Пример #1
0
  void BezierCurves::interpolate(unsigned primID, float u, float v, RTCBufferType buffer, float* P, float* dPdu, float* dPdv, size_t numFloats) 
  {
    /* test if interpolation is enabled */
#if defined(DEBUG) 
    if ((parent->aflags & RTC_INTERPOLATE) == 0) 
      throw_RTCError(RTC_INVALID_OPERATION,"rtcInterpolate can only get called when RTC_INTERPOLATE is enabled for the scene");
#endif


    /* calculate base pointer and stride */
    assert((buffer >= RTC_VERTEX_BUFFER0 && buffer <= RTC_VERTEX_BUFFER1) ||
           (buffer >= RTC_USER_VERTEX_BUFFER0 && buffer <= RTC_USER_VERTEX_BUFFER1));
    const char* src = nullptr; 
    size_t stride = 0;
    if (buffer >= RTC_USER_VERTEX_BUFFER0) {
      src    = userbuffers[buffer&0xFFFF]->getPtr();
      stride = userbuffers[buffer&0xFFFF]->getStride();
    } else {
      src    = vertices[buffer&0xFFFF].getPtr();
      stride = vertices[buffer&0xFFFF].getStride();
    }

#if !defined(__MIC__) 

    for (size_t i=0; i<numFloats; i+=4)
    {
      size_t ofs = i*sizeof(float);
      const size_t curve = curves[primID];
      const vfloat4 p0 = vfloat4::loadu((float*)&src[(curve+0)*stride+ofs]);
      const vfloat4 p1 = vfloat4::loadu((float*)&src[(curve+1)*stride+ofs]);
      const vfloat4 p2 = vfloat4::loadu((float*)&src[(curve+2)*stride+ofs]);
      const vfloat4 p3 = vfloat4::loadu((float*)&src[(curve+3)*stride+ofs]);
      const vbool4 valid = vint4(i)+vint4(step) < vint4(numFloats);
      const BezierCurveT<vfloat4> bezier(p0,p1,p2,p3,0.0f,1.0f,0);
      vfloat4 Q, dQdu; bezier.eval(u,Q,dQdu);
      if (P   ) vfloat4::storeu(valid,P+i,Q);
      if (dPdu) vfloat4::storeu(valid,dPdu+i,dQdu);
    }

#else

    for (size_t i=0; i<numFloats; i+=16) 
    {
      size_t ofs = i*sizeof(float);
      vbool16 mask = (i+16 > numFloats) ? (vbool16)(((unsigned int)1 << (numFloats-i))-1) : vbool16( true );
      const size_t curve = curves[primID];
      const vfloat16 p0 = vfloat16::loadu(mask,(float*)&src[(curve+0)*stride+ofs]);
      const vfloat16 p1 = vfloat16::loadu(mask,(float*)&src[(curve+1)*stride+ofs]);
      const vfloat16 p2 = vfloat16::loadu(mask,(float*)&src[(curve+2)*stride+ofs]);
      const vfloat16 p3 = vfloat16::loadu(mask,(float*)&src[(curve+3)*stride+ofs]);
      const BezierCurveT<vfloat16> bezier(p0,p1,p2,p3,0.0f,1.0f,0);
      vfloat16 Q, dQdu; bezier.eval(u,Q,dQdu);
      if (P   ) vfloat16::storeu_compact(mask,P+i,Q);
      if (dPdu) vfloat16::storeu_compact(mask,dPdu+i,dQdu);
    }


#endif
  }
  void QuadMesh::interpolate(const RTCInterpolateArguments* const args)
  {
    unsigned int primID = args->primID;
    float u = args->u;
    float v = args->v;
    RTCBufferType bufferType = args->bufferType;
    unsigned int bufferSlot = args->bufferSlot;
    float* P = args->P;
    float* dPdu = args->dPdu;
    float* dPdv = args->dPdv;
    float* ddPdudu = args->ddPdudu;
    float* ddPdvdv = args->ddPdvdv;
    float* ddPdudv = args->ddPdudv;
    unsigned int valueCount = args->valueCount;

    /* calculate base pointer and stride */
    assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) ||
           (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size()));
    const char* src = nullptr; 
    size_t stride = 0;
    if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
      src    = vertexAttribs[bufferSlot].getPtr();
      stride = vertexAttribs[bufferSlot].getStride();
    } else {
      src    = vertices[bufferSlot].getPtr();
      stride = vertices[bufferSlot].getStride();
    }

    for (unsigned int i=0; i<valueCount; i+=4)
    {
      const vbool4 valid = vint4((int)i)+vint4(step) < vint4(int(valueCount));
      const size_t ofs = i*sizeof(float);
      const Quad& tri = quad(primID);
      const vfloat4 p0 = vfloat4::loadu(valid,(float*)&src[tri.v[0]*stride+ofs]);
      const vfloat4 p1 = vfloat4::loadu(valid,(float*)&src[tri.v[1]*stride+ofs]);
      const vfloat4 p2 = vfloat4::loadu(valid,(float*)&src[tri.v[2]*stride+ofs]);
      const vfloat4 p3 = vfloat4::loadu(valid,(float*)&src[tri.v[3]*stride+ofs]);      
      const vbool4 left = u+v <= 1.0f;
      const vfloat4 Q0 = select(left,p0,p2);
      const vfloat4 Q1 = select(left,p1,p3);
      const vfloat4 Q2 = select(left,p3,p1);
      const vfloat4 U  = select(left,u,vfloat4(1.0f)-u);
      const vfloat4 V  = select(left,v,vfloat4(1.0f)-v);
      const vfloat4 W  = 1.0f-U-V;
      if (P) {
        vfloat4::storeu(valid,P+i,madd(W,Q0,madd(U,Q1,V*Q2)));
      }
      if (dPdu) { 
        assert(dPdu); vfloat4::storeu(valid,dPdu+i,select(left,Q1-Q0,Q0-Q1));
        assert(dPdv); vfloat4::storeu(valid,dPdv+i,select(left,Q2-Q0,Q0-Q2));
      }
      if (ddPdudu) { 
        assert(ddPdudu); vfloat4::storeu(valid,ddPdudu+i,vfloat4(zero));
        assert(ddPdvdv); vfloat4::storeu(valid,ddPdvdv+i,vfloat4(zero));
        assert(ddPdudv); vfloat4::storeu(valid,ddPdudv+i,vfloat4(zero));
      }
    }
  }
Пример #3
0
  void TriangleMesh::interpolate(unsigned primID, float u, float v, RTCBufferType buffer, float* P, float* dPdu, float* dPdv, size_t numFloats) 
  {
    /* test if interpolation is enabled */
#if defined(DEBUG)
    if ((parent->aflags & RTC_INTERPOLATE) == 0) 
      throw_RTCError(RTC_INVALID_OPERATION,"rtcInterpolate can only get called when RTC_INTERPOLATE is enabled for the scene");
#endif

    /* calculate base pointer and stride */
    assert((buffer >= RTC_VERTEX_BUFFER0 && buffer <= RTC_VERTEX_BUFFER1) ||
           (buffer >= RTC_USER_VERTEX_BUFFER0 && buffer <= RTC_USER_VERTEX_BUFFER1));
    const char* src = nullptr; 
    size_t stride = 0;
    if (buffer >= RTC_USER_VERTEX_BUFFER0) {
      src    = userbuffers[buffer&0xFFFF]->getPtr();
      stride = userbuffers[buffer&0xFFFF]->getStride();
    } else {
      src    = vertices[buffer&0xFFFF].getPtr();
      stride = vertices[buffer&0xFFFF].getStride();
    }

#if !defined(__MIC__)

    for (size_t i=0; i<numFloats; i+=4)
    {
      size_t ofs = i*sizeof(float);
      const float w = 1.0f-u-v;
      const Triangle& tri = triangle(primID);
      const vfloat4 p0 = vfloat4::loadu((float*)&src[tri.v[0]*stride+ofs]);
      const vfloat4 p1 = vfloat4::loadu((float*)&src[tri.v[1]*stride+ofs]);
      const vfloat4 p2 = vfloat4::loadu((float*)&src[tri.v[2]*stride+ofs]);
      const vbool4 valid = vint4(i)+vint4(step) < vint4(numFloats);
      if (P   ) vfloat4::storeu(valid,P+i,w*p0 + u*p1 + v*p2);
      if (dPdu) vfloat4::storeu(valid,dPdu+i,p1-p0);
      if (dPdv) vfloat4::storeu(valid,dPdv+i,p2-p0);
    }

#else

    for (size_t i=0; i<numFloats; i+=16) 
    {
      size_t ofs = i*sizeof(float);
      vbool16 mask = (i+16 > numFloats) ? (vbool16)(((unsigned int)1 << (numFloats-i))-1) : vbool16( true );
      const float w = 1.0f-u-v;
      const Triangle& tri = triangle(primID);
      const vfloat16 p0 = vfloat16::loadu(mask,(float*)&src[tri.v[0]*stride+ofs]);
      const vfloat16 p1 = vfloat16::loadu(mask,(float*)&src[tri.v[1]*stride+ofs]);
      const vfloat16 p2 = vfloat16::loadu(mask,(float*)&src[tri.v[2]*stride+ofs]);
      if (P   ) vfloat16::storeu_compact(mask,P+i,w*p0 + u*p1 + v*p2);
      if (dPdu) vfloat16::storeu_compact(mask,dPdu+i,p1-p0);
      if (dPdv) vfloat16::storeu_compact(mask,dPdv+i,p2-p0);
    }

#endif
  }
Пример #4
0
  void AccelN::occluded8 (const void* valid, Accel::Intersectors* This_in, RTCRay8& ray, IntersectContext* context) 
  {
    AccelN* This = (AccelN*)This_in->ptr;
    for (size_t i=0; i<This->validAccels.size(); i++) {
      This->validAccels[i]->intersectors.occluded8(valid,ray,context);
#if defined(__SSE2__) // FIXME: use higher ISA
      vbool4 valid0 = ((vbool4*)valid)[0];
      vbool4 hit0   = ((vint4*)ray.geomID)[0] != vint4(0);
      vbool4 valid1 = ((vbool4*)valid)[1];
      vbool4 hit1   = ((vint4*)ray.geomID)[1] != vint4(0);
      if (unlikely((none((valid0 & hit0) | (valid1 & hit1))))) break;
#endif
    }
  }
Пример #5
0
  void SubdivMeshAVX::interpolateN(const void* valid_i, const unsigned* primIDs, const float* u, const float* v, size_t numUVs, 
                                   RTCBufferType buffer, float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, size_t numFloats)
  {
#if defined(DEBUG)
    if ((parent->aflags & RTC_INTERPOLATE) == 0) 
      throw_RTCError(RTC_INVALID_OPERATION,"rtcInterpolate can only get called when RTC_INTERPOLATE is enabled for the scene");
#endif

    const int* valid = (const int*) valid_i;
    
    for (size_t i=0; i<numUVs;) 
    {
      if (i+4 >= numUVs)
      {
        vbool4 valid1 = vint4(int(i))+vint4(step) < vint4(numUVs);
        if (valid) valid1 &= vint4::loadu(&valid[i]) == vint4(-1);
        if (none(valid1)) { i+=4; continue; }
        interpolateHelper(valid1,vint4::loadu(&primIDs[i]),vfloat4::loadu(&u[i]),vfloat4::loadu(&v[i]),numUVs,buffer, 
                          P ? P+i : nullptr, 
                          dPdu ? dPdu+i : nullptr, 
                          dPdv ? dPdv+i : nullptr,
                          ddPdudu ? ddPdudu+i : nullptr,
                          ddPdvdv ? ddPdvdv+i : nullptr,
                          ddPdudv ? ddPdudv+i : nullptr,
                          numFloats);
        i+=4;
      }
      else
      {
        vbool8 valid1 = vint8(int(i))+vint8(step) < vint8(int(numUVs));
        if (valid) valid1 &= vint8::loadu(&valid[i]) == vint8(-1);
        if (none(valid1)) { i+=8; continue; }
        interpolateHelper(valid1,vint8::loadu(&primIDs[i]),vfloat8::loadu(&u[i]),vfloat8::loadu(&v[i]),numUVs,buffer, 
                          P ? P+i : nullptr, 
                          dPdu ? dPdu+i : nullptr, 
                          dPdv ? dPdv+i : nullptr,
                          ddPdudu ? ddPdudu+i : nullptr,
                          ddPdvdv ? ddPdvdv+i : nullptr,
                          ddPdudv ? ddPdudv+i : nullptr,
                          numFloats);
        i+=8;
      }
    }
    AVX_ZERO_UPPER();
  }
Пример #6
0
    size_t BVHNRotate<4>::rotate(NodeRef parentRef, size_t depth)
    {
      /*! nothing to rotate if we reached a leaf node. */
      if (parentRef.isBarrier()) return 0;
      if (parentRef.isLeaf()) return 0;
      Node* parent = parentRef.node();
      
      /*! rotate all children first */
      vint4 cdepth;
      for (size_t c=0; c<4; c++)
	cdepth[c] = (int)rotate(parent->child(c),depth+1);
      
      /* compute current areas of all children */
      vfloat4 sizeX = parent->upper_x-parent->lower_x;
      vfloat4 sizeY = parent->upper_y-parent->lower_y;
      vfloat4 sizeZ = parent->upper_z-parent->lower_z;
      vfloat4 childArea = sizeX*(sizeY + sizeZ) + sizeY*sizeZ;
      
      /*! get node bounds */
      BBox<vfloat4> child1_0,child1_1,child1_2,child1_3;
      parent->bounds(child1_0,child1_1,child1_2,child1_3);
      
      /*! Find best rotation. We pick a first child (child1) and a sub-child 
	(child2child) of a different second child (child2), and swap child1 
	and child2child. We perform the best such swap. */
      float bestArea = 0;
      size_t bestChild1 = -1, bestChild2 = -1, bestChild2Child = -1;
      for (size_t c2=0; c2<4; c2++)
      {
	/*! ignore leaf nodes as we cannot descent into them */
	if (parent->child(c2).isBarrier()) continue;
	if (parent->child(c2).isLeaf()) continue;
	Node* child2 = parent->child(c2).node();
	
	/*! transpose child bounds */
	BBox<vfloat4> child2c0,child2c1,child2c2,child2c3;
	child2->bounds(child2c0,child2c1,child2c2,child2c3);
	
	/*! put child1_0 at each child2 position */
	float cost00 = halfArea3f(merge(child1_0,child2c1,child2c2,child2c3));
	float cost01 = halfArea3f(merge(child2c0,child1_0,child2c2,child2c3));
	float cost02 = halfArea3f(merge(child2c0,child2c1,child1_0,child2c3));
	float cost03 = halfArea3f(merge(child2c0,child2c1,child2c2,child1_0));
	vfloat4 cost0 = vfloat4(cost00,cost01,cost02,cost03);
	vfloat4 min0 = vreduce_min(cost0);
	int pos0 = (int)__bsf(movemask(min0 == cost0));
	
	/*! put child1_1 at each child2 position */
	float cost10 = halfArea3f(merge(child1_1,child2c1,child2c2,child2c3));
	float cost11 = halfArea3f(merge(child2c0,child1_1,child2c2,child2c3));
	float cost12 = halfArea3f(merge(child2c0,child2c1,child1_1,child2c3));
	float cost13 = halfArea3f(merge(child2c0,child2c1,child2c2,child1_1));
	vfloat4 cost1 = vfloat4(cost10,cost11,cost12,cost13);
	vfloat4 min1 = vreduce_min(cost1);
	int pos1 = (int)__bsf(movemask(min1 == cost1));
	
	/*! put child1_2 at each child2 position */
	float cost20 = halfArea3f(merge(child1_2,child2c1,child2c2,child2c3));
	float cost21 = halfArea3f(merge(child2c0,child1_2,child2c2,child2c3));
	float cost22 = halfArea3f(merge(child2c0,child2c1,child1_2,child2c3));
	float cost23 = halfArea3f(merge(child2c0,child2c1,child2c2,child1_2));
	vfloat4 cost2 = vfloat4(cost20,cost21,cost22,cost23);
	vfloat4 min2 = vreduce_min(cost2);
	int pos2 = (int)__bsf(movemask(min2 == cost2));
	
	/*! put child1_3 at each child2 position */
	float cost30 = halfArea3f(merge(child1_3,child2c1,child2c2,child2c3));
	float cost31 = halfArea3f(merge(child2c0,child1_3,child2c2,child2c3));
	float cost32 = halfArea3f(merge(child2c0,child2c1,child1_3,child2c3));
	float cost33 = halfArea3f(merge(child2c0,child2c1,child2c2,child1_3));
	vfloat4 cost3 = vfloat4(cost30,cost31,cost32,cost33);
	vfloat4 min3 = vreduce_min(cost3);
	int pos3 = (int)__bsf(movemask(min3 == cost3));
	
	/*! find best other child */
	vfloat4 area0123 = vfloat4(extract<0>(min0),extract<0>(min1),extract<0>(min2),extract<0>(min3)) - vfloat4(childArea[c2]);
	int pos[4] = { pos0,pos1,pos2,pos3 };
	const size_t mbd = BVH4::maxBuildDepth;
	vbool4 valid = vint4(int(depth+1))+cdepth <= vint4(mbd); // only select swaps that fulfill depth constraints
	valid &= vint4(c2) != vint4(step);
	if (none(valid)) continue;
	size_t c1 = select_min(valid,area0123);
	float area = area0123[c1]; 
        if (c1 == c2) continue; // can happen if bounds are NANs
	
	/*! accept a swap when it reduces cost and is not swapping a node with itself */
	if (area < bestArea) {
	  bestArea = area;
	  bestChild1 = c1;
	  bestChild2 = c2;
	  bestChild2Child = pos[c1];
	}
      }
      
      /*! if we did not find a swap that improves the SAH then do nothing */
      if (bestChild1 == size_t(-1)) return 1+reduce_max(cdepth);
      
      /*! perform the best found tree rotation */
      Node* child2 = parent->child(bestChild2).node();
      BVH4::swap(parent,bestChild1,child2,bestChild2Child);
      parent->set(bestChild2,child2->bounds());
      BVH4::compact(parent);
      BVH4::compact(child2);
      
      /*! This returned depth is conservative as the child that was
       *  pulled up in the tree could have been on the critical path. */
      cdepth[bestChild1]++; // bestChild1 was pushed down one level
      return 1+reduce_max(cdepth); 
    }