Пример #1
0
static void ScaleErrorSignalNEON(int extended_filter_enabled,
                                 float normal_mu,
                                 float normal_error_threshold,
                                 float x_pow[PART_LEN1],
                                 float ef[2][PART_LEN1]) {
  const float mu = extended_filter_enabled ? kExtendedMu : normal_mu;
  const float error_threshold = extended_filter_enabled ?
      kExtendedErrorThreshold : normal_error_threshold;
  const float32x4_t k1e_10f = vdupq_n_f32(1e-10f);
  const float32x4_t kMu = vmovq_n_f32(mu);
  const float32x4_t kThresh = vmovq_n_f32(error_threshold);
  int i;
  // vectorized code (four at once)
  for (i = 0; i + 3 < PART_LEN1; i += 4) {
    const float32x4_t x_pow_local = vld1q_f32(&x_pow[i]);
    const float32x4_t ef_re_base = vld1q_f32(&ef[0][i]);
    const float32x4_t ef_im_base = vld1q_f32(&ef[1][i]);
    const float32x4_t xPowPlus = vaddq_f32(x_pow_local, k1e_10f);
    float32x4_t ef_re = vdivq_f32(ef_re_base, xPowPlus);
    float32x4_t ef_im = vdivq_f32(ef_im_base, xPowPlus);
    const float32x4_t ef_re2 = vmulq_f32(ef_re, ef_re);
    const float32x4_t ef_sum2 = vmlaq_f32(ef_re2, ef_im, ef_im);
    const float32x4_t absEf = vsqrtq_f32(ef_sum2);
    const uint32x4_t bigger = vcgtq_f32(absEf, kThresh);
    const float32x4_t absEfPlus = vaddq_f32(absEf, k1e_10f);
    const float32x4_t absEfInv = vdivq_f32(kThresh, absEfPlus);
    uint32x4_t ef_re_if = vreinterpretq_u32_f32(vmulq_f32(ef_re, absEfInv));
    uint32x4_t ef_im_if = vreinterpretq_u32_f32(vmulq_f32(ef_im, absEfInv));
    uint32x4_t ef_re_u32 = vandq_u32(vmvnq_u32(bigger),
                                     vreinterpretq_u32_f32(ef_re));
    uint32x4_t ef_im_u32 = vandq_u32(vmvnq_u32(bigger),
                                     vreinterpretq_u32_f32(ef_im));
    ef_re_if = vandq_u32(bigger, ef_re_if);
    ef_im_if = vandq_u32(bigger, ef_im_if);
    ef_re_u32 = vorrq_u32(ef_re_u32, ef_re_if);
    ef_im_u32 = vorrq_u32(ef_im_u32, ef_im_if);
    ef_re = vmulq_f32(vreinterpretq_f32_u32(ef_re_u32), kMu);
    ef_im = vmulq_f32(vreinterpretq_f32_u32(ef_im_u32), kMu);
    vst1q_f32(&ef[0][i], ef_re);
    vst1q_f32(&ef[1][i], ef_im);
  }
  // scalar code for the remaining items.
  for (; i < PART_LEN1; i++) {
    float abs_ef;
    ef[0][i] /= (x_pow[i] + 1e-10f);
    ef[1][i] /= (x_pow[i] + 1e-10f);
    abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);

    if (abs_ef > error_threshold) {
      abs_ef = error_threshold / (abs_ef + 1e-10f);
      ef[0][i] *= abs_ef;
      ef[1][i] *= abs_ef;
    }

    // Stepsize factor
    ef[0][i] *= mu;
    ef[1][i] *= mu;
  }
}
Пример #2
0
static float32x4_t vsqrtq_f32(float32x4_t s) {
  int i;
  float32x4_t x = vrsqrteq_f32(s);

  // Code to handle sqrt(0).
  // If the input to sqrtf() is zero, a zero will be returned.
  // If the input to vrsqrteq_f32() is zero, positive infinity is returned.
  const uint32x4_t vec_p_inf = vdupq_n_u32(0x7F800000);
  // check for divide by zero
  const uint32x4_t div_by_zero = vceqq_u32(vec_p_inf, vreinterpretq_u32_f32(x));
  // zero out the positive infinity results
  x = vreinterpretq_f32_u32(vandq_u32(vmvnq_u32(div_by_zero),
                                      vreinterpretq_u32_f32(x)));
  // from arm documentation
  // The Newton-Raphson iteration:
  //     x[n+1] = x[n] * (3 - d * (x[n] * x[n])) / 2)
  // converges to (1/√d) if x0 is the result of VRSQRTE applied to d.
  //
  // Note: The precision did not improve after 2 iterations.
  for (i = 0; i < 2; i++) {
    x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x);
  }
  // sqrt(s) = s * 1/sqrt(s)
  return vmulq_f32(s, x);;
}
Пример #3
0
void test_vmvnQu32 (void)
{
  uint32x4_t out_uint32x4_t;
  uint32x4_t arg0_uint32x4_t;

  out_uint32x4_t = vmvnq_u32 (arg0_uint32x4_t);
}
Пример #4
0
inline uint32x4_t  vmvnq(const uint32x4_t  & v) { return vmvnq_u32(v); }
Пример #5
0
static void OverdriveAndSuppressNEON(AecCore* aec,
                                     float hNl[PART_LEN1],
                                     const float hNlFb,
                                     float efw[2][PART_LEN1]) {
  int i;
  const float32x4_t vec_hNlFb = vmovq_n_f32(hNlFb);
  const float32x4_t vec_one = vdupq_n_f32(1.0f);
  const float32x4_t vec_minus_one = vdupq_n_f32(-1.0f);
  const float32x4_t vec_overDriveSm = vmovq_n_f32(aec->overDriveSm);

  // vectorized code (four at once)
  for (i = 0; i + 3 < PART_LEN1; i += 4) {
    // Weight subbands
    float32x4_t vec_hNl = vld1q_f32(&hNl[i]);
    const float32x4_t vec_weightCurve = vld1q_f32(&WebRtcAec_weightCurve[i]);
    const uint32x4_t bigger = vcgtq_f32(vec_hNl, vec_hNlFb);
    const float32x4_t vec_weightCurve_hNlFb = vmulq_f32(vec_weightCurve,
                                                        vec_hNlFb);
    const float32x4_t vec_one_weightCurve = vsubq_f32(vec_one, vec_weightCurve);
    const float32x4_t vec_one_weightCurve_hNl = vmulq_f32(vec_one_weightCurve,
                                                          vec_hNl);
    const uint32x4_t vec_if0 = vandq_u32(vmvnq_u32(bigger),
                                         vreinterpretq_u32_f32(vec_hNl));
    const float32x4_t vec_one_weightCurve_add =
        vaddq_f32(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl);
    const uint32x4_t vec_if1 =
        vandq_u32(bigger, vreinterpretq_u32_f32(vec_one_weightCurve_add));

    vec_hNl = vreinterpretq_f32_u32(vorrq_u32(vec_if0, vec_if1));

    {
      const float32x4_t vec_overDriveCurve =
          vld1q_f32(&WebRtcAec_overDriveCurve[i]);
      const float32x4_t vec_overDriveSm_overDriveCurve =
          vmulq_f32(vec_overDriveSm, vec_overDriveCurve);
      vec_hNl = vpowq_f32(vec_hNl, vec_overDriveSm_overDriveCurve);
      vst1q_f32(&hNl[i], vec_hNl);
    }

    // Suppress error signal
    {
      float32x4_t vec_efw_re = vld1q_f32(&efw[0][i]);
      float32x4_t vec_efw_im = vld1q_f32(&efw[1][i]);
      vec_efw_re = vmulq_f32(vec_efw_re, vec_hNl);
      vec_efw_im = vmulq_f32(vec_efw_im, vec_hNl);

      // Ooura fft returns incorrect sign on imaginary component. It matters
      // here because we are making an additive change with comfort noise.
      vec_efw_im = vmulq_f32(vec_efw_im, vec_minus_one);
      vst1q_f32(&efw[0][i], vec_efw_re);
      vst1q_f32(&efw[1][i], vec_efw_im);
    }
  }

  // scalar code for the remaining items.
  for (; i < PART_LEN1; i++) {
    // Weight subbands
    if (hNl[i] > hNlFb) {
      hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
               (1 - WebRtcAec_weightCurve[i]) * hNl[i];
    }

    hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);

    // Suppress error signal
    efw[0][i] *= hNl[i];
    efw[1][i] *= hNl[i];

    // Ooura fft returns incorrect sign on imaginary component. It matters
    // here because we are making an additive change with comfort noise.
    efw[1][i] *= -1;
  }
}