Пример #1
0
int gmx_msd(int argc, char *argv[])
{
    const char        *desc[] = {
        "[THISMODULE] computes the mean square displacement (MSD) of atoms from",
        "a set of initial positions. This provides an easy way to compute",
        "the diffusion constant using the Einstein relation.",
        "The time between the reference points for the MSD calculation",
        "is set with [TT]-trestart[tt].",
        "The diffusion constant is calculated by least squares fitting a",
        "straight line (D*t + c) through the MSD(t) from [TT]-beginfit[tt] to",
        "[TT]-endfit[tt] (note that t is time from the reference positions,",
        "not simulation time). An error estimate given, which is the difference",
        "of the diffusion coefficients obtained from fits over the two halves",
        "of the fit interval.[PAR]",
        "There are three, mutually exclusive, options to determine different",
        "types of mean square displacement: [TT]-type[tt], [TT]-lateral[tt]",
        "and [TT]-ten[tt]. Option [TT]-ten[tt] writes the full MSD tensor for",
        "each group, the order in the output is: trace xx yy zz yx zx zy.[PAR]",
        "If [TT]-mol[tt] is set, [THISMODULE] plots the MSD for individual molecules",
        "(including making molecules whole across periodic boundaries): ",
        "for each individual molecule a diffusion constant is computed for ",
        "its center of mass. The chosen index group will be split into ",
        "molecules.[PAR]",
        "The default way to calculate a MSD is by using mass-weighted averages.",
        "This can be turned off with [TT]-nomw[tt].[PAR]",
        "With the option [TT]-rmcomm[tt], the center of mass motion of a ",
        "specific group can be removed. For trajectories produced with ",
        "GROMACS this is usually not necessary, ",
        "as [gmx-mdrun] usually already removes the center of mass motion.",
        "When you use this option be sure that the whole system is stored",
        "in the trajectory file.[PAR]",
        "The diffusion coefficient is determined by linear regression of the MSD,",
        "where, unlike for the normal output of D, the times are weighted",
        "according to the number of reference points, i.e. short times have",
        "a higher weight. Also when [TT]-beginfit[tt]=-1,fitting starts at 10%",
        "and when [TT]-endfit[tt]=-1, fitting goes to 90%.",
        "Using this option one also gets an accurate error estimate",
        "based on the statistics between individual molecules.",
        "Note that this diffusion coefficient and error estimate are only",
        "accurate when the MSD is completely linear between",
        "[TT]-beginfit[tt] and [TT]-endfit[tt].[PAR]",
        "Option [TT]-pdb[tt] writes a [REF].pdb[ref] file with the coordinates of the frame",
        "at time [TT]-tpdb[tt] with in the B-factor field the square root of",
        "the diffusion coefficient of the molecule.",
        "This option implies option [TT]-mol[tt]."
    };
    static const char *normtype[] = { NULL, "no", "x", "y", "z", NULL };
    static const char *axtitle[]  = { NULL, "no", "x", "y", "z", NULL };
    static int         ngroup     = 1;
    static real        dt         = 10;
    static real        t_pdb      = 0;
    static real        beginfit   = -1;
    static real        endfit     = -1;
    static gmx_bool    bTen       = FALSE;
    static gmx_bool    bMW        = TRUE;
    static gmx_bool    bRmCOMM    = FALSE;
    t_pargs            pa[]       = {
        { "-type",    FALSE, etENUM, {normtype},
          "Compute diffusion coefficient in one direction" },
        { "-lateral", FALSE, etENUM, {axtitle},
          "Calculate the lateral diffusion in a plane perpendicular to" },
        { "-ten",      FALSE, etBOOL, {&bTen},
          "Calculate the full tensor" },
        { "-ngroup",  FALSE, etINT,  {&ngroup},
          "Number of groups to calculate MSD for" },
        { "-mw",      FALSE, etBOOL, {&bMW},
          "Mass weighted MSD" },
        { "-rmcomm",      FALSE, etBOOL, {&bRmCOMM},
          "Remove center of mass motion" },
        { "-tpdb", FALSE, etTIME, {&t_pdb},
          "The frame to use for option [TT]-pdb[tt] (%t)" },
        { "-trestart", FALSE, etTIME, {&dt},
          "Time between restarting points in trajectory (%t)" },
        { "-beginfit", FALSE, etTIME, {&beginfit},
          "Start time for fitting the MSD (%t), -1 is 10%" },
        { "-endfit", FALSE, etTIME, {&endfit},
          "End time for fitting the MSD (%t), -1 is 90%" }
    };

    t_filenm           fnm[] = {
        { efTRX, NULL, NULL,  ffREAD },
        { efTPS, NULL, NULL,  ffREAD },
        { efNDX, NULL, NULL,  ffOPTRD },
        { efXVG, NULL, "msd", ffWRITE },
        { efXVG, "-mol", "diff_mol", ffOPTWR },
        { efPDB, "-pdb", "diff_mol", ffOPTWR }
    };
#define NFILE asize(fnm)

    t_topology      top;
    int             ePBC;
    matrix          box;
    const char     *trx_file, *tps_file, *ndx_file, *msd_file, *mol_file, *pdb_file;
    rvec           *xdum;
    gmx_bool        bTop;
    int             axis, type;
    real            dim_factor;
    output_env_t    oenv;

    if (!parse_common_args(&argc, argv,
                           PCA_CAN_VIEW | PCA_CAN_BEGIN | PCA_CAN_END | PCA_TIME_UNIT,
                           NFILE, fnm, asize(pa), pa, asize(desc), desc, 0, NULL, &oenv))
    {
        return 0;
    }
    trx_file = ftp2fn_null(efTRX, NFILE, fnm);
    tps_file = ftp2fn_null(efTPS, NFILE, fnm);
    ndx_file = ftp2fn_null(efNDX, NFILE, fnm);
    msd_file = ftp2fn_null(efXVG, NFILE, fnm);
    pdb_file = opt2fn_null("-pdb", NFILE, fnm);
    if (pdb_file)
    {
        mol_file = opt2fn("-mol", NFILE, fnm);
    }
    else
    {
        mol_file = opt2fn_null("-mol", NFILE, fnm);
    }

    if (ngroup < 1)
    {
        gmx_fatal(FARGS, "Must have at least 1 group (now %d)", ngroup);
    }
    if (mol_file && ngroup > 1)
    {
        gmx_fatal(FARGS, "With molecular msd can only have 1 group (now %d)",
                  ngroup);
    }


    if (mol_file)
    {
        bMW  = TRUE;
        fprintf(stderr, "Calculating diffusion coefficients for molecules.\n");
    }

    GMX_RELEASE_ASSERT(normtype[0] != 0, "Options inconsistency; normtype[0] is NULL");
    GMX_RELEASE_ASSERT(axtitle[0] != 0, "Options inconsistency; axtitle[0] is NULL");

    if (normtype[0][0] != 'n')
    {
        type       = normtype[0][0] - 'x' + X; /* See defines above */
        dim_factor = 2.0;
    }
    else
    {
        type       = NORMAL;
        dim_factor = 6.0;
    }
    if ((type == NORMAL) && (axtitle[0][0] != 'n'))
    {
        type       = LATERAL;
        dim_factor = 4.0;
        axis       = (axtitle[0][0] - 'x'); /* See defines above */
    }
    else
    {
        axis = 0;
    }

    if (bTen && type != NORMAL)
    {
        gmx_fatal(FARGS, "Can only calculate the full tensor for 3D msd");
    }

    bTop = read_tps_conf(tps_file, &top, &ePBC, &xdum, NULL, box, bMW || bRmCOMM);
    if (mol_file && !bTop)
    {
        gmx_fatal(FARGS,
                  "Could not read a topology from %s. Try a tpr file instead.",
                  tps_file);
    }

    do_corr(trx_file, ndx_file, msd_file, mol_file, pdb_file, t_pdb, ngroup,
            &top, ePBC, bTen, bMW, bRmCOMM, type, dim_factor, axis, dt, beginfit, endfit,
            oenv);

    view_all(oenv, NFILE, fnm);

    return 0;
}
Пример #2
0
int gmx_analyze(int argc, char *argv[])
{
    static const char *desc[] = {
        "[THISMODULE] reads an ASCII file and analyzes data sets.",
        "A line in the input file may start with a time",
        "(see option [TT]-time[tt]) and any number of [IT]y[it]-values may follow.",
        "Multiple sets can also be",
        "read when they are separated by & (option [TT]-n[tt]);",
        "in this case only one [IT]y[it]-value is read from each line.",
        "All lines starting with # and @ are skipped.",
        "All analyses can also be done for the derivative of a set",
        "(option [TT]-d[tt]).[PAR]",

        "All options, except for [TT]-av[tt] and [TT]-power[tt], assume that the",
        "points are equidistant in time.[PAR]",

        "[THISMODULE] always shows the average and standard deviation of each",
        "set, as well as the relative deviation of the third",
        "and fourth cumulant from those of a Gaussian distribution with the same",
        "standard deviation.[PAR]",

        "Option [TT]-ac[tt] produces the autocorrelation function(s).",
        "Be sure that the time interval between data points is",
        "much shorter than the time scale of the autocorrelation.[PAR]",

        "Option [TT]-cc[tt] plots the resemblance of set i with a cosine of",
        "i/2 periods. The formula is:[BR]"
        "[MATH]2 ([INT][FROM]0[from][TO]T[to][int] y(t) [COS]i [GRK]pi[grk] t[cos] dt)^2 / [INT][FROM]0[from][TO]T[to][int] y^2(t) dt[math][BR]",
        "This is useful for principal components obtained from covariance",
        "analysis, since the principal components of random diffusion are",
        "pure cosines.[PAR]",

        "Option [TT]-msd[tt] produces the mean square displacement(s).[PAR]",

        "Option [TT]-dist[tt] produces distribution plot(s).[PAR]",

        "Option [TT]-av[tt] produces the average over the sets.",
        "Error bars can be added with the option [TT]-errbar[tt].",
        "The errorbars can represent the standard deviation, the error",
        "(assuming the points are independent) or the interval containing",
        "90% of the points, by discarding 5% of the points at the top and",
        "the bottom.[PAR]",

        "Option [TT]-ee[tt] produces error estimates using block averaging.",
        "A set is divided in a number of blocks and averages are calculated for",
        "each block. The error for the total average is calculated from",
        "the variance between averages of the m blocks B[SUB]i[sub] as follows:",
        "error^2 = [SUM][sum] (B[SUB]i[sub] - [CHEVRON]B[chevron])^2 / (m*(m-1)).",
        "These errors are plotted as a function of the block size.",
        "Also an analytical block average curve is plotted, assuming",
        "that the autocorrelation is a sum of two exponentials.",
        "The analytical curve for the block average is:[BR]",
        "[MATH]f(t) = [GRK]sigma[grk][TT]*[tt][SQRT]2/T (  [GRK]alpha[grk]   ([GRK]tau[grk][SUB]1[sub] (([EXP]-t/[GRK]tau[grk][SUB]1[sub][exp] - 1) [GRK]tau[grk][SUB]1[sub]/t + 1)) +[BR]",
        "                       (1-[GRK]alpha[grk]) ([GRK]tau[grk][SUB]2[sub] (([EXP]-t/[GRK]tau[grk][SUB]2[sub][exp] - 1) [GRK]tau[grk][SUB]2[sub]/t + 1)))[sqrt][math],[BR]"
        "where T is the total time.",
        "[GRK]alpha[grk], [GRK]tau[grk][SUB]1[sub] and [GRK]tau[grk][SUB]2[sub] are obtained by fitting f^2(t) to error^2.",
        "When the actual block average is very close to the analytical curve,",
        "the error is [MATH][GRK]sigma[grk][TT]*[tt][SQRT]2/T (a [GRK]tau[grk][SUB]1[sub] + (1-a) [GRK]tau[grk][SUB]2[sub])[sqrt][math].",
        "The complete derivation is given in",
        "B. Hess, J. Chem. Phys. 116:209-217, 2002.[PAR]",

        "Option [TT]-bal[tt] finds and subtracts the ultrafast \"ballistic\"",
        "component from a hydrogen bond autocorrelation function by the fitting",
        "of a sum of exponentials, as described in e.g.",
        "O. Markovitch, J. Chem. Phys. 129:084505, 2008. The fastest term",
        "is the one with the most negative coefficient in the exponential,",
        "or with [TT]-d[tt], the one with most negative time derivative at time 0.",
        "[TT]-nbalexp[tt] sets the number of exponentials to fit.[PAR]",

        "Option [TT]-gem[tt] fits bimolecular rate constants ka and kb",
        "(and optionally kD) to the hydrogen bond autocorrelation function",
        "according to the reversible geminate recombination model. Removal of",
        "the ballistic component first is strongly advised. The model is presented in",
        "O. Markovitch, J. Chem. Phys. 129:084505, 2008.[PAR]",

        "Option [TT]-filter[tt] prints the RMS high-frequency fluctuation",
        "of each set and over all sets with respect to a filtered average.",
        "The filter is proportional to cos([GRK]pi[grk] t/len) where t goes from -len/2",
        "to len/2. len is supplied with the option [TT]-filter[tt].",
        "This filter reduces oscillations with period len/2 and len by a factor",
        "of 0.79 and 0.33 respectively.[PAR]",

        "Option [TT]-g[tt] fits the data to the function given with option",
        "[TT]-fitfn[tt].[PAR]",

        "Option [TT]-power[tt] fits the data to [MATH]b t^a[math], which is accomplished",
        "by fitting to [MATH]a t + b[math] on log-log scale. All points after the first",
        "zero or with a negative value are ignored.[PAR]"

        "Option [TT]-luzar[tt] performs a Luzar & Chandler kinetics analysis",
        "on output from [gmx-hbond]. The input file can be taken directly",
        "from [TT]gmx hbond -ac[tt], and then the same result should be produced."
    };
    static real        tb         = -1, te = -1, frac = 0.5, filtlen = 0, binwidth = 0.1, aver_start = 0;
    static gmx_bool    bHaveT     = TRUE, bDer = FALSE, bSubAv = TRUE, bAverCorr = FALSE, bXYdy = FALSE;
    static gmx_bool    bEESEF     = FALSE, bEENLC = FALSE, bEeFitAc = FALSE, bPower = FALSE;
    static gmx_bool    bIntegrate = FALSE, bRegression = FALSE, bLuzar = FALSE, bLuzarError = FALSE;
    static int         nsets_in   = 1, d = 1, nb_min = 4, resol = 10, nBalExp = 4, nFitPoints = 100;
    static real        temp       = 298.15, fit_start = 1, fit_end = 60, smooth_tail_start = -1, balTime = 0.2, diffusion = 5e-5, rcut = 0.35;

    /* must correspond to enum avbar* declared at beginning of file */
    static const char *avbar_opt[avbarNR+1] = {
        NULL, "none", "stddev", "error", "90", NULL
    };

    t_pargs            pa[] = {
        { "-time",    FALSE, etBOOL, {&bHaveT},
          "Expect a time in the input" },
        { "-b",       FALSE, etREAL, {&tb},
          "First time to read from set" },
        { "-e",       FALSE, etREAL, {&te},
          "Last time to read from set" },
        { "-n",       FALSE, etINT, {&nsets_in},
          "Read this number of sets separated by &" },
        { "-d",       FALSE, etBOOL, {&bDer},
          "Use the derivative" },
        { "-dp",      FALSE, etINT, {&d},
          "HIDDENThe derivative is the difference over this number of points" },
        { "-bw",      FALSE, etREAL, {&binwidth},
          "Binwidth for the distribution" },
        { "-errbar",  FALSE, etENUM, {avbar_opt},
          "Error bars for [TT]-av[tt]" },
        { "-integrate", FALSE, etBOOL, {&bIntegrate},
          "Integrate data function(s) numerically using trapezium rule" },
        { "-aver_start", FALSE, etREAL, {&aver_start},
          "Start averaging the integral from here" },
        { "-xydy",    FALSE, etBOOL, {&bXYdy},
          "Interpret second data set as error in the y values for integrating" },
        { "-regression", FALSE, etBOOL, {&bRegression},
          "Perform a linear regression analysis on the data. If [TT]-xydy[tt] is set a second set will be interpreted as the error bar in the Y value. Otherwise, if multiple data sets are present a multilinear regression will be performed yielding the constant A that minimize [MATH][GRK]chi[grk]^2 = (y - A[SUB]0[sub] x[SUB]0[sub] - A[SUB]1[sub] x[SUB]1[sub] - ... - A[SUB]N[sub] x[SUB]N[sub])^2[math] where now Y is the first data set in the input file and x[SUB]i[sub] the others. Do read the information at the option [TT]-time[tt]." },
        { "-luzar",   FALSE, etBOOL, {&bLuzar},
          "Do a Luzar and Chandler analysis on a correlation function and "
          "related as produced by [gmx-hbond]. When in addition the "
          "[TT]-xydy[tt] flag is given the second and fourth column will be "
          "interpreted as errors in c(t) and n(t)." },
        { "-temp",    FALSE, etREAL, {&temp},
          "Temperature for the Luzar hydrogen bonding kinetics analysis (K)" },
        { "-fitstart", FALSE, etREAL, {&fit_start},
          "Time (ps) from which to start fitting the correlation functions in order to obtain the forward and backward rate constants for HB breaking and formation" },
        { "-fitend", FALSE, etREAL, {&fit_end},
          "Time (ps) where to stop fitting the correlation functions in order to obtain the forward and backward rate constants for HB breaking and formation. Only with [TT]-gem[tt]" },
        { "-smooth", FALSE, etREAL, {&smooth_tail_start},
          "If this value is >= 0, the tail of the ACF will be smoothed by fitting it to an exponential function: [MATH]y = A [EXP]-x/[GRK]tau[grk][exp][math]" },
        { "-nbmin",   FALSE, etINT, {&nb_min},
          "HIDDENMinimum number of blocks for block averaging" },
        { "-resol", FALSE, etINT, {&resol},
          "HIDDENResolution for the block averaging, block size increases with"
          " a factor 2^(1/resol)" },
        { "-eeexpfit", FALSE, etBOOL, {&bEESEF},
          "HIDDENAlways use a single exponential fit for the error estimate" },
        { "-eenlc", FALSE, etBOOL, {&bEENLC},
          "HIDDENAllow a negative long-time correlation" },
        { "-eefitac", FALSE, etBOOL, {&bEeFitAc},
          "HIDDENAlso plot analytical block average using a autocorrelation fit" },
        { "-filter",  FALSE, etREAL, {&filtlen},
          "Print the high-frequency fluctuation after filtering with a cosine filter of this length" },
        { "-power", FALSE, etBOOL, {&bPower},
          "Fit data to: b t^a" },
        { "-subav", FALSE, etBOOL, {&bSubAv},
          "Subtract the average before autocorrelating" },
        { "-oneacf", FALSE, etBOOL, {&bAverCorr},
          "Calculate one ACF over all sets" },
        { "-nbalexp", FALSE, etINT, {&nBalExp},
          "HIDDENNumber of exponentials to fit to the ultrafast component" },
        { "-baltime", FALSE, etREAL, {&balTime},
          "HIDDENTime up to which the ballistic component will be fitted" },
/*     { "-gemnp", FALSE, etINT, {&nFitPoints}, */
/*       "HIDDENNumber of data points taken from the ACF to use for fitting to rev. gem. recomb. model."}, */
/*     { "-rcut", FALSE, etREAL, {&rcut}, */
/*       "Cut-off for hydrogen bonds in geminate algorithms" }, */
/*     { "-gemtype", FALSE, etENUM, {gemType}, */
/*       "What type of gminate recombination to use"}, */
/*     { "-D", FALSE, etREAL, {&diffusion}, */
/*       "The self diffusion coefficient which is used for the reversible geminate recombination model."} */
    };
#define NPA asize(pa)

    FILE           *out, *out_fit;
    int             n, nlast, s, nset, i, j = 0;
    real          **val, *t, dt, tot, error;
    double         *av, *sig, cum1, cum2, cum3, cum4, db;
    const char     *acfile, *msdfile, *ccfile, *distfile, *avfile, *eefile, *balfile, *gemfile, *fitfile;
    output_env_t    oenv;

    t_filenm        fnm[] = {
        { efXVG, "-f",    "graph",    ffREAD   },
        { efXVG, "-ac",   "autocorr", ffOPTWR  },
        { efXVG, "-msd",  "msd",      ffOPTWR  },
        { efXVG, "-cc",   "coscont",  ffOPTWR  },
        { efXVG, "-dist", "distr",    ffOPTWR  },
        { efXVG, "-av",   "average",  ffOPTWR  },
        { efXVG, "-ee",   "errest",   ffOPTWR  },
        { efXVG, "-bal",  "ballisitc", ffOPTWR  },
/*     { efXVG, "-gem",  "geminate", ffOPTWR  }, */
        { efLOG, "-g",    "fitlog",   ffOPTWR  }
    };
#define NFILE asize(fnm)

    int      npargs;
    t_pargs *ppa;

    npargs = asize(pa);
    ppa    = add_acf_pargs(&npargs, pa);

    if (!parse_common_args(&argc, argv, PCA_CAN_VIEW,
                           NFILE, fnm, npargs, ppa, asize(desc), desc, 0, NULL, &oenv))
    {
        return 0;
    }

    acfile   = opt2fn_null("-ac", NFILE, fnm);
    msdfile  = opt2fn_null("-msd", NFILE, fnm);
    ccfile   = opt2fn_null("-cc", NFILE, fnm);
    distfile = opt2fn_null("-dist", NFILE, fnm);
    avfile   = opt2fn_null("-av", NFILE, fnm);
    eefile   = opt2fn_null("-ee", NFILE, fnm);
    balfile  = opt2fn_null("-bal", NFILE, fnm);
/*   gemfile  = opt2fn_null("-gem",NFILE,fnm); */
    /* When doing autocorrelation we don't want a fitlog for fitting
     * the function itself (not the acf) when the user did not ask for it.
     */
    if (opt2parg_bSet("-fitfn", npargs, ppa) && acfile == NULL)
    {
        fitfile  = opt2fn("-g", NFILE, fnm);
    }
    else
    {
        fitfile  = opt2fn_null("-g", NFILE, fnm);
    }

    val = read_xvg_time(opt2fn("-f", NFILE, fnm), bHaveT,
                        opt2parg_bSet("-b", npargs, ppa), tb,
                        opt2parg_bSet("-e", npargs, ppa), te,
                        nsets_in, &nset, &n, &dt, &t);
    printf("Read %d sets of %d points, dt = %g\n\n", nset, n, dt);

    if (bDer)
    {
        printf("Calculating the derivative as (f[i+%d]-f[i])/(%d*dt)\n\n",
               d, d);
        n -= d;
        for (s = 0; s < nset; s++)
        {
            for (i = 0; (i < n); i++)
            {
                val[s][i] = (val[s][i+d]-val[s][i])/(d*dt);
            }
        }
    }

    if (bIntegrate)
    {
        real sum, stddev;

        printf("Calculating the integral using the trapezium rule\n");

        if (bXYdy)
        {
            sum = evaluate_integral(n, t, val[0], val[1], aver_start, &stddev);
            printf("Integral %10.3f +/- %10.5f\n", sum, stddev);
        }
        else
        {
            for (s = 0; s < nset; s++)
            {
                sum = evaluate_integral(n, t, val[s], NULL, aver_start, &stddev);
                printf("Integral %d  %10.5f  +/- %10.5f\n", s+1, sum, stddev);
            }
        }
    }

    if (fitfile != NULL)
    {
        out_fit = gmx_ffopen(fitfile, "w");
        if (bXYdy && nset >= 2)
        {
            do_fit(out_fit, 0, TRUE, n, t, val, npargs, ppa, oenv);
        }
        else
        {
            for (s = 0; s < nset; s++)
            {
                do_fit(out_fit, s, FALSE, n, t, val, npargs, ppa, oenv);
            }
        }
        gmx_ffclose(out_fit);
    }

    printf("                                      std. dev.    relative deviation of\n");
    printf("                       standard       ---------   cumulants from those of\n");
    printf("set      average       deviation      sqrt(n-1)   a Gaussian distribition\n");
    printf("                                                      cum. 3   cum. 4\n");
    snew(av, nset);
    snew(sig, nset);
    for (s = 0; (s < nset); s++)
    {
        cum1 = 0;
        cum2 = 0;
        cum3 = 0;
        cum4 = 0;
        for (i = 0; (i < n); i++)
        {
            cum1 += val[s][i];
        }
        cum1 /= n;
        for (i = 0; (i < n); i++)
        {
            db    = val[s][i]-cum1;
            cum2 += db*db;
            cum3 += db*db*db;
            cum4 += db*db*db*db;
        }
        cum2  /= n;
        cum3  /= n;
        cum4  /= n;
        av[s]  = cum1;
        sig[s] = sqrt(cum2);
        if (n > 1)
        {
            error = sqrt(cum2/(n-1));
        }
        else
        {
            error = 0;
        }
        printf("SS%d  %13.6e   %12.6e   %12.6e      %6.3f   %6.3f\n",
               s+1, av[s], sig[s], error,
               sig[s] ? cum3/(sig[s]*sig[s]*sig[s]*sqrt(8/M_PI)) : 0,
               sig[s] ? cum4/(sig[s]*sig[s]*sig[s]*sig[s]*3)-1 : 0);
    }
    printf("\n");

    if (filtlen)
    {
        filter(filtlen, n, nset, val, dt);
    }

    if (msdfile)
    {
        out = xvgropen(msdfile, "Mean square displacement",
                       "time", "MSD (nm\\S2\\N)", oenv);
        nlast = (int)(n*frac);
        for (s = 0; s < nset; s++)
        {
            for (j = 0; j <= nlast; j++)
            {
                if (j % 100 == 0)
                {
                    fprintf(stderr, "\r%d", j);
                }
                tot = 0;
                for (i = 0; i < n-j; i++)
                {
                    tot += sqr(val[s][i]-val[s][i+j]);
                }
                tot /= (real)(n-j);
                fprintf(out, " %g %8g\n", dt*j, tot);
            }
            if (s < nset-1)
            {
                fprintf(out, "%s\n", output_env_get_print_xvgr_codes(oenv) ? "&" : "");
            }
        }
        gmx_ffclose(out);
        fprintf(stderr, "\r%d, time=%g\n", j-1, (j-1)*dt);
    }
    if (ccfile)
    {
        plot_coscont(ccfile, n, nset, val, oenv);
    }

    if (distfile)
    {
        histogram(distfile, binwidth, n, nset, val, oenv);
    }
    if (avfile)
    {
        average(avfile, nenum(avbar_opt), n, nset, val, t);
    }
    if (eefile)
    {
        estimate_error(eefile, nb_min, resol, n, nset, av, sig, val, dt,
                       bEeFitAc, bEESEF, bEENLC, oenv);
    }
    if (balfile)
    {
        do_ballistic(balfile, n, t, val, nset, balTime, nBalExp, oenv);
    }
/*   if (gemfile) */
/*       do_geminate(gemfile,n,t,val,nset,diffusion,rcut,balTime, */
/*                   nFitPoints, fit_start, fit_end, oenv); */
    if (bPower)
    {
        power_fit(n, nset, val, t);
    }

    if (acfile != NULL)
    {
        if (bSubAv)
        {
            for (s = 0; s < nset; s++)
            {
                for (i = 0; i < n; i++)
                {
                    val[s][i] -= av[s];
                }
            }
        }
        do_autocorr(acfile, oenv, "Autocorrelation", n, nset, val, dt,
                    eacNormal, bAverCorr);
    }

    if (bRegression)
    {
        regression_analysis(n, bXYdy, t, nset, val);
    }

    if (bLuzar)
    {
        luzar_correl(n, t, nset, val, temp, bXYdy, fit_start, smooth_tail_start, oenv);
    }

    view_all(oenv, NFILE, fnm);

    return 0;
}
Пример #3
0
int gmx_xpm2ps(int argc, char *argv[])
{
    const char     *desc[] = {
        "[THISMODULE] makes a beautiful color plot of an XPixelMap file.",
        "Labels and axis can be displayed, when they are supplied",
        "in the correct matrix format.",
        "Matrix data may be generated by programs such as [gmx-do_dssp], [gmx-rms] or",
        "[gmx-mdmat].[PAR]",
        "Parameters are set in the [TT].m2p[tt] file optionally supplied with",
        "[TT]-di[tt]. Reasonable defaults are provided. Settings for the [IT]y[it]-axis",
        "default to those for the [IT]x[it]-axis. Font names have a defaulting hierarchy:",
        "titlefont -> legendfont; titlefont -> (xfont -> yfont -> ytickfont)",
        "-> xtickfont, e.g. setting titlefont sets all fonts, setting xfont",
        "sets yfont, ytickfont and xtickfont.[PAR]",
        "When no [TT].m2p[tt] file is supplied, many settings are taken from",
        "command line options. The most important option is [TT]-size[tt],",
        "which sets the size of the whole matrix in postscript units.",
        "This option can be overridden with the [TT]-bx[tt] and [TT]-by[tt]",
        "options (and the corresponding parameters in the [TT].m2p[tt] file),",
        "which set the size of a single matrix element.[PAR]",
        "With [TT]-f2[tt] a second matrix file can be supplied. Both matrix",
        "files will be read simultaneously and the upper left half of the",
        "first one ([TT]-f[tt]) is plotted together with the lower right",
        "half of the second one ([TT]-f2[tt]). The diagonal will contain",
        "values from the matrix file selected with [TT]-diag[tt].",
        "Plotting of the diagonal values can be suppressed altogether by",
        "setting [TT]-diag[tt] to [TT]none[tt].",
        "In this case, a new color map will be generated with",
        "a red gradient for negative numbers and a blue for positive.",
        "If the color coding and legend labels of both matrices are identical,",
        "only one legend will be displayed, else two separate legends are",
        "displayed.",
        "With [TT]-combine[tt], an alternative operation can be selected",
        "to combine the matrices. The output range is automatically set",
        "to the actual range of the combined matrix. This can be overridden",
        "with [TT]-cmin[tt] and [TT]-cmax[tt].[PAR]",
        "[TT]-title[tt] can be set to [TT]none[tt] to suppress the title, or to",
        "[TT]ylabel[tt] to show the title in the Y-label position (alongside",
        "the [IT]y[it]-axis).[PAR]",
        "With the [TT]-rainbow[tt] option, dull grayscale matrices can be turned",
        "into attractive color pictures.[PAR]",
        "Merged or rainbowed matrices can be written to an XPixelMap file with",
        "the [TT]-xpm[tt] option."
    };

    output_env_t    oenv;
    const char     *fn, *epsfile = NULL, *xpmfile = NULL;
    int             i, nmat, nmat2, etitle, elegend, ediag, erainbow, ecombine;
    t_matrix       *mat = NULL, *mat2 = NULL;
    gmx_bool        bTitle, bTitleOnce, bDiag, bFirstDiag, bGrad;
    static gmx_bool bFrame = TRUE, bZeroLine = FALSE, bYonce = FALSE, bAdd = FALSE;
    static real     size   = 400, boxx = 0, boxy = 0, cmin = 0, cmax = 0;
    static rvec     grad   = {0, 0, 0};
    enum                    {
        etSel, etTop, etOnce, etYlabel, etNone, etNR
    };
    const char *title[]   = { NULL, "top", "once", "ylabel", "none", NULL };
    /* MUST correspond to enum elXxx as defined at top of file */
    const char *legend[]  = { NULL, "both", "first", "second", "none", NULL };
    enum                    {
        edSel, edFirst, edSecond, edNone, edNR
    };
    const char *diag[]    = { NULL, "first", "second", "none", NULL };
    enum                    {
        erSel, erNo, erBlue, erRed, erNR
    };
    const char *rainbow[] = { NULL, "no", "blue", "red", NULL };
    /* MUST correspond to enum ecXxx as defined at top of file */
    const char *combine[] = {
        NULL, "halves", "add", "sub", "mult", "div", NULL
    };
    static int  skip = 1, mapoffset = 0;
    t_pargs     pa[] = {
        { "-frame",   FALSE, etBOOL, {&bFrame},
          "Display frame, ticks, labels, title and legend" },
        { "-title",   FALSE, etENUM, {title},   "Show title at" },
        { "-yonce",   FALSE, etBOOL, {&bYonce}, "Show y-label only once" },
        { "-legend",  FALSE, etENUM, {legend},  "Show legend" },
        { "-diag",    FALSE, etENUM, {diag},    "Diagonal" },
        { "-size",    FALSE, etREAL, {&size},
          "Horizontal size of the matrix in ps units" },
        { "-bx",      FALSE, etREAL, {&boxx},
          "Element x-size, overrides [TT]-size[tt] (also y-size when [TT]-by[tt] is not set)" },
        { "-by",      FALSE, etREAL, {&boxy},   "Element y-size" },
        { "-rainbow", FALSE, etENUM, {rainbow},
          "Rainbow colors, convert white to" },
        { "-gradient", FALSE, etRVEC, {grad},
          "Re-scale colormap to a smooth gradient from white {1,1,1} to {r,g,b}" },
        { "-skip",    FALSE, etINT,  {&skip},
          "only write out every nr-th row and column" },
        { "-zeroline", FALSE, etBOOL, {&bZeroLine},
          "insert line in [TT].xpm[tt] matrix where axis label is zero"},
        { "-legoffset", FALSE, etINT, {&mapoffset},
          "Skip first N colors from [TT].xpm[tt] file for the legend" },
        { "-combine", FALSE, etENUM, {combine}, "Combine two matrices" },
        { "-cmin",    FALSE, etREAL, {&cmin}, "Minimum for combination output" },
        { "-cmax",    FALSE, etREAL, {&cmax}, "Maximum for combination output" }
    };
#define NPA asize(pa)
    t_filenm    fnm[] = {
        { efXPM, "-f",  NULL,      ffREAD },
        { efXPM, "-f2", "root2",   ffOPTRD },
        { efM2P, "-di", NULL,      ffLIBOPTRD },
        { efM2P, "-do", "out",     ffOPTWR },
        { efEPS, "-o",  NULL,      ffOPTWR },
        { efXPM, "-xpm", NULL,      ffOPTWR }
    };
#define NFILE asize(fnm)

    if (!parse_common_args(&argc, argv, PCA_CAN_VIEW,
                           NFILE, fnm, NPA, pa,
                           asize(desc), desc, 0, NULL, &oenv))
    {
        return 0;
    }

    etitle   = nenum(title);
    elegend  = nenum(legend);
    ediag    = nenum(diag);
    erainbow = nenum(rainbow);
    ecombine = nenum(combine);
    bGrad    = opt2parg_bSet("-gradient", NPA, pa);
    for (i = 0; i < DIM; i++)
    {
        if (grad[i] < 0 || grad[i] > 1)
        {
            gmx_fatal(FARGS, "RGB value %g out of range (0.0-1.0)", grad[i]);
        }
    }
    if (!bFrame)
    {
        etitle  = etNone;
        elegend = elNone;
    }

    epsfile = ftp2fn_null(efEPS, NFILE, fnm);
    xpmfile = opt2fn_null("-xpm", NFILE, fnm);
    if (epsfile == NULL && xpmfile == NULL)
    {
        if (ecombine != ecHalves)
        {
            xpmfile = opt2fn("-xpm", NFILE, fnm);
        }
        else
        {
            epsfile = ftp2fn(efEPS, NFILE, fnm);
        }
    }
    if (ecombine != ecHalves && epsfile)
    {
        fprintf(stderr,
                "WARNING: can only write result of arithmetic combination "
                "of two matrices to .xpm file\n"
                "         file %s will not be written\n", epsfile);
        epsfile = NULL;
    }

    bDiag      = ediag != edNone;
    bFirstDiag = ediag != edSecond;

    fn   = opt2fn("-f", NFILE, fnm);
    nmat = read_xpm_matrix(fn, &mat);
    fprintf(stderr, "There %s %d matri%s in %s\n", (nmat > 1) ? "are" : "is", nmat, (nmat > 1) ? "ces" : "x", fn);
    fn = opt2fn_null("-f2", NFILE, fnm);
    if (fn)
    {
        nmat2 = read_xpm_matrix(fn, &mat2);
        fprintf(stderr, "There %s %d matri%s in %s\n", (nmat2 > 1) ? "are" : "is", nmat2, (nmat2 > 1) ? "ces" : "x", fn);
        if (nmat != nmat2)
        {
            fprintf(stderr, "Different number of matrices, using the smallest number.\n");
            nmat = nmat2 = min(nmat, nmat2);
        }
    }
    else
    {
        if (ecombine != ecHalves)
        {
            fprintf(stderr,
                    "WARNING: arithmetic matrix combination selected (-combine), "
                    "but no second matrix (-f2) supplied\n"
                    "         no matrix combination will be performed\n");
        }
        ecombine = 0;
        nmat2    = 0;
    }
    bTitle     = etitle == etTop;
    bTitleOnce = etitle == etOnce;
    if (etitle == etYlabel)
    {
        for (i = 0; (i < nmat); i++)
        {
            strcpy(mat[i].label_y, mat[i].title);
            if (mat2)
            {
                strcpy(mat2[i].label_y, mat2[i].title);
            }
        }
    }
    if (bGrad)
    {
        gradient_mat(grad, nmat, mat);
        if (mat2)
        {
            gradient_mat(grad, nmat2, mat2);
        }
    }
    if (erainbow != erNo)
    {
        rainbow_mat(erainbow == erBlue, nmat, mat);
        if (mat2)
        {
            rainbow_mat(erainbow == erBlue, nmat2, mat2);
        }
    }

    if ((mat2 == NULL) && (elegend != elNone))
    {
        elegend = elFirst;
    }

    if (ecombine && ecombine != ecHalves)
    {
        write_combined_matrix(ecombine, xpmfile, nmat, mat, mat2,
                              opt2parg_bSet("-cmin", NPA, pa) ? &cmin : NULL,
                              opt2parg_bSet("-cmax", NPA, pa) ? &cmax : NULL);
    }
    else
    {
        do_mat(nmat, mat, mat2, bFrame, bZeroLine, bDiag, bFirstDiag,
               bTitle, bTitleOnce, bYonce,
               elegend, size, boxx, boxy, epsfile, xpmfile,
               opt2fn_null("-di", NFILE, fnm), opt2fn_null("-do", NFILE, fnm), skip,
               mapoffset);
    }

    view_all(oenv, NFILE, fnm);

    return 0;
}
Пример #4
0
int main(int argc,char *argv[])
{
    const char *desc[] = {
	"[TT]do_multiprot[tt] ", 
	"reads a trajectory file and aligns it to a reference structure  ",
	"each time frame",
	"calling the multiprot program. This allows you to use a reference",
	"structure whose sequence is different than that of the protein in the ",
	"trajectory, since the alignment is based on the geometry, not sequence.",
	"The output of [TT]do_multiprot[tt] includes the rmsd and the number of residues",
	"on which it was calculated.",
	"[PAR]",
	"An aligned trajectory file is generated with the [TT]-ox[tt] option.[PAR]",
	"With the [TT]-cr[tt] option, the number of hits in the alignment is given",
	"per residue. This number can be between 0 and the number of frames, and",
	"indicates the structural conservation of this residue.[PAR]",
	"If you do not have the [TT]multiprot[tt] program, get it. [TT]do_multiprot[tt] assumes", 
	"that the [TT]multiprot[tt] executable is [TT]/usr/local/bin/multiprot[tt]. If this is ",
	"not the case, then you should set an environment variable [BB]MULTIPROT[bb]", 
	"pointing to the [TT]multiprot[tt] executable, e.g.: [PAR]",
	"[TT]setenv MULTIPROT /usr/MultiProtInstall/multiprot.Linux[tt][PAR]",
	"Note that at the current implementation only binary alignment (your",
	"molecule to a reference) is supported. In addition, note that the ",
	"by default [TT]multiprot[tt] aligns the two proteins on their C-alpha carbons.",
	"and that this depends on the [TT]multiprot[tt] parameters which are not dealt ",
	"with here. Thus, the C-alpha carbons is expected to give the same "
	"results as choosing the whole protein and will be slightly faster.[PAR]",
	"For information about [TT]multiprot[tt], see:",
	"http://bioinfo3d.cs.tau.ac.il/MultiProt/.[PAR]"
    };
    static bool bVerbose;
    t_pargs pa[] = {
	{ "-v",  FALSE, etBOOL, {&bVerbose},
	  "HIDDENGenerate miles of useless information" }
    };
  
    const char *bugs[] = { 
	"The program is very slow, since multiprot is run externally"
    };
  
    t_trxstatus *status;
    t_trxstatus *trxout=NULL;
    FILE        *tapein,*fo,*frc,*tmpf,*out=NULL,*fres=NULL;
    const char  *fnRef;
    const char  *fn="2_sol.res";
    t_topology  top;
    int         ePBC;
    t_atoms     *atoms,ratoms,useatoms;
    t_trxframe  fr;
    t_pdbinfo   p;
    int         nres,nres2,nr0;
    real        t;
    int         i,j,natoms,nratoms,nframe=0,model_nr=-1;
    int         cur_res,prev_res;
    int         nout;
    t_countres  *countres=NULL;
    matrix      box,rbox;
    int         gnx;
    char        *grpnm,*ss_str; 
    atom_id     *index;
    rvec        *xp,*x,*xr;
    char        pdbfile[32],refpdb[256],title[256],rtitle[256],filemode[5];
    char        out_title[256];
    char        multiprot[256],*mptr;
    int         ftp;
    int         outftp=-1;
    real        rmsd;
    bool        bTrjout,bCountres;
    const char  *TrjoutFile=NULL;
    output_env_t oenv;
    static rvec translation={0,0,0},rotangles={0,0,0};
    gmx_rmpbc_t gpbc=NULL;
    
    t_filenm   fnm[] = {
	{ efTRX, "-f",   NULL,      ffREAD },
	{ efTPS, NULL,   NULL,      ffREAD },
	{ efNDX, NULL,   NULL,      ffOPTRD },
	{ efSTX, "-r",   NULL     , ffREAD },
	{ efXVG, "-o",  "rmss",     ffWRITE },
	{ efXVG, "-rc", "rescount", ffWRITE},
	{ efXVG, "-cr", "countres", ffOPTWR},
	{ efTRX, "-ox", "aligned",  ffOPTWR }
    };
#define NFILE asize(fnm)
    
    CopyRight(stderr,argv[0]);
    parse_common_args(&argc,argv,PCA_CAN_TIME | PCA_CAN_VIEW | PCA_TIME_UNIT | PCA_BE_NICE ,
		      NFILE,fnm, asize(pa),pa, asize(desc),desc,
		      asize(bugs),bugs,&oenv
	);
    fnRef=opt2fn("-r",NFILE,fnm);
    bTrjout = opt2bSet("-ox",NFILE,fnm);
    bCountres=  opt2bSet("-cr",NFILE,fnm);
    
    if (bTrjout) {
	TrjoutFile = opt2fn_null("-ox",NFILE,fnm);
    }
    
    read_tps_conf(ftp2fn(efTPS,NFILE,fnm),title,&top,&ePBC,&xp,NULL,box,FALSE);
    gpbc = gmx_rmpbc_init(&top.idef,ePBC,top.atoms.nr,box);
    atoms=&(top.atoms);

    ftp=fn2ftp(fnRef);
 
    get_stx_coordnum(fnRef,&nratoms);
    init_t_atoms(&ratoms,nratoms,TRUE);  
    snew(xr,nratoms);
    read_stx_conf(fnRef,rtitle,&ratoms,xr,NULL,&ePBC,rbox);
    
    if (bVerbose) {
	fprintf(stderr,"Read %d atoms\n",atoms->nr); 
	fprintf(stderr,"Read %d reference atoms\n",ratoms.nr); 
    }
    if (bCountres) {
	snew(countres,ratoms.nres);
	j=0;
	cur_res=0;
	for (i=0;i<ratoms.nr;i++) {
	    prev_res=cur_res;
	    cur_res=ratoms.atom[i].resind;
	    if (cur_res != prev_res) {
		countres[j].resnr=cur_res;
		countres[j].count=0;
		j++;
	    }
	}
    }
    get_index(atoms,ftp2fn_null(efNDX,NFILE,fnm),1,&gnx,&index,&grpnm);
    nres=0;
    nr0=-1;
    for(i=0; (i<gnx); i++) {
	if (atoms->atom[index[i]].resind != nr0) {
	    nr0=atoms->atom[index[i]].resind;
	    nres++;
	}
    }
    fprintf(stderr,"There are %d residues in your selected group\n",nres);
    
    strcpy(pdbfile,"ddXXXXXX");
    gmx_tmpnam(pdbfile);
    if ((tmpf = fopen(pdbfile,"w")) == NULL) {
	sprintf(pdbfile,"%ctmp%cfilterXXXXXX",DIR_SEPARATOR,DIR_SEPARATOR);
	gmx_tmpnam(pdbfile);
	if ((tmpf = fopen(pdbfile,"w")) == NULL) {
	    gmx_fatal(FARGS,"Can not open tmp file %s",pdbfile);
	}
    }
    else {
	gmx_ffclose(tmpf);
    }

    if (ftp != efPDB) {
	strcpy(refpdb,"ddXXXXXX");
	gmx_tmpnam(refpdb);
	strcat(refpdb,".pdb");
	write_sto_conf(refpdb,rtitle,&ratoms,xr,NULL,ePBC,rbox);
    }
    else {
	strcpy(refpdb,fnRef);
    }

    if ((mptr=getenv("MULTIPROT")) == NULL) {
	mptr="/usr/local/bin/multiprot";
    }
    if (!gmx_fexist(mptr)) {
	gmx_fatal(FARGS,"MULTIPROT executable (%s) does not exist (use setenv MULTIPROT)",
		  mptr);
    }
    sprintf (multiprot,"%s %s %s > /dev/null %s",
	     mptr, refpdb, pdbfile, "2> /dev/null");
    
    if (bVerbose)
	fprintf(stderr,"multiprot cmd='%s'\n",multiprot);
    
    if (!read_first_frame(oenv,&status,ftp2fn(efTRX,NFILE,fnm),&fr,TRX_READ_X)) 
      	gmx_fatal(FARGS,"Could not read a frame from %s",ftp2fn(efTRX,NFILE,fnm));
    natoms = fr.natoms;

    if (bTrjout) {
	nout=natoms;
	/* open file now */
	outftp=fn2ftp(TrjoutFile);
	if (bVerbose)
	    fprintf(stderr,"Will write %s: %s\n",ftp2ext(ftp),ftp2desc(outftp));
	strcpy(filemode,"w");
	switch (outftp) {
	    case efXTC:
	    case efG87:
	    case efTRR:
	    case efTRJ:
		out=NULL;
		trxout = open_trx(TrjoutFile,filemode);
		break;
	    case efGRO:
	    case efG96:
	    case efPDB:
		/* Make atoms struct for output in GRO or PDB files */
		/* get memory for stuff to go in pdb file */
		init_t_atoms(&useatoms,nout,FALSE);
		sfree(useatoms.resinfo);
		useatoms.resinfo=atoms->resinfo;
		for(i=0;(i<nout);i++) {
		    useatoms.atomname[i]=atoms->atomname[i];
		    useatoms.atom[i]=atoms->atom[i];
		    useatoms.nres=max(useatoms.nres,useatoms.atom[i].resind+1);
		}
		useatoms.nr=nout;
		out=gmx_ffopen(TrjoutFile,filemode);
		break;
	}
	if (outftp == efG87)
	    fprintf(gmx_fio_getfp(trx_get_fileio(trxout)),"Generated by %s. #atoms=%d, a BOX is"
		    " stored in this file.\n",ShortProgram(),nout);
    }
    
    if (natoms > atoms->nr) {
	gmx_fatal(FARGS,"\nTrajectory does not match topology!");
    }
    if (gnx > natoms) {
	gmx_fatal(FARGS,"\nTrajectory does not match selected group!");
    }

    fo = xvgropen(opt2fn("-o",NFILE,fnm),"RMSD","Time (ps)","RMSD (nm)",oenv);
    frc = xvgropen(opt2fn("-rc",NFILE,fnm),"Number of Residues in the alignment","Time (ps)","Residues",oenv);
    
    do {
	t = output_env_conv_time(oenv,fr.time);
	gmx_rmpbc(gpbc,natoms,fr.box,fr.x);
	tapein=gmx_ffopen(pdbfile,"w");
	write_pdbfile_indexed(tapein,NULL,atoms,fr.x,ePBC,fr.box,' ',-1,gnx,index,NULL,TRUE); 
	gmx_ffclose(tapein);
	system(multiprot);
	remove(pdbfile);
	process_multiprot_output(fn, &rmsd, &nres2,rotangles,translation,bCountres,countres);
	fprintf(fo,"%12.7f",t);
	fprintf(fo," %12.7f\n",rmsd);
	fprintf(frc,"%12.7f",t);
	fprintf(frc,"%12d\n",nres2);
	if (bTrjout) {
	    rotate_conf(natoms,fr.x,NULL,rotangles[XX],rotangles[YY],rotangles[ZZ]);
	    for(i=0; i<natoms; i++) {
		rvec_inc(fr.x[i],translation);
	    }
	    switch(outftp) {
		case efTRJ:
		case efTRR:
		case efG87:
		case efXTC:
		    write_trxframe(trxout,&fr,NULL);
		    break;
		case efGRO:
		case efG96:
		case efPDB:
		    sprintf(out_title,"Generated by do_multiprot : %s t= %g %s",
			    title,output_env_conv_time(oenv,fr.time),output_env_get_time_unit(oenv));
		    switch(outftp) {
			case efGRO: 
			    write_hconf_p(out,out_title,&useatoms,prec2ndec(fr.prec),
					  fr.x,NULL,fr.box);
			    break;
			case efPDB:
			    fprintf(out,"REMARK    GENERATED BY DO_MULTIPROT\n");
			    sprintf(out_title,"%s t= %g %s",title,output_env_conv_time(oenv,fr.time),output_env_get_time_unit(oenv));
			    /* if reading from pdb, we want to keep the original 
			       model numbering else we write the output frame
			       number plus one, because model 0 is not allowed in pdb */
			    if (ftp==efPDB && fr.step > model_nr) {
				model_nr = fr.step;
			    }
			    else {
				model_nr++;
			    }
			    write_pdbfile(out,out_title,&useatoms,fr.x,ePBC,fr.box,' ',model_nr,NULL,TRUE);
			    break;
			case efG96:
			    fr.title = out_title;
			    fr.bTitle = (nframe == 0);
			    fr.bAtoms = FALSE;
			    fr.bStep = TRUE;
			    fr.bTime = TRUE;
			    write_g96_conf(out,&fr,-1,NULL);
		    }
		    break;
	    }
	}
	nframe++;
    } while(read_next_frame(oenv,status,&fr));
    if (bCountres) {
	fres=  xvgropen(opt2fn("-cr",NFILE,fnm),"Number of frames in which the residues are aligned to","Residue","Number",oenv);
	for (i=0;i<ratoms.nres;i++) {
	    fprintf(fres,"%10d  %12d\n",countres[i].resnr,countres[i].count);
	}
	gmx_ffclose(fres);
    }
    gmx_ffclose(fo);
    gmx_ffclose(frc);
    fprintf(stderr,"\n");
    close_trj(status);
    if (trxout != NULL) {
	close_trx(trxout);
    }
    else if (out != NULL) {
	gmx_ffclose(out);
    }
    view_all(oenv,NFILE, fnm);
    sfree(xr);
    if (bCountres) {
	sfree(countres);
    }
    free_t_atoms(&ratoms,TRUE);
    if (bTrjout) {
	if (outftp==efPDB || outftp==efGRO || outftp==efG96) {
	    free_t_atoms(&useatoms,TRUE);
	}
    }
    gmx_thanx(stderr);
    return 0;
}
Пример #5
0
int gmx_traj(int argc, char *argv[])
{
    const char       *desc[] = {
        "[THISMODULE] plots coordinates, velocities, forces and/or the box.",
        "With [TT]-com[tt] the coordinates, velocities and forces are",
        "calculated for the center of mass of each group.",
        "When [TT]-mol[tt] is set, the numbers in the index file are",
        "interpreted as molecule numbers and the same procedure as with",
        "[TT]-com[tt] is used for each molecule.[PAR]",
        "Option [TT]-ot[tt] plots the temperature of each group,",
        "provided velocities are present in the trajectory file.",
        "No corrections are made for constrained degrees of freedom!",
        "This implies [TT]-com[tt].[PAR]",
        "Options [TT]-ekt[tt] and [TT]-ekr[tt] plot the translational and",
        "rotational kinetic energy of each group,",
        "provided velocities are present in the trajectory file.",
        "This implies [TT]-com[tt].[PAR]",
        "Options [TT]-cv[tt] and [TT]-cf[tt] write the average velocities",
        "and average forces as temperature factors to a [REF].pdb[ref] file with",
        "the average coordinates or the coordinates at [TT]-ctime[tt].",
        "The temperature factors are scaled such that the maximum is 10.",
        "The scaling can be changed with the option [TT]-scale[tt].",
        "To get the velocities or forces of one",
        "frame set both [TT]-b[tt] and [TT]-e[tt] to the time of",
        "desired frame. When averaging over frames you might need to use",
        "the [TT]-nojump[tt] option to obtain the correct average coordinates.",
        "If you select either of these option the average force and velocity",
        "for each atom are written to an [REF].xvg[ref] file as well",
        "(specified with [TT]-av[tt] or [TT]-af[tt]).[PAR]",
        "Option [TT]-vd[tt] computes a velocity distribution, i.e. the",
        "norm of the vector is plotted. In addition in the same graph",
        "the kinetic energy distribution is given."
    };
    static gmx_bool   bMol    = FALSE, bCom = FALSE, bPBC = TRUE, bNoJump = FALSE;
    static gmx_bool   bX      = TRUE, bY = TRUE, bZ = TRUE, bNorm = FALSE, bFP = FALSE;
    static int        ngroups = 1;
    static real       ctime   = -1, scale = 0, binwidth = 1;
    t_pargs           pa[]    = {
        { "-com", FALSE, etBOOL, {&bCom},
          "Plot data for the com of each group" },
        { "-pbc", FALSE, etBOOL, {&bPBC},
          "Make molecules whole for COM" },
        { "-mol", FALSE, etBOOL, {&bMol},
          "Index contains molecule numbers iso atom numbers" },
        { "-nojump", FALSE, etBOOL, {&bNoJump},
          "Remove jumps of atoms across the box" },
        { "-x", FALSE, etBOOL, {&bX},
          "Plot X-component" },
        { "-y", FALSE, etBOOL, {&bY},
          "Plot Y-component" },
        { "-z", FALSE, etBOOL, {&bZ},
          "Plot Z-component" },
        { "-ng",       FALSE, etINT, {&ngroups},
          "Number of groups to consider" },
        { "-len", FALSE, etBOOL, {&bNorm},
          "Plot vector length" },
        { "-fp", FALSE, etBOOL, {&bFP},
          "Full precision output" },
        { "-bin", FALSE, etREAL, {&binwidth},
          "Binwidth for velocity histogram (nm/ps)" },
        { "-ctime", FALSE, etREAL, {&ctime},
          "Use frame at this time for x in [TT]-cv[tt] and [TT]-cf[tt] instead of the average x" },
        { "-scale", FALSE, etREAL, {&scale},
          "Scale factor for [REF].pdb[ref] output, 0 is autoscale" }
    };
    FILE             *outx   = NULL, *outv = NULL, *outf = NULL, *outb = NULL, *outt = NULL;
    FILE             *outekt = NULL, *outekr = NULL;
    t_topology        top;
    int               ePBC;
    real             *mass, time;
    const char       *indexfn;
    t_trxframe        fr;
    int               flags, nvhisto = 0, *vhisto = NULL;
    rvec             *xtop, *xp = NULL;
    rvec             *sumx = NULL, *sumv = NULL, *sumf = NULL;
    matrix            topbox;
    t_trxstatus      *status;
    t_trxstatus      *status_out = NULL;
    gmx_rmpbc_t       gpbc       = NULL;
    int               i, j;
    int               nr_xfr, nr_vfr, nr_ffr;
    char            **grpname;
    int              *isize0, *isize;
    int             **index0, **index;
    int              *atndx;
    t_block          *mols;
    gmx_bool          bTop, bOX, bOXT, bOV, bOF, bOB, bOT, bEKT, bEKR, bCV, bCF;
    gmx_bool          bDim[4], bDum[4], bVD;
    char              sffmt[STRLEN], sffmt6[STRLEN];
    const char       *box_leg[6] = { "XX", "YY", "ZZ", "YX", "ZX", "ZY" };
    gmx_output_env_t *oenv;

    t_filenm          fnm[] = {
        { efTRX, "-f", NULL, ffREAD },
        { efTPS, NULL, NULL, ffREAD },
        { efNDX, NULL, NULL, ffOPTRD },
        { efXVG, "-ox",  "coord",     ffOPTWR },
        { efTRX, "-oxt", "coord",     ffOPTWR },
        { efXVG, "-ov",  "veloc",     ffOPTWR },
        { efXVG, "-of",  "force",     ffOPTWR },
        { efXVG, "-ob",  "box",       ffOPTWR },
        { efXVG, "-ot",  "temp",      ffOPTWR },
        { efXVG, "-ekt", "ektrans",   ffOPTWR },
        { efXVG, "-ekr", "ekrot",     ffOPTWR },
        { efXVG, "-vd",  "veldist",   ffOPTWR },
        { efPDB, "-cv",  "veloc",     ffOPTWR },
        { efPDB, "-cf",  "force",     ffOPTWR },
        { efXVG, "-av",  "all_veloc", ffOPTWR },
        { efXVG, "-af",  "all_force", ffOPTWR }
    };
#define NFILE asize(fnm)

    if (!parse_common_args(&argc, argv,
                           PCA_CAN_TIME | PCA_TIME_UNIT | PCA_CAN_VIEW,
                           NFILE, fnm, asize(pa), pa, asize(desc), desc, 0, NULL, &oenv))
    {
        return 0;
    }

    if (bMol)
    {
        fprintf(stderr, "Interpreting indexfile entries as molecules.\n"
                "Using center of mass.\n");
    }

    bOX  = opt2bSet("-ox", NFILE, fnm);
    bOXT = opt2bSet("-oxt", NFILE, fnm);
    bOV  = opt2bSet("-ov", NFILE, fnm);
    bOF  = opt2bSet("-of", NFILE, fnm);
    bOB  = opt2bSet("-ob", NFILE, fnm);
    bOT  = opt2bSet("-ot", NFILE, fnm);
    bEKT = opt2bSet("-ekt", NFILE, fnm);
    bEKR = opt2bSet("-ekr", NFILE, fnm);
    bCV  = opt2bSet("-cv", NFILE, fnm) || opt2bSet("-av", NFILE, fnm);
    bCF  = opt2bSet("-cf", NFILE, fnm) || opt2bSet("-af", NFILE, fnm);
    bVD  = opt2bSet("-vd", NFILE, fnm) || opt2parg_bSet("-bin", asize(pa), pa);
    if (bMol || bOT || bEKT || bEKR)
    {
        bCom = TRUE;
    }

    bDim[XX]  = bX;
    bDim[YY]  = bY;
    bDim[ZZ]  = bZ;
    bDim[DIM] = bNorm;

    if (bFP)
    {
        sprintf(sffmt, "\t%s", gmx_real_fullprecision_pfmt);
    }
    else
    {
        sprintf(sffmt, "\t%%g");
    }
    sprintf(sffmt6, "%s%s%s%s%s%s", sffmt, sffmt, sffmt, sffmt, sffmt, sffmt);

    bTop = read_tps_conf(ftp2fn(efTPS, NFILE, fnm), &top, &ePBC,
                         &xtop, NULL, topbox,
                         bCom && (bOX || bOXT || bOV || bOT || bEKT || bEKR));
    sfree(xtop);
    if ((bMol || bCV || bCF) && !bTop)
    {
        gmx_fatal(FARGS, "Need a run input file for option -mol, -cv or -cf");
    }

    if (bMol)
    {
        indexfn = ftp2fn(efNDX, NFILE, fnm);
    }
    else
    {
        indexfn = ftp2fn_null(efNDX, NFILE, fnm);
    }

    if (!(bCom && !bMol))
    {
        ngroups = 1;
    }
    snew(grpname, ngroups);
    snew(isize0, ngroups);
    snew(index0, ngroups);
    get_index(&(top.atoms), indexfn, ngroups, isize0, index0, grpname);

    if (bMol)
    {
        mols    = &(top.mols);
        atndx   = mols->index;
        ngroups = isize0[0];
        snew(isize, ngroups);
        snew(index, ngroups);
        for (i = 0; i < ngroups; i++)
        {
            if (index0[0][i] < 0 || index0[0][i] >= mols->nr)
            {
                gmx_fatal(FARGS, "Molecule index (%d) is out of range (%d-%d)",
                          index0[0][i]+1, 1, mols->nr);
            }
            isize[i] = atndx[index0[0][i]+1] - atndx[index0[0][i]];
            snew(index[i], isize[i]);
            for (j = 0; j < isize[i]; j++)
            {
                index[i][j] = atndx[index0[0][i]] + j;
            }
        }
    }
    else
    {
        isize = isize0;
        index = index0;
    }
    if (bCom)
    {
        snew(mass, top.atoms.nr);
        for (i = 0; i < top.atoms.nr; i++)
        {
            mass[i] = top.atoms.atom[i].m;
        }
    }
    else
    {
        mass = NULL;
    }

    flags = 0;
    if (bOX)
    {
        flags = flags | TRX_READ_X;
        outx  = xvgropen(opt2fn("-ox", NFILE, fnm),
                         bCom ? "Center of mass" : "Coordinate",
                         output_env_get_xvgr_tlabel(oenv), "Coordinate (nm)", oenv);
        make_legend(outx, ngroups, isize0[0], index0[0], grpname, bCom, bMol, bDim, oenv);
    }
    if (bOXT)
    {
        flags      = flags | TRX_READ_X;
        status_out = open_trx(opt2fn("-oxt", NFILE, fnm), "w");
    }
    if (bOV)
    {
        flags = flags | TRX_READ_V;
        outv  = xvgropen(opt2fn("-ov", NFILE, fnm),
                         bCom ? "Center of mass velocity" : "Velocity",
                         output_env_get_xvgr_tlabel(oenv), "Velocity (nm/ps)", oenv);
        make_legend(outv, ngroups, isize0[0], index0[0], grpname, bCom, bMol, bDim, oenv);
    }
    if (bOF)
    {
        flags = flags | TRX_READ_F;
        outf  = xvgropen(opt2fn("-of", NFILE, fnm), "Force",
                         output_env_get_xvgr_tlabel(oenv), "Force (kJ mol\\S-1\\N nm\\S-1\\N)",
                         oenv);
        make_legend(outf, ngroups, isize0[0], index0[0], grpname, bCom, bMol, bDim, oenv);
    }
    if (bOB)
    {
        outb = xvgropen(opt2fn("-ob", NFILE, fnm), "Box vector elements",
                        output_env_get_xvgr_tlabel(oenv), "(nm)", oenv);

        xvgr_legend(outb, 6, box_leg, oenv);
    }
    if (bOT)
    {
        bDum[XX]  = FALSE;
        bDum[YY]  = FALSE;
        bDum[ZZ]  = FALSE;
        bDum[DIM] = TRUE;
        flags     = flags | TRX_READ_V;
        outt      = xvgropen(opt2fn("-ot", NFILE, fnm), "Temperature",
                             output_env_get_xvgr_tlabel(oenv), "(K)", oenv);
        make_legend(outt, ngroups, isize[0], index[0], grpname, bCom, bMol, bDum, oenv);
    }
    if (bEKT)
    {
        bDum[XX]  = FALSE;
        bDum[YY]  = FALSE;
        bDum[ZZ]  = FALSE;
        bDum[DIM] = TRUE;
        flags     = flags | TRX_READ_V;
        outekt    = xvgropen(opt2fn("-ekt", NFILE, fnm), "Center of mass translation",
                             output_env_get_xvgr_tlabel(oenv), "Energy (kJ mol\\S-1\\N)", oenv);
        make_legend(outekt, ngroups, isize[0], index[0], grpname, bCom, bMol, bDum, oenv);
    }
    if (bEKR)
    {
        bDum[XX]  = FALSE;
        bDum[YY]  = FALSE;
        bDum[ZZ]  = FALSE;
        bDum[DIM] = TRUE;
        flags     = flags | TRX_READ_X | TRX_READ_V;
        outekr    = xvgropen(opt2fn("-ekr", NFILE, fnm), "Center of mass rotation",
                             output_env_get_xvgr_tlabel(oenv), "Energy (kJ mol\\S-1\\N)", oenv);
        make_legend(outekr, ngroups, isize[0], index[0], grpname, bCom, bMol, bDum, oenv);
    }
    if (bVD)
    {
        flags = flags | TRX_READ_V;
    }
    if (bCV)
    {
        flags = flags | TRX_READ_X | TRX_READ_V;
    }
    if (bCF)
    {
        flags = flags | TRX_READ_X | TRX_READ_F;
    }
    if ((flags == 0) && !bOB)
    {
        fprintf(stderr, "Please select one or more output file options\n");
        exit(0);
    }

    read_first_frame(oenv, &status, ftp2fn(efTRX, NFILE, fnm), &fr, flags);


    if ((bOV || bOF) && fn2ftp(ftp2fn(efTRX, NFILE, fnm)) == efXTC)
    {
        gmx_fatal(FARGS, "Cannot extract velocities or forces since your input XTC file does not contain them.");
    }

    if (bCV || bCF)
    {
        snew(sumx, fr.natoms);
    }
    if (bCV)
    {
        snew(sumv, fr.natoms);
    }
    if (bCF)
    {
        snew(sumf, fr.natoms);
    }
    nr_xfr = 0;
    nr_vfr = 0;
    nr_ffr = 0;

    if (bCom && bPBC)
    {
        gpbc = gmx_rmpbc_init(&top.idef, ePBC, fr.natoms);
    }

    do
    {
        time = output_env_conv_time(oenv, fr.time);

        if (fr.bX && bNoJump && fr.bBox)
        {
            if (xp)
            {
                remove_jump(fr.box, fr.natoms, xp, fr.x);
            }
            else
            {
                snew(xp, fr.natoms);
            }
            for (i = 0; i < fr.natoms; i++)
            {
                copy_rvec(fr.x[i], xp[i]);
            }
        }

        if (fr.bX && bCom && bPBC)
        {
            gmx_rmpbc_trxfr(gpbc, &fr);
        }

        if (bVD && fr.bV)
        {
            update_histo(isize[0], index[0], fr.v, &nvhisto, &vhisto, binwidth);
        }

        if (bOX && fr.bX)
        {
            print_data(outx, time, fr.x, mass, bCom, ngroups, isize, index, bDim, sffmt);
        }
        if (bOXT && fr.bX)
        {
            t_trxframe frout = fr;
            if (!frout.bAtoms)
            {
                frout.atoms  = &top.atoms;
                frout.bAtoms = TRUE;
            }
            frout.bV = FALSE;
            frout.bF = FALSE;
            write_trx_x(status_out, &frout, mass, bCom, ngroups, isize, index);
        }
        if (bOV && fr.bV)
        {
            print_data(outv, time, fr.v, mass, bCom, ngroups, isize, index, bDim, sffmt);
        }
        if (bOF && fr.bF)
        {
            print_data(outf, time, fr.f, NULL, bCom, ngroups, isize, index, bDim, sffmt);
        }
        if (bOB && fr.bBox)
        {
            fprintf(outb, "\t%g", fr.time);
            fprintf(outb, sffmt6,
                    fr.box[XX][XX], fr.box[YY][YY], fr.box[ZZ][ZZ],
                    fr.box[YY][XX], fr.box[ZZ][XX], fr.box[ZZ][YY]);
            fprintf(outb, "\n");
        }
        if (bOT && fr.bV)
        {
            fprintf(outt, " %g", time);
            for (i = 0; i < ngroups; i++)
            {
                fprintf(outt, sffmt, temp(fr.v, mass, isize[i], index[i]));
            }
            fprintf(outt, "\n");
        }
        if (bEKT && fr.bV)
        {
            fprintf(outekt, " %g", time);
            for (i = 0; i < ngroups; i++)
            {
                fprintf(outekt, sffmt, ektrans(fr.v, mass, isize[i], index[i]));
            }
            fprintf(outekt, "\n");
        }
        if (bEKR && fr.bX && fr.bV)
        {
            fprintf(outekr, " %g", time);
            for (i = 0; i < ngroups; i++)
            {
                fprintf(outekr, sffmt, ekrot(fr.x, fr.v, mass, isize[i], index[i]));
            }
            fprintf(outekr, "\n");
        }
        if ((bCV || bCF) && fr.bX &&
            (ctime < 0 || (fr.time >= ctime*0.999999 &&
                           fr.time <= ctime*1.000001)))
        {
            for (i = 0; i < fr.natoms; i++)
            {
                rvec_inc(sumx[i], fr.x[i]);
            }
            nr_xfr++;
        }
        if (bCV && fr.bV)
        {
            for (i = 0; i < fr.natoms; i++)
            {
                rvec_inc(sumv[i], fr.v[i]);
            }
            nr_vfr++;
        }
        if (bCF && fr.bF)
        {
            for (i = 0; i < fr.natoms; i++)
            {
                rvec_inc(sumf[i], fr.f[i]);
            }
            nr_ffr++;
        }

    }
    while (read_next_frame(oenv, status, &fr));

    if (gpbc != NULL)
    {
        gmx_rmpbc_done(gpbc);
    }

    /* clean up a bit */
    close_trj(status);

    if (bOX)
    {
        xvgrclose(outx);
    }
    if (bOXT)
    {
        close_trx(status_out);
    }
    if (bOV)
    {
        xvgrclose(outv);
    }
    if (bOF)
    {
        xvgrclose(outf);
    }
    if (bOB)
    {
        xvgrclose(outb);
    }
    if (bOT)
    {
        xvgrclose(outt);
    }
    if (bEKT)
    {
        xvgrclose(outekt);
    }
    if (bEKR)
    {
        xvgrclose(outekr);
    }

    if (bVD)
    {
        print_histo(opt2fn("-vd", NFILE, fnm), nvhisto, vhisto, binwidth, oenv);
    }

    if (bCV || bCF)
    {
        if (nr_xfr > 1)
        {
            if (ePBC != epbcNONE && !bNoJump)
            {
                fprintf(stderr, "\nWARNING: More than one frame was used for option -cv or -cf\n"
                        "If atoms jump across the box you should use the -nojump or -ctime option\n\n");
            }
            for (i = 0; i < isize[0]; i++)
            {
                svmul(1.0/nr_xfr, sumx[index[0][i]], sumx[index[0][i]]);
            }
        }
        else if (nr_xfr == 0)
        {
            fprintf(stderr, "\nWARNING: No coordinate frames found for option -cv or -cf\n\n");
        }
    }
    if (bCV)
    {
        write_pdb_bfac(opt2fn("-cv", NFILE, fnm),
                       opt2fn("-av", NFILE, fnm), "average velocity", &(top.atoms),
                       ePBC, topbox, isize[0], index[0], nr_xfr, sumx,
                       nr_vfr, sumv, bDim, scale, oenv);
    }
    if (bCF)
    {
        write_pdb_bfac(opt2fn("-cf", NFILE, fnm),
                       opt2fn("-af", NFILE, fnm), "average force", &(top.atoms),
                       ePBC, topbox, isize[0], index[0], nr_xfr, sumx,
                       nr_ffr, sumf, bDim, scale, oenv);
    }

    /* view it */
    view_all(oenv, NFILE, fnm);

    return 0;
}
Пример #6
0
int main(int argc,char *argv[])
{
  const char *desc[] = {
    "do_dssp ", 
    "reads a trajectory file and computes the secondary structure for",
    "each time frame ",
    "calling the dssp program. If you do not have the dssp program,",
    "get it. do_dssp assumes that the dssp executable is",
    "/usr/local/bin/dssp. If this is not the case, then you should",
    "set an environment variable [BB]DSSP[bb] pointing to the dssp",
    "executable, e.g.: [PAR]",
    "[TT]setenv DSSP /opt/dssp/bin/dssp[tt][PAR]",
    "The structure assignment for each residue and time is written to an",
    "[TT].xpm[tt] matrix file. This file can be visualized with for instance",
    "[TT]xv[tt] and can be converted to postscript with [TT]xpm2ps[tt].",
    "Individual chains are separated by light grey lines in the xpm and",
    "postscript files.",
    "The number of residues with each secondary structure type and the",
    "total secondary structure ([TT]-sss[tt]) count as a function of",
    "time are also written to file ([TT]-sc[tt]).[PAR]",
    "Solvent accessible surface (SAS) per residue can be calculated, both in",
    "absolute values (A^2) and in fractions of the maximal accessible",
    "surface of a residue. The maximal accessible surface is defined as",
    "the accessible surface of a residue in a chain of glycines.",
    "[BB]Note[bb] that the program [TT]g_sas[tt] can also compute SAS",
    "and that is more efficient.[PAR]",
    "Finally, this program can dump the secondary structure in a special file",
    "[TT]ssdump.dat[tt] for usage in the program [TT]g_chi[tt]. Together",
    "these two programs can be used to analyze dihedral properties as a",
    "function of secondary structure type."
  };
  static bool bVerbose;
  static const char *ss_string="HEBT"; 
  t_pargs pa[] = {
    { "-v",  FALSE, etBOOL, {&bVerbose},
      "HIDDENGenerate miles of useless information" },
    { "-sss", FALSE, etSTR, {&ss_string},
      "Secondary structures for structure count"}
  };
  
  int        status;
  FILE       *tapein;
  FILE       *ss,*acc,*fTArea,*tmpf;
  char       *fnSCount,*fnArea,*fnTArea,*fnAArea;
  char *leg[] = { "Phobic", "Phylic" };
  t_topology top;
  int        ePBC;
  t_atoms    *atoms;
  t_matrix   mat;
  int        nres,nr0,naccr,nres_plus_separators;
  bool       *bPhbres,bDoAccSurf;
  real       t;
  int        i,natoms,nframe=0;
  matrix     box;
  int        gnx;
  char       *grpnm,*ss_str;
  atom_id    *index;
  rvec       *xp,*x;
  int        *average_area;
  real       **accr,*accr_ptr=NULL,*av_area, *norm_av_area;
  char       pdbfile[32],tmpfile[32],title[256];
  char       dssp[256];
  const char *dptr;
  
  
  t_filenm   fnm[] = {
    { efTRX, "-f",   NULL,      ffREAD },
    { efTPS, NULL,   NULL,      ffREAD },
    { efNDX, NULL,   NULL,      ffOPTRD },
    { efDAT, "-ssdump", "ssdump", ffOPTWR },
    { efMAP, "-map", "ss",      ffLIBRD },
    { efXPM, "-o",   "ss",      ffWRITE },
    { efXVG, "-sc",  "scount",  ffWRITE },
    { efXPM, "-a",   "area",    ffOPTWR },
    { efXVG, "-ta",  "totarea", ffOPTWR },
    { efXVG, "-aa",  "averarea",ffOPTWR }
  };
#define NFILE asize(fnm)

  CopyRight(stderr,argv[0]);
  parse_common_args(&argc,argv,PCA_CAN_TIME | PCA_CAN_VIEW | PCA_TIME_UNIT | PCA_BE_NICE ,
		    NFILE,fnm, asize(pa),pa, asize(desc),desc,0,NULL);
  fnSCount= opt2fn("-sc",NFILE,fnm);
  fnArea  = opt2fn_null("-a", NFILE,fnm);
  fnTArea = opt2fn_null("-ta",NFILE,fnm);
  fnAArea = opt2fn_null("-aa",NFILE,fnm);
  bDoAccSurf=(fnArea || fnTArea || fnAArea);
  
  read_tps_conf(ftp2fn(efTPS,NFILE,fnm),title,&top,&ePBC,&xp,NULL,box,FALSE);
  atoms=&(top.atoms);
  check_oo(atoms);
  bPhbres=bPhobics(atoms);
  
  get_index(atoms,ftp2fn_null(efNDX,NFILE,fnm),1,&gnx,&index,&grpnm);
  nres=0;
  nr0=-1;
  for(i=0; (i<gnx); i++) {
    if (atoms->atom[index[i]].resind != nr0) {
      nr0=atoms->atom[index[i]].resind;
      nres++;
    }
  }
  fprintf(stderr,"There are %d residues in your selected group\n",nres);

  strcpy(pdbfile,"ddXXXXXX");
  gmx_tmpnam(pdbfile);
  if ((tmpf = fopen(pdbfile,"w")) == NULL) {
    sprintf(pdbfile,"%ctmp%cfilterXXXXXX",DIR_SEPARATOR,DIR_SEPARATOR);
    gmx_tmpnam(pdbfile);
    if ((tmpf = fopen(pdbfile,"w")) == NULL) 
      gmx_fatal(FARGS,"Can not open tmp file %s",pdbfile);
  }
  else
    fclose(tmpf);
    
  strcpy(tmpfile,"ddXXXXXX");
  gmx_tmpnam(tmpfile);
  if ((tmpf = fopen(tmpfile,"w")) == NULL) {
    sprintf(tmpfile,"%ctmp%cfilterXXXXXX",DIR_SEPARATOR,DIR_SEPARATOR);
    gmx_tmpnam(tmpfile);
    if ((tmpf = fopen(tmpfile,"w")) == NULL) 
      gmx_fatal(FARGS,"Can not open tmp file %s",tmpfile);
  }
  else
    fclose(tmpf);
  
  if ((dptr=getenv("DSSP")) == NULL)
    dptr="/usr/local/bin/dssp";
  if (!gmx_fexist(dptr))
    gmx_fatal(FARGS,"DSSP executable (%s) does not exist (use setenv DSSP)",
		dptr);
  sprintf(dssp,"%s %s %s %s > /dev/null %s",
	  dptr,bDoAccSurf?"":"-na",pdbfile,tmpfile,bVerbose?"":"2> /dev/null");
  if (bVerbose)
    fprintf(stderr,"dssp cmd='%s'\n",dssp);
  
  if (fnTArea) {
    fTArea=xvgropen(fnTArea,"Solvent Accessible Surface Area",
		    xvgr_tlabel(),"Area (nm\\S2\\N)");
    xvgr_legend(fTArea,2,leg);
  } else
    fTArea=NULL;
  
  mat.map=NULL;
  mat.nmap=getcmap(libopen(opt2fn("-map",NFILE,fnm)),
		   opt2fn("-map",NFILE,fnm),&(mat.map));
  
  natoms=read_first_x(&status,ftp2fn(efTRX,NFILE,fnm),&t,&x,box);
  if (natoms > atoms->nr) 
    gmx_fatal(FARGS,"\nTrajectory does not match topology!");
  if (gnx > natoms)
    gmx_fatal(FARGS,"\nTrajectory does not match selected group!");
  
  snew(average_area, atoms->nres);
  snew(av_area     , atoms->nres);
  snew(norm_av_area, atoms->nres);
  accr=NULL;
  naccr=0;
  do {
    t = convert_time(t);
    if (bDoAccSurf && nframe>=naccr) {
      naccr+=10;
      srenew(accr,naccr);
      for(i=naccr-10; i<naccr; i++)
        snew(accr[i],2*atoms->nres-1);
    }
    rm_pbc(&(top.idef),ePBC,natoms,box,x,x);
    tapein=ffopen(pdbfile,"w");
    write_pdbfile_indexed(tapein,NULL,atoms,x,ePBC,box,0,-1,gnx,index,NULL);
    fclose(tapein);

#ifdef GMX_NO_SYSTEM
    printf("Warning-- No calls to system(3) supported on this platform.");
    printf("Warning-- Skipping execution of 'system(\"%s\")'.", dssp);
    exit(1);
#else
    if(0 != system(dssp))
    {
	gmx_fatal(FARGS,"Failed to execute command: %s",dssp);
    }
#endif

    /* strip_dssp returns the number of lines found in the dssp file, i.e.
     * the number of residues plus the separator lines */
    
    if (bDoAccSurf)
        accr_ptr = accr[nframe];

    nres_plus_separators = strip_dssp(tmpfile,nres,bPhbres,t,
	       accr_ptr,fTArea,&mat,average_area);
    remove(tmpfile);
    remove(pdbfile);
    nframe++;
  } while(read_next_x(status,&t,natoms,x,box));
  fprintf(stderr,"\n");
  close_trj(status);
  if (fTArea)
    ffclose(fTArea);
  
  prune_ss_legend(&mat);
  
  ss=opt2FILE("-o",NFILE,fnm,"w");
  mat.flags = 0;  
  write_xpm_m(ss,mat);
  ffclose(ss);
  
  if (opt2bSet("-ssdump",NFILE,fnm)) {
    snew(ss_str,nres+1);
    for(i=0; (i<nres); i++)
      ss_str[i] = mat.map[mat.matrix[0][i]].code.c1;
    ss_str[i] = '\0';
    ss = opt2FILE("-ssdump",NFILE,fnm,"w");
    fprintf(ss,"%d\n%s\n",nres,ss_str);
    fclose(ss);
    sfree(ss_str);
  }
  analyse_ss(fnSCount,&mat,ss_string);

  if (bDoAccSurf) {
    write_sas_mat(fnArea,accr,nframe,nres_plus_separators,&mat);
  
    for(i=0; i<atoms->nres; i++)
      av_area[i] = (average_area[i] / (real)nframe);
    
    norm_acc(atoms, nres, av_area, norm_av_area);
    
    if (fnAArea) {
      acc=xvgropen(fnAArea,"Average Accessible Area",
		   "Residue","A\\S2");
      for(i=0; (i<nres); i++)
	fprintf(acc,"%5d  %10g %10g\n",i+1,av_area[i], norm_av_area[i]);
      ffclose(acc);
    }
  }

  view_all(NFILE, fnm);

  thanx(stderr);
  
  return 0;
}
Пример #7
0
int gmx_traj(int argc,char *argv[])
{
  static char *desc[] = {
    "g_traj plots coordinates, velocities, forces and/or the box.",
    "With [TT]-com[tt] the coordinates, velocities and forces are",
    "calculated for the center of mass of each group.",
    "When [TT]-mol[tt] is set, the numbers in the index file are",
    "interpreted as molecule numbers and the same procedure as with",
    "[TT]-com[tt] is used for each molecule.[PAR]",
    "Option [TT]-ot[tt] plots the temperature of each group,",
    "provided velocities are present in the trajectory file.",
    "No corrections are made for constrained degrees of freedom!",
    "This implies [TT]-com[tt].[PAR]",
    "Options [TT]-ekt[tt] and [TT]-ekr[tt] plot the translational and",
    "rotational kinetic energy of each group,", 
    "provided velocities are present in the trajectory file.",
    "This implies [TT]-com[tt].[PAR]",
    "Options [TT]-cv[tt] and [TT]-cf[tt] write the average velocities",
    "and average forces as temperature factors to a pdb file with",
    "the average coordinates. The temperature factors are scaled such",
    "that the maximum is 10. The scaling can be changed with the option",
    "[TT]-scale[tt]. To get the velocities or forces of one",
    "frame set both [TT]-b[tt] and [TT]-e[tt] to the time of",
    "desired frame. When averaging over frames you might need to use",
    "the [TT]-nojump[tt] option to obtain the correct average coordinates.",
    "If you select either of these option the average force and velocity",
    "for each atom are written to an xvg file as well",
    "(specified with [TT]-av[tt] or [TT]-af[tt]).[PAR]",
    "Option [TT]-vd[tt] computes a velocity distribution, i.e. the",
    "norm of the vector is plotted. In addition in the same graph",
    "the kinetic energy distribution is given."
  };
  static bool bMol=FALSE,bCom=FALSE,bNoJump=FALSE;
  static bool bX=TRUE,bY=TRUE,bZ=TRUE,bNorm=FALSE;
  static int  ngroups=1;
  static real scale=0,binwidth=1;
  t_pargs pa[] = {
    { "-com", FALSE, etBOOL, {&bCom},
      "Plot data for the com of each group" },
    { "-mol", FALSE, etBOOL, {&bMol},
      "Index contains molecule numbers iso atom numbers" },
    { "-nojump", FALSE, etBOOL, {&bNoJump},
      "Remove jumps of atoms across the box" },
    { "-x", FALSE, etBOOL, {&bX},
      "Plot X-component" },
    { "-y", FALSE, etBOOL, {&bY},
      "Plot Y-component" },
    { "-z", FALSE, etBOOL, {&bZ},
      "Plot Z-component" },
    { "-ng",       FALSE, etINT, {&ngroups},
      "Number of groups to consider" },
    { "-len", FALSE, etBOOL, {&bNorm},
      "Plot vector length" },
    { "-bin", FALSE, etREAL, {&binwidth},
      "Binwidth for velocity histogram (nm/ps)" },
    { "-scale", FALSE, etREAL, {&scale},
      "Scale factor for pdb output, 0 is autoscale" }
    
  };
  FILE       *outx=NULL,*outv=NULL,*outf=NULL,*outb=NULL,*outt=NULL;
  FILE       *outekt=NULL,*outekr=NULL;
  t_topology top;
  int        ePBC;
  real       *mass,time;
  char       title[STRLEN],*indexfn;
  t_trxframe fr,frout;
  int        flags,nvhisto=0,*vhisto=NULL;
  rvec       *xtop,*xp=NULL;
  rvec       *sumxv=NULL,*sumv=NULL,*sumxf=NULL,*sumf=NULL;
  matrix     topbox;
  int        status,status_out=-1;
  int        i,j,n;
  int        nr_xfr,nr_vfr,nr_ffr;
  char       **grpname;
  int        *isize0,*isize;
  atom_id    **index0,**index;
  atom_id    *atndx;
  t_block    *mols;
  bool       bTop,bOX,bOXT,bOV,bOF,bOB,bOT,bEKT,bEKR,bCV,bCF;
  bool       bDim[4],bDum[4],bVD;
  char       *box_leg[6] = { "XX", "YY", "ZZ", "YX", "ZX", "ZY" };

  t_filenm fnm[] = {
    { efTRX, "-f", NULL, ffREAD },
    { efTPS, NULL, NULL, ffREAD },
    { efNDX, NULL, NULL, ffOPTRD },
    { efXVG, "-ox", "coord.xvg", ffOPTWR },
    { efTRX, "-oxt","coord.xtc", ffOPTWR },
    { efXVG, "-ov", "veloc.xvg", ffOPTWR },
    { efXVG, "-of", "force.xvg", ffOPTWR },
    { efXVG, "-ob", "box.xvg",   ffOPTWR },
    { efXVG, "-ot", "temp.xvg",  ffOPTWR },
    { efXVG, "-ekt","ektrans.xvg", ffOPTWR },
    { efXVG, "-ekr","ekrot.xvg", ffOPTWR },
    { efXVG, "-vd", "veldist.xvg", ffOPTWR },
    { efPDB, "-cv", "veloc.pdb", ffOPTWR },
    { efPDB, "-cf", "force.pdb", ffOPTWR },
    { efXVG, "-av", "all_veloc.xvg", ffOPTWR },
    { efXVG, "-af", "all_force.xvg", ffOPTWR }
  };
#define NFILE asize(fnm)

  CopyRight(stderr,argv[0]);
  parse_common_args(&argc,argv,
		    PCA_CAN_TIME | PCA_TIME_UNIT | PCA_CAN_VIEW | PCA_BE_NICE,
		    NFILE,fnm,asize(pa),pa,asize(desc),desc,0,NULL);

  if (bMol)
    fprintf(stderr,"Interpreting indexfile entries as molecules.\n"
	    "Using center of mass.\n");
  
  bOX  = opt2bSet("-ox",NFILE,fnm);
  bOXT = opt2bSet("-oxt",NFILE,fnm);
  bOV  = opt2bSet("-ov",NFILE,fnm);
  bOF  = opt2bSet("-of",NFILE,fnm);
  bOB  = opt2bSet("-ob",NFILE,fnm);
  bOT  = opt2bSet("-ot",NFILE,fnm);
  bEKT = opt2bSet("-ekt",NFILE,fnm);
  bEKR = opt2bSet("-ekr",NFILE,fnm);
  bCV  = opt2bSet("-cv",NFILE,fnm) || opt2bSet("-av",NFILE,fnm);
  bCF  = opt2bSet("-cf",NFILE,fnm) || opt2bSet("-af",NFILE,fnm);
  bVD  = opt2bSet("-vd",NFILE,fnm) || opt2parg_bSet("-bin",asize(pa),pa);
  if (bMol || bOT || bEKT || bEKR)
    bCom = TRUE;

  bDim[XX] = bX;
  bDim[YY] = bY;
  bDim[ZZ] = bZ;
  bDim[DIM] = bNorm;

  bTop = read_tps_conf(ftp2fn(efTPS,NFILE,fnm),title,&top,&ePBC,
		       &xtop,NULL,topbox,
		       bCom && (bOX || bOXT || bOV || bOT || bEKT || bEKR));
  sfree(xtop);
  if ((bMol || bCV || bCF) && !bTop)
    gmx_fatal(FARGS,"Need a run input file for option -mol, -cv or -cf");

  if (bMol)
    indexfn = ftp2fn(efNDX,NFILE,fnm);
  else
    indexfn = ftp2fn_null(efNDX,NFILE,fnm);

  if (!(bCom && !bMol))
    ngroups = 1;
  snew(grpname,ngroups);
  snew(isize0,ngroups);
  snew(index0,ngroups);
  get_index(&(top.atoms),indexfn,ngroups,isize0,index0,grpname);
  
  if (bMol) {
    mols=&(top.mols);
    atndx = mols->index;
    ngroups = isize0[0];
    snew(isize,ngroups);
    snew(index,ngroups);
    for (i=0; i<ngroups; i++) {
      if (index0[0][i] < 0 || index0[0][i] >= mols->nr)
	gmx_fatal(FARGS,"Molecule index (%d) is out of range (%d-%d)",
		  index0[0][i]+1,1,mols->nr);
      isize[i] = atndx[index0[0][i]+1] - atndx[index0[0][i]];
      snew(index[i],isize[i]);
      for(j=0; j<isize[i]; j++)
	index[i][j] = atndx[index0[0][i]] + j;
    }
  } else {
    isize = isize0;
    index = index0;
  }
  if (bCom) {
    snew(mass,top.atoms.nr);
    for(i=0; i<top.atoms.nr; i++)
      mass[i] = top.atoms.atom[i].m;
  } else
    mass = NULL;

  flags = 0;
  if (bOX) {
    flags = flags | TRX_READ_X;
    outx = xvgropen(opt2fn("-ox",NFILE,fnm),
		    bCom ? "Center of mass" : "Coordinate",
		    xvgr_tlabel(),"Coordinate (nm)");
    make_legend(outx,ngroups,isize0[0],index0[0],grpname,bCom,bMol,bDim);
  }
  if (bOXT) {
    flags = flags | TRX_READ_X;
    status_out = open_trx(opt2fn("-oxt",NFILE,fnm),"w");
  }
  if (bOV) {
    flags = flags | TRX_READ_V;
    outv = xvgropen(opt2fn("-ov",NFILE,fnm),
		    bCom ? "Center of mass velocity" : "Velocity",
		    xvgr_tlabel(),"Velocity (nm/ps)");
   make_legend(outv,ngroups,isize0[0],index0[0],grpname,bCom,bMol,bDim); 
  }
  if (bOF) {
    flags = flags | TRX_READ_F;
    outf = xvgropen(opt2fn("-of",NFILE,fnm),"Force",
		    xvgr_tlabel(),"Force (kJ mol\\S-1\\N nm\\S-1\\N)");
    make_legend(outf,ngroups,isize0[0],index0[0],grpname,bCom,bMol,bDim);
  }
  if (bOB) {
    outb = xvgropen(opt2fn("-ob",NFILE,fnm),"Box vector elements",
		    xvgr_tlabel(),"(nm)");
   
    xvgr_legend(outb,6,box_leg);
  }
  if (bOT) {
    bDum[XX] = FALSE;
    bDum[YY] = FALSE;
    bDum[ZZ] = FALSE;
    bDum[DIM] = TRUE;
    flags = flags | TRX_READ_V;
    outt = xvgropen(opt2fn("-ot",NFILE,fnm),"Temperature",xvgr_tlabel(),"(K)");
    make_legend(outt,ngroups,isize[0],index[0],grpname,bCom,bMol,bDum);
  }
  if (bEKT) {
    bDum[XX] = FALSE;
    bDum[YY] = FALSE;
    bDum[ZZ] = FALSE;
    bDum[DIM] = TRUE;
    flags = flags | TRX_READ_V;
    outekt = xvgropen(opt2fn("-ekt",NFILE,fnm),"Center of mass translation",
		      xvgr_tlabel(),"Energy (kJ mol\\S-1\\N)");
    make_legend(outekt,ngroups,isize[0],index[0],grpname,bCom,bMol,bDum);
  }
  if (bEKR) {
    bDum[XX] = FALSE;
    bDum[YY] = FALSE;
    bDum[ZZ] = FALSE;
    bDum[DIM] = TRUE;
    flags = flags | TRX_READ_X | TRX_READ_V;
    outekr = xvgropen(opt2fn("-ekr",NFILE,fnm),"Center of mass rotation",
		      xvgr_tlabel(),"Energy (kJ mol\\S-1\\N)");
    make_legend(outekr,ngroups,isize[0],index[0],grpname,bCom,bMol,bDum);
  }
  if (bVD)
    flags = flags | TRX_READ_V;
  if (bCV)
    flags = flags | TRX_READ_X | TRX_READ_V;
  if (bCF)
    flags = flags | TRX_READ_X | TRX_READ_F;
  if ((flags == 0) && !bOB) {
    fprintf(stderr,"Please select one or more output file options\n");
    exit(0);
  }

  read_first_frame(&status,ftp2fn(efTRX,NFILE,fnm),&fr,flags);

  if (bCV) {
    snew(sumxv,fr.natoms);
    snew(sumv,fr.natoms);
  }
  if (bCF) {
    snew(sumxf,fr.natoms);
    snew(sumf,fr.natoms);
  }
  nr_xfr = 0;
  nr_vfr = 0;
  nr_ffr = 0;
  
  do {
    time = convert_time(fr.time);

    if (fr.bX && bNoJump && fr.bBox) {
      if (xp)
	remove_jump(fr.box,fr.natoms,xp,fr.x);
      else 
	snew(xp,fr.natoms);
      for(i=0; i<fr.natoms; i++)
	copy_rvec(fr.x[i],xp[i]);
    }
    
    if (fr.bX && bCom)
      rm_pbc(&(top.idef),ePBC,fr.natoms,fr.box,fr.x,fr.x);

    if (bVD && fr.bV) 
      update_histo(isize[0],index[0],fr.v,&nvhisto,&vhisto,binwidth);
      
    if (bOX && fr.bX)
      print_data(outx,time,fr.x,mass,bCom,ngroups,isize,index,bDim);
    if (bOXT && fr.bX) {
      frout = fr;
      if (!frout.bAtoms) {
	frout.atoms  = &top.atoms;
	frout.bAtoms = TRUE;
      }
      write_trx_x(status_out,&frout,mass,bCom,ngroups,isize,index);
    }
    if (bOV && fr.bV)
      print_data(outv,time,fr.v,mass,bCom,ngroups,isize,index,bDim);
    if (bOF && fr.bF)
      print_data(outf,time,fr.f,NULL,bCom,ngroups,isize,index,bDim);
    if (bOB && fr.bBox)
      fprintf(outb,"\t%g\t%g\t%g\t%g\t%g\t%g\t%g\n",fr.time,
	      fr.box[XX][XX],fr.box[YY][YY],fr.box[ZZ][ZZ],
	      fr.box[YY][XX],fr.box[ZZ][XX],fr.box[ZZ][YY]);
    if (bOT && fr.bV) {
      fprintf(outt," %g",time);
      for(i=0; i<ngroups; i++)
	fprintf(outt,"\t%g",temp(fr.v,mass,isize[i],index[i]));
      fprintf(outt,"\n");
    }
    if (bEKT && fr.bV) {
      fprintf(outekt," %g",time);
      for(i=0; i<ngroups; i++)
	fprintf(outekt,"\t%g",ektrans(fr.v,mass,isize[i],index[i]));
      fprintf(outekt,"\n");
    }
    if (bEKR && fr.bX && fr.bV) {
      fprintf(outekr," %g",time);
      for(i=0; i<ngroups; i++)
	fprintf(outekr,"\t%g",ekrot(fr.x,fr.v,mass,isize[i],index[i]));
      fprintf(outekr,"\n");
    }
    if (bCV) {
      if (fr.bX) {
	for(i=0; i<fr.natoms; i++)
	  rvec_inc(sumxv[i],fr.x[i]);
	nr_xfr++;
      }
      if (fr.bV) {
	for(i=0; i<fr.natoms; i++)
	  rvec_inc(sumv[i],fr.v[i]);
	nr_vfr++;
      }
    }
    if (bCF) {
      if (fr.bX) {
	for(i=0; i<fr.natoms; i++)
	  rvec_inc(sumxf[i],fr.x[i]);
	nr_xfr++;
      }
      if (fr.bF) {
	for(i=0; i<fr.natoms; i++)
	  rvec_inc(sumf[i],fr.f[i]);
	nr_ffr++;
      }
    }
    
  } while(read_next_frame(status,&fr));
  

  /* clean up a bit */
  close_trj(status);
  
  if (bOX) fclose(outx);
  if (bOXT) close_trx(status_out);
  if (bOV) fclose(outv);
  if (bOF) fclose(outf);
  if (bOB) fclose(outb);
  if (bOT) fclose(outt);
  if (bEKT) fclose(outekt);
  if (bEKR) fclose(outekr);

  if (bVD)
    print_histo(opt2fn("-vd",NFILE,fnm),nvhisto,vhisto,binwidth);
    
  if ((bCV || bCF) && (nr_vfr>1 || nr_ffr>1) && !bNoJump)
    fprintf(stderr,"WARNING: More than one frame was used for option -cv or -cf\n"
	    "If atoms jump across the box you should use the -nojump option\n");

  if (bCV)
    write_pdb_bfac(opt2fn("-cv",NFILE,fnm),
		   opt2fn("-av",NFILE,fnm),"average velocity",&(top.atoms),
		   ePBC,topbox,isize[0],index[0],nr_xfr,sumxv,
		   nr_vfr,sumv,bDim,scale);
  if (bCF)
    write_pdb_bfac(opt2fn("-cf",NFILE,fnm),
		   opt2fn("-af",NFILE,fnm),"average force",&(top.atoms),
		   ePBC,topbox,isize[0],index[0],nr_xfr,sumxf,
		   nr_ffr,sumf,bDim,scale);

  /* view it */
  view_all(NFILE, fnm);
  
  thanx(stderr);
  
  return 0;
}
int gmx_do_dssp(int argc, char *argv[])
{
    const char        *desc[] = {
        "[THISMODULE] ",
        "reads a trajectory file and computes the secondary structure for",
        "each time frame ",
        "calling the dssp program. If you do not have the dssp program,",
        "get it from http://swift.cmbi.ru.nl/gv/dssp. [THISMODULE] assumes ",
        "that the dssp executable is located in ",
        "[TT]/usr/local/bin/dssp[tt]. If this is not the case, then you should",
        "set an environment variable [TT]DSSP[tt] pointing to the dssp",
        "executable, e.g.: [PAR]",
        "[TT]setenv DSSP /opt/dssp/bin/dssp[tt][PAR]",
        "Since version 2.0.0, dssp is invoked with a syntax that differs",
        "from earlier versions. If you have an older version of dssp,",
        "use the [TT]-ver[tt] option to direct do_dssp to use the older syntax.",
        "By default, do_dssp uses the syntax introduced with version 2.0.0.",
        "Even newer versions (which at the time of writing are not yet released)",
        "are assumed to have the same syntax as 2.0.0.[PAR]",
        "The structure assignment for each residue and time is written to an",
        "[TT].xpm[tt] matrix file. This file can be visualized with for instance",
        "[TT]xv[tt] and can be converted to postscript with [TT]xpm2ps[tt].",
        "Individual chains are separated by light grey lines in the [TT].xpm[tt] and",
        "postscript files.",
        "The number of residues with each secondary structure type and the",
        "total secondary structure ([TT]-sss[tt]) count as a function of",
        "time are also written to file ([TT]-sc[tt]).[PAR]",
        "Solvent accessible surface (SAS) per residue can be calculated, both in",
        "absolute values (A^2) and in fractions of the maximal accessible",
        "surface of a residue. The maximal accessible surface is defined as",
        "the accessible surface of a residue in a chain of glycines.",
        "[BB]Note[bb] that the program [gmx-sas] can also compute SAS",
        "and that is more efficient.[PAR]",
        "Finally, this program can dump the secondary structure in a special file",
        "[TT]ssdump.dat[tt] for usage in the program [gmx-chi]. Together",
        "these two programs can be used to analyze dihedral properties as a",
        "function of secondary structure type."
    };
    static gmx_bool    bVerbose;
    static const char *ss_string   = "HEBT";
    static int         dsspVersion = 2;
    t_pargs            pa[]        = {
        { "-v",  FALSE, etBOOL, {&bVerbose},
          "HIDDENGenerate miles of useless information" },
        { "-sss", FALSE, etSTR, {&ss_string},
          "Secondary structures for structure count"},
        { "-ver", FALSE, etINT, {&dsspVersion},
          "DSSP major version. Syntax changed with version 2"}
    };

    t_trxstatus       *status;
    FILE              *tapein;
    FILE              *ss, *acc, *fTArea, *tmpf;
    const char        *fnSCount, *fnArea, *fnTArea, *fnAArea;
    const char        *leg[] = { "Phobic", "Phylic" };
    t_topology         top;
    int                ePBC;
    t_atoms           *atoms;
    t_matrix           mat;
    int                nres, nr0, naccr, nres_plus_separators;
    gmx_bool          *bPhbres, bDoAccSurf;
    real               t;
    int                i, j, natoms, nframe = 0;
    matrix             box;
    int                gnx;
    char              *grpnm, *ss_str;
    atom_id           *index;
    rvec              *xp, *x;
    int               *average_area;
    real             **accr, *accr_ptr = NULL, *av_area, *norm_av_area;
    char               pdbfile[32], tmpfile[32], title[256];
    char               dssp[256];
    const char        *dptr;
    output_env_t       oenv;
    gmx_rmpbc_t        gpbc = NULL;

    t_filenm           fnm[] = {
        { efTRX, "-f",   NULL,      ffREAD },
        { efTPS, NULL,   NULL,      ffREAD },
        { efNDX, NULL,   NULL,      ffOPTRD },
        { efDAT, "-ssdump", "ssdump", ffOPTWR },
        { efMAP, "-map", "ss",      ffLIBRD },
        { efXPM, "-o",   "ss",      ffWRITE },
        { efXVG, "-sc",  "scount",  ffWRITE },
        { efXPM, "-a",   "area",    ffOPTWR },
        { efXVG, "-ta",  "totarea", ffOPTWR },
        { efXVG, "-aa",  "averarea", ffOPTWR }
    };
#define NFILE asize(fnm)

    if (!parse_common_args(&argc, argv,
                           PCA_CAN_TIME | PCA_CAN_VIEW | PCA_TIME_UNIT | PCA_BE_NICE,
                           NFILE, fnm, asize(pa), pa, asize(desc), desc, 0, NULL, &oenv))
    {
        return 0;
    }
    fnSCount   = opt2fn("-sc", NFILE, fnm);
    fnArea     = opt2fn_null("-a", NFILE, fnm);
    fnTArea    = opt2fn_null("-ta", NFILE, fnm);
    fnAArea    = opt2fn_null("-aa", NFILE, fnm);
    bDoAccSurf = (fnArea || fnTArea || fnAArea);

    read_tps_conf(ftp2fn(efTPS, NFILE, fnm), title, &top, &ePBC, &xp, NULL, box, FALSE);
    atoms = &(top.atoms);
    check_oo(atoms);
    bPhbres = bPhobics(atoms);

    get_index(atoms, ftp2fn_null(efNDX, NFILE, fnm), 1, &gnx, &index, &grpnm);
    nres = 0;
    nr0  = -1;
    for (i = 0; (i < gnx); i++)
    {
        if (atoms->atom[index[i]].resind != nr0)
        {
            nr0 = atoms->atom[index[i]].resind;
            nres++;
        }
    }
    fprintf(stderr, "There are %d residues in your selected group\n", nres);

    strcpy(pdbfile, "ddXXXXXX");
    gmx_tmpnam(pdbfile);
    if ((tmpf = fopen(pdbfile, "w")) == NULL)
    {
        sprintf(pdbfile, "%ctmp%cfilterXXXXXX", DIR_SEPARATOR, DIR_SEPARATOR);
        gmx_tmpnam(pdbfile);
        if ((tmpf = fopen(pdbfile, "w")) == NULL)
        {
            gmx_fatal(FARGS, "Can not open tmp file %s", pdbfile);
        }
    }
    else
    {
        fclose(tmpf);
    }

    strcpy(tmpfile, "ddXXXXXX");
    gmx_tmpnam(tmpfile);
    if ((tmpf = fopen(tmpfile, "w")) == NULL)
    {
        sprintf(tmpfile, "%ctmp%cfilterXXXXXX", DIR_SEPARATOR, DIR_SEPARATOR);
        gmx_tmpnam(tmpfile);
        if ((tmpf = fopen(tmpfile, "w")) == NULL)
        {
            gmx_fatal(FARGS, "Can not open tmp file %s", tmpfile);
        }
    }
    else
    {
        fclose(tmpf);
    }

    if ((dptr = getenv("DSSP")) == NULL)
    {
        dptr = "/usr/local/bin/dssp";
    }
    if (!gmx_fexist(dptr))
    {
        gmx_fatal(FARGS, "DSSP executable (%s) does not exist (use setenv DSSP)",
                  dptr);
    }
    if (dsspVersion >= 2)
    {
        if (dsspVersion > 2)
        {
            printf("\nWARNING: You use DSSP version %d, which is not explicitly\nsupported by do_dssp. Assuming version 2 syntax.\n\n", dsspVersion);
        }

        sprintf(dssp, "%s -i %s -o %s > /dev/null %s",
                dptr, pdbfile, tmpfile, bVerbose ? "" : "2> /dev/null");
    }
    else
    {
        sprintf(dssp, "%s %s %s %s > /dev/null %s",
                dptr, bDoAccSurf ? "" : "-na", pdbfile, tmpfile, bVerbose ? "" : "2> /dev/null");

    }
    fprintf(stderr, "dssp cmd='%s'\n", dssp);

    if (fnTArea)
    {
        fTArea = xvgropen(fnTArea, "Solvent Accessible Surface Area",
                          output_env_get_xvgr_tlabel(oenv), "Area (nm\\S2\\N)", oenv);
        xvgr_legend(fTArea, 2, leg, oenv);
    }
    else
    {
        fTArea = NULL;
    }

    mat.map  = NULL;
    mat.nmap = getcmap(libopen(opt2fn("-map", NFILE, fnm)),
                       opt2fn("-map", NFILE, fnm), &(mat.map));

    natoms = read_first_x(oenv, &status, ftp2fn(efTRX, NFILE, fnm), &t, &x, box);
    if (natoms > atoms->nr)
    {
        gmx_fatal(FARGS, "\nTrajectory does not match topology!");
    }
    if (gnx > natoms)
    {
        gmx_fatal(FARGS, "\nTrajectory does not match selected group!");
    }

    snew(average_area, atoms->nres);
    snew(av_area, atoms->nres);
    snew(norm_av_area, atoms->nres);
    accr  = NULL;
    naccr = 0;

    gpbc = gmx_rmpbc_init(&top.idef, ePBC, natoms);
    do
    {
        t = output_env_conv_time(oenv, t);
        if (bDoAccSurf && nframe >= naccr)
        {
            naccr += 10;
            srenew(accr, naccr);
            for (i = naccr-10; i < naccr; i++)
            {
                snew(accr[i], 2*atoms->nres-1);
            }
        }
        gmx_rmpbc(gpbc, natoms, box, x);
        tapein = gmx_ffopen(pdbfile, "w");
        write_pdbfile_indexed(tapein, NULL, atoms, x, ePBC, box, ' ', -1, gnx, index, NULL, TRUE);
        gmx_ffclose(tapein);

#ifdef GMX_NO_SYSTEM
        printf("Warning-- No calls to system(3) supported on this platform.");
        printf("Warning-- Skipping execution of 'system(\"%s\")'.", dssp);
        exit(1);
#else
        if (0 != system(dssp))
        {
            gmx_fatal(FARGS, "Failed to execute command: %s\n",
                      "Try specifying your dssp version with the -ver option.", dssp);
        }
#endif

        /* strip_dssp returns the number of lines found in the dssp file, i.e.
         * the number of residues plus the separator lines */

        if (bDoAccSurf)
        {
            accr_ptr = accr[nframe];
        }

        nres_plus_separators = strip_dssp(tmpfile, nres, bPhbres, t,
                                          accr_ptr, fTArea, &mat, average_area, oenv);
        remove(tmpfile);
        remove(pdbfile);
        nframe++;
    }
    while (read_next_x(oenv, status, &t, x, box));
    fprintf(stderr, "\n");
    close_trj(status);
    if (fTArea)
    {
        gmx_ffclose(fTArea);
    }
    gmx_rmpbc_done(gpbc);

    prune_ss_legend(&mat);

    ss        = opt2FILE("-o", NFILE, fnm, "w");
    mat.flags = 0;
    write_xpm_m(ss, mat);
    gmx_ffclose(ss);

    if (opt2bSet("-ssdump", NFILE, fnm))
    {
        ss = opt2FILE("-ssdump", NFILE, fnm, "w");
        snew(ss_str, nres+1);
        fprintf(ss, "%d\n", nres);
        for (j = 0; j < mat.nx; j++)
        {
            for (i = 0; (i < mat.ny); i++)
            {
                ss_str[i] = mat.map[mat.matrix[j][i]].code.c1;
            }
            ss_str[i] = '\0';
            fprintf(ss, "%s\n", ss_str);
        }
        gmx_ffclose(ss);
        sfree(ss_str);
    }
    analyse_ss(fnSCount, &mat, ss_string, oenv);

    if (bDoAccSurf)
    {
        write_sas_mat(fnArea, accr, nframe, nres_plus_separators, &mat);

        for (i = 0; i < atoms->nres; i++)
        {
            av_area[i] = (average_area[i] / (real)nframe);
        }

        norm_acc(atoms, nres, av_area, norm_av_area);

        if (fnAArea)
        {
            acc = xvgropen(fnAArea, "Average Accessible Area",
                           "Residue", "A\\S2", oenv);
            for (i = 0; (i < nres); i++)
            {
                fprintf(acc, "%5d  %10g %10g\n", i+1, av_area[i], norm_av_area[i]);
            }
            gmx_ffclose(acc);
        }
    }

    view_all(oenv, NFILE, fnm);

    return 0;
}
Пример #9
0
int gmx_confrms(int argc, char *argv[])
{
    const char     *desc[] = {
        "[THISMODULE] computes the root mean square deviation (RMSD) of two",
        "structures after least-squares fitting the second structure on the first one.",
        "The two structures do NOT need to have the same number of atoms,",
        "only the two index groups used for the fit need to be identical.",
        "With [TT]-name[tt] only matching atom names from the selected groups",
        "will be used for the fit and RMSD calculation. This can be useful ",
        "when comparing mutants of a protein.",
        "[PAR]",
        "The superimposed structures are written to file. In a [REF].pdb[ref] file",
        "the two structures will be written as separate models",
        "(use [TT]rasmol -nmrpdb[tt]). Also in a [REF].pdb[ref] file, B-factors",
        "calculated from the atomic MSD values can be written with [TT]-bfac[tt].",
    };
    static gmx_bool bOne  = FALSE, bRmpbc = FALSE, bMW = TRUE, bName = FALSE,
                    bBfac = FALSE, bFit = TRUE, bLabel = FALSE;

    t_pargs  pa[] = {
        { "-one", FALSE, etBOOL, {&bOne},   "Only write the fitted structure to file" },
        { "-mw",  FALSE, etBOOL, {&bMW},    "Mass-weighted fitting and RMSD" },
        { "-pbc", FALSE, etBOOL, {&bRmpbc}, "Try to make molecules whole again" },
        { "-fit", FALSE, etBOOL, {&bFit},
          "Do least squares superposition of the target structure to the reference" },
        { "-name", FALSE, etBOOL, {&bName},
          "Only compare matching atom names" },
        { "-label", FALSE, etBOOL, {&bLabel},
          "Added chain labels A for first and B for second structure"},
        { "-bfac", FALSE, etBOOL, {&bBfac},
          "Output B-factors from atomic MSD values" }
    };
    t_filenm fnm[] = {
        { efTPS, "-f1",  "conf1.gro", ffREAD  },
        { efSTX, "-f2",  "conf2",     ffREAD  },
        { efSTO, "-o",   "fit.pdb",   ffWRITE },
        { efNDX, "-n1",  "fit1",      ffOPTRD },
        { efNDX, "-n2",  "fit2",      ffOPTRD },
        { efNDX, "-no",  "match",     ffOPTWR }
    };
#define NFILE asize(fnm)

    /* the two structure files */
    const char  *conf1file, *conf2file, *matchndxfile, *outfile;
    FILE        *fp;
    char        *name1, *name2;
    t_topology  *top1, *top2;
    int          ePBC1, ePBC2;
    t_atoms     *atoms1, *atoms2;
    int          warn = 0;
    atom_id      at;
    real        *w_rls, mass, totmass;
    rvec        *x1, *v1, *x2, *v2, *fit_x;
    matrix       box1, box2;

    output_env_t oenv;

    /* counters */
    int     i, m;

    /* center of mass calculation */
    rvec    xcm1, xcm2;

    /* variables for fit */
    char    *groupnames1, *groupnames2;
    int      isize1, isize2;
    atom_id *index1, *index2;
    real     rms, msd, minmsd, maxmsd;
    real    *msds;


    if (!parse_common_args(&argc, argv, PCA_CAN_VIEW,
                           NFILE, fnm, asize(pa), pa, asize(desc), desc, 0, NULL, &oenv))
    {
        return 0;
    }
    matchndxfile = opt2fn_null("-no", NFILE, fnm);
    conf1file    = ftp2fn(efTPS, NFILE, fnm);
    conf2file    = ftp2fn(efSTX, NFILE, fnm);

    /* reading reference structure from first structure file */
    fprintf(stderr, "\nReading first structure file\n");
    snew(top1, 1);
    read_tps_conf(conf1file, top1, &ePBC1, &x1, &v1, box1, TRUE);
    atoms1 = &(top1->atoms);
    fprintf(stderr, "%s\nContaining %d atoms in %d residues\n",
            *top1->name, atoms1->nr, atoms1->nres);

    if (bRmpbc)
    {
        rm_gropbc(atoms1, x1, box1);
    }

    fprintf(stderr, "Select group from first structure\n");
    get_index(atoms1, opt2fn_null("-n1", NFILE, fnm),
              1, &isize1, &index1, &groupnames1);
    printf("\n");

    if (bFit && (isize1 < 3))
    {
        gmx_fatal(FARGS, "Need >= 3 points to fit!\n");
    }

    /* reading second structure file */
    fprintf(stderr, "\nReading second structure file\n");
    snew(top2, 1);
    read_tps_conf(conf2file, top2, &ePBC2, &x2, &v2, box2, TRUE);
    atoms2 = &(top2->atoms);
    fprintf(stderr, "%s\nContaining %d atoms in %d residues\n",
            *top2->name, atoms2->nr, atoms2->nres);

    if (bRmpbc)
    {
        rm_gropbc(atoms2, x2, box2);
    }

    fprintf(stderr, "Select group from second structure\n");
    get_index(atoms2, opt2fn_null("-n2", NFILE, fnm),
              1, &isize2, &index2, &groupnames2);

    if (bName)
    {
        find_matching_names(&isize1, index1, atoms1, &isize2, index2, atoms2);
        if (matchndxfile)
        {
            fp = gmx_ffopen(matchndxfile, "w");
            fprintf(fp, "; Matching atoms between %s from %s and %s from %s\n",
                    groupnames1, conf1file, groupnames2, conf2file);
            fprintf(fp, "[ Match_%s_%s ]\n", conf1file, groupnames1);
            for (i = 0; i < isize1; i++)
            {
                fprintf(fp, "%4d%s", index1[i]+1, (i%15 == 14 || i == isize1-1) ? "\n" : " ");
            }
            fprintf(fp, "[ Match_%s_%s ]\n", conf2file, groupnames2);
            for (i = 0; i < isize2; i++)
            {
                fprintf(fp, "%4d%s", index2[i]+1, (i%15 == 14 || i == isize2-1) ? "\n" : " ");
            }
        }
    }

    /* check isizes, must be equal */
    if (isize2 != isize1)
    {
        gmx_fatal(FARGS, "You selected groups with differen number of atoms.\n");
    }

    for (i = 0; i < isize1; i++)
    {
        name1 = *atoms1->atomname[index1[i]];
        name2 = *atoms2->atomname[index2[i]];
        if (std::strcmp(name1, name2))
        {
            if (warn < 20)
            {
                fprintf(stderr,
                        "Warning: atomnames at index %d don't match: %d %s, %d %s\n",
                        i+1, index1[i]+1, name1, index2[i]+1, name2);
            }
            warn++;
        }
        if (!bMW)
        {
            atoms1->atom[index1[i]].m = 1;
            atoms2->atom[index2[i]].m = 1;
        }
    }
    if (warn)
    {
        fprintf(stderr, "%d atomname%s did not match\n", warn, (warn == 1) ? "" : "s");
    }

    if (bFit)
    {
        /* calculate and remove center of mass of structures */
        calc_rm_cm(isize1, index1, atoms1, x1, xcm1);
        calc_rm_cm(isize2, index2, atoms2, x2, xcm2);

        snew(w_rls, atoms2->nr);
        snew(fit_x, atoms2->nr);
        for (at = 0; (at < isize1); at++)
        {
            w_rls[index2[at]] = atoms1->atom[index1[at]].m;
            copy_rvec(x1[index1[at]], fit_x[index2[at]]);
        }

        /* do the least squares fit to the reference structure */
        do_fit(atoms2->nr, w_rls, fit_x, x2);

        sfree(fit_x);
        sfree(w_rls);
        w_rls = NULL;
    }
    else
    {
        clear_rvec(xcm1);
        clear_rvec(xcm2);
        w_rls = NULL;
    }

    /* calculate the rms deviation */
    rms     = 0;
    totmass = 0;
    maxmsd  = -1e18;
    minmsd  =  1e18;
    snew(msds, isize1);
    for (at = 0; at < isize1; at++)
    {
        mass = atoms1->atom[index1[at]].m;
        for (m = 0; m < DIM; m++)
        {
            msd       = sqr(x1[index1[at]][m] - x2[index2[at]][m]);
            rms      += msd*mass;
            msds[at] += msd;
        }
        maxmsd   = std::max(maxmsd, msds[at]);
        minmsd   = std::min(minmsd, msds[at]);
        totmass += mass;
    }
    rms = std::sqrt(rms/totmass);

    printf("Root mean square deviation after lsq fit = %g nm\n", rms);
    if (bBfac)
    {
        printf("Atomic MSD's range from %g to %g nm^2\n", minmsd, maxmsd);
    }

    if (bFit)
    {
        /* reset coordinates of reference and fitted structure */
        for (i = 0; i < atoms1->nr; i++)
        {
            for (m = 0; m < DIM; m++)
            {
                x1[i][m] += xcm1[m];
            }
        }
        for (i = 0; i < atoms2->nr; i++)
        {
            for (m = 0; m < DIM; m++)
            {
                x2[i][m] += xcm1[m];
            }
        }
    }

    outfile = ftp2fn(efSTO, NFILE, fnm);
    switch (fn2ftp(outfile))
    {
        case efPDB:
        case efBRK:
        case efENT:
            if (bBfac || bLabel)
            {
                srenew(atoms1->pdbinfo, atoms1->nr);
                srenew(atoms1->atom, atoms1->nr); /* Why renew atom? */

                /* Avoid segfaults when writing the pdb-file */
                for (i = 0; i < atoms1->nr; i++)
                {
                    atoms1->pdbinfo[i].type         = eptAtom;
                    atoms1->pdbinfo[i].occup        = 1.00;
                    atoms1->pdbinfo[i].bAnisotropic = FALSE;
                    if (bBfac)
                    {
                        atoms1->pdbinfo[i].bfac = 0;
                    }
                    if (bLabel)
                    {
                        atoms1->resinfo[atoms1->atom[i].resind].chainid = 'A';
                    }
                }

                for (i = 0; i < isize1; i++)
                {
                    /* atoms1->pdbinfo[index1[i]].type = eptAtom; */
/*  atoms1->pdbinfo[index1[i]].bAnisotropic = FALSE; */
                    if (bBfac)
                    {
                        atoms1->pdbinfo[index1[i]].bfac = (800*M_PI*M_PI/3.0)*msds[i];
                    }
/*  if (bLabel) */
/*    atoms1->resinfo[atoms1->atom[index1[i]].resind].chain = 'A'; */
                }
                srenew(atoms2->pdbinfo, atoms2->nr);
                srenew(atoms2->atom, atoms2->nr); /* Why renew atom? */

                for (i = 0; i < atoms2->nr; i++)
                {
                    atoms2->pdbinfo[i].type         = eptAtom;
                    atoms2->pdbinfo[i].occup        = 1.00;
                    atoms2->pdbinfo[i].bAnisotropic = FALSE;
                    if (bBfac)
                    {
                        atoms2->pdbinfo[i].bfac = 0;
                    }
                    if (bLabel)
                    {
                        atoms2->resinfo[atoms1->atom[i].resind].chainid = 'B';
                    }
                }

                for (i = 0; i < isize2; i++)
                {
                    /* atoms2->pdbinfo[index2[i]].type = eptAtom; */
/*  atoms2->pdbinfo[index2[i]].bAnisotropic = FALSE; */
                    if (bBfac)
                    {
                        atoms2->pdbinfo[index2[i]].bfac = (800*M_PI*M_PI/3.0)*msds[i];
                    }
/*  if (bLabel) */
/*    atoms2->resinfo[atoms2->atom[index2[i]].resind].chain = 'B'; */
                }
            }
            fp = gmx_ffopen(outfile, "w");
            if (!bOne)
            {
                write_pdbfile(fp, *top1->name, atoms1, x1, ePBC1, box1, ' ', 1, NULL, TRUE);
            }
            write_pdbfile(fp, *top2->name, atoms2, x2, ePBC2, box2, ' ', bOne ? -1 : 2, NULL, TRUE);
            gmx_ffclose(fp);
            break;
        case efGRO:
            if (bBfac)
            {
                fprintf(stderr, "WARNING: cannot write B-factor values to gro file\n");
            }
            fp = gmx_ffopen(outfile, "w");
            if (!bOne)
            {
                write_hconf_p(fp, *top1->name, atoms1, 3, x1, v1, box1);
            }
            write_hconf_p(fp, *top2->name, atoms2, 3, x2, v2, box2);
            gmx_ffclose(fp);
            break;
        default:
            if (bBfac)
            {
                fprintf(stderr, "WARNING: cannot write B-factor values to %s file\n",
                        ftp2ext(fn2ftp(outfile)));
            }
            if (!bOne)
            {
                fprintf(stderr,
                        "WARNING: cannot write the reference structure to %s file\n",
                        ftp2ext(fn2ftp(outfile)));
            }
            write_sto_conf(outfile, *top2->name, atoms2, x2, v2, ePBC2, box2);
            break;
    }

    view_all(oenv, NFILE, fnm);

    return 0;
}