laser_sens, params->orientation_neighbourhood, params->sigma);
	}

	if(JJ) jj_add("laser_ref",  ld_to_json(laser_ref));
	if(JJ) jj_add("laser_sens", ld_to_json(laser_sens));
	
	gsl_vector * x_new = gsl_vector_alloc(3);
	gsl_vector * x_old = vector_from_array(3, params->first_guess);
	
	if(params->do_visibility_test) {
		sm_debug("laser_ref:\n");
		visibilityTest(laser_ref, x_old);

		sm_debug("laser_sens:\n");
		gsl_vector * minus_x_old = gsl_vector_alloc(3);
		ominus(x_old,minus_x_old);
		visibilityTest(laser_sens, minus_x_old);
		gsl_vector_free(minus_x_old);
	}
	
	double error;
	int iterations;
	int nvalid;
	if(!icp_loop(params, x_old->data, x_new->data, &error, &nvalid, &iterations)) {
		sm_error("icp: ICP failed for some reason. \n");
		res->valid = 0;
		res->iterations = iterations;
		res->nvalid = 0;
		
	} else {
		/* It was succesfull */

		int restarted = 0;		
		double best_error = error;
		gsl_vector * best_x = gsl_vector_alloc(3);
		gsl_vector_memcpy(best_x, x_new);

		if(params->restart && 
			(error/nvalid)>(params->restart_threshold_mean_error) ) {
			sm_debug("Restarting: %f > %f \n",(error/nvalid),(params->restart_threshold_mean_error));
			restarted = 1;
			double dt  = params->restart_dt;
			double dth = params->restart_dtheta;
			sm_debug("icp_loop: dt = %f dtheta= %f deg\n",dt,rad2deg(dth));
		
			double perturb[6][3] = {
				{dt,0,0}, {-dt,0,0},
				{0,dt,0}, {0,-dt,0},
				{0,0,dth}, {0,0,-dth}
			};

			int a; for(a=0;a<6;a++){
				sm_debug("-- Restarting with perturbation #%d\n", a);
				struct sm_params my_params = *params;
				gsl_vector * start = gsl_vector_alloc(3);
					gvs(start, 0, gvg(x_new,0)+perturb[a][0]);
					gvs(start, 1, gvg(x_new,1)+perturb[a][1]);
					gvs(start, 2, gvg(x_new,2)+perturb[a][2]);
				gsl_vector * x_a = gsl_vector_alloc(3);
				double my_error; int my_valid; int my_iterations;
				if(!icp_loop(&my_params, start->data, x_a->data, &my_error, &my_valid, &my_iterations)){
					sm_error("Error during restart #%d/%d. \n", a, 6);
					break;
				}
				iterations+=my_iterations;
		
				if(my_error < best_error) {
					sm_debug("--Perturbation #%d resulted in error %f < %f\n", a,my_error,best_error);
					gsl_vector_memcpy(best_x, x_a);
					best_error = my_error;
				}
				gsl_vector_free(x_a); gsl_vector_free(start);
			}
		}
	
	
		/* At last, we did it. */
		res->valid = 1;
		vector_to_array(best_x, res->x);
		sm_debug("icp: final x =  %s  \n", gsl_friendly_pose(best_x));
	
		if (restarted) { // recompute correspondences in case of restarts
			ld_compute_world_coords(laser_sens, res->x);
			if(params->use_corr_tricks)
				find_correspondences_tricks(params);
			else
				find_correspondences(params);
		}

		if(params->do_compute_covariance)  {

			val cov0_x, dx_dy1, dx_dy2;
			compute_covariance_exact(
				laser_ref, laser_sens, best_x,
				&cov0_x, &dx_dy1, &dx_dy2);
		
			val cov_x = sc(square(params->sigma), cov0_x); 
/*			egsl_v2da(cov_x, res->cov_x); */
		
			res->cov_x_m = egsl_v2gslm(cov_x);
			res->dx_dy1_m = egsl_v2gslm(dx_dy1);
			res->dx_dy2_m = egsl_v2gslm(dx_dy2);
		
			if(0) {
				egsl_print("cov0_x", cov0_x);
				egsl_print_spectrum("cov0_x", cov0_x);
		
				val fim = ld_fisher0(laser_ref);
				val ifim = inv(fim);
				egsl_print("fim", fim);
				egsl_print_spectrum("ifim", ifim);
			}
		}
	
		res->error = best_error;
		res->iterations = iterations;
		res->nvalid = nvalid;

		gsl_vector_free(best_x);
	}
	gsl_vector_free(x_new);
	gsl_vector_free(x_old);


	egsl_pop_named("sm_icp");

	if(JJ) jj_context_exit();
}