Пример #1
0
void CameraCalibration::DrawRectifiedImage(const int c_idx, const int img_idx) const
{

	view[c_idx]->ActivateScissorAndClear();		
	Mat img = imread(data_path+"/"+calib_params[c_idx].ImageList.at(img_idx), 0);		
	
	Mat canvas(ImageSize.width, ImageSize.height, CV_8UC3);
	Mat rimg;
	
	if(!c_idx)
	{		
		remap(img, rimg, rect_params->LeftRMAP[0], rect_params->LeftRMAP[1], CV_INTER_LINEAR);
		cvtColor(rimg, canvas, CV_GRAY2RGB);				
		Rect vroi(cvRound(rect_params->LeftRoi.x), cvRound(rect_params->LeftRoi.y),
				  cvRound(rect_params->LeftRoi.width), cvRound(rect_params->LeftRoi.height)); 
		rectangle(canvas, vroi, Scalar(0,0,255), 3, 8);
		
	}else
	{
		remap(img, rimg, rect_params->RightRMAP[0], rect_params->RightRMAP[1], CV_INTER_LINEAR);
		cvtColor(rimg, canvas, CV_GRAY2RGB);				
		Rect vroi(cvRound(rect_params->RightRoi.x), cvRound(rect_params->RightRoi.y),
			cvRound(rect_params->RightRoi.width), cvRound(rect_params->RightRoi.height)); 
		rectangle(canvas, vroi, Scalar(0,0,255), 3, 8);
	}

	if(!rect_params->isVerticalStereo)
		for(int j=0; j<canvas.rows; j+=16)
			line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
	else
		for(int j=0; j<canvas.cols; j+=16)
			line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
		
	gl_img_tex->Upload(canvas.ptr<unsigned char>(), GL_RGB, GL_UNSIGNED_BYTE);
	gl_img_tex->RenderToViewportFlipY();

}
Пример #2
0
void StereoCalib(const vector<string>& imagelist, Size boardSize, bool useCalibrated=true, bool showRectified=true)
{
    if( imagelist.size() % 2 != 0 )
    {
        cout << "Error: the image list contains odd (non-even) number of elements\n";
        return;
    }
    printf("board size: %d x %d", boardSize.width, boardSize.height);
    bool displayCorners = true;
    const int maxScale = 2;
    const float squareSize = 1.f;  // Set this to your actual square size
    // ARRAY AND VECTOR STORAGE:

    vector<vector<Point2f> > imagePoints[2];
    vector<vector<Point3f> > objectPoints;
    Size imageSize;

    int i, j, k, nimages = (int)imagelist.size()/2;

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    vector<string> goodImageList;

    for( i = j = 0; i < nimages; i++ )
    {
        for( k = 0; k < 2; k++ )
        {
            const string& filename = imagelist[i*2+k];
            Mat img = imread(filename, 0);
            if(img.empty())
                break;
            if( imageSize == Size() )
                imageSize = img.size();
            else if( img.size() != imageSize )
            {
                cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
                break;
            }
            bool found = false;
            vector<Point2f>& corners = imagePoints[k][j];
            for( int scale = 1; scale <= maxScale; scale++ )
            {
                Mat timg;
                if( scale == 1 )
                    timg = img;
                else
                    resize(img, timg, Size(), scale, scale);
                found = findChessboardCorners(timg, boardSize, corners,
                    CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE);
                if( found )
                {
                    if( scale > 1 )
                    {
                        Mat cornersMat(corners);
                        cornersMat *= 1./scale;
                    }
                    break;
                }
            }
            if( displayCorners )
            {
                cout << filename << endl;
                Mat cimg, cimg1;
                cvtColor(img, cimg, CV_GRAY2BGR);
                drawChessboardCorners(cimg, boardSize, corners, found);
                double sf = 640./MAX(img.rows, img.cols);
                resize(cimg, cimg1, Size(), sf, sf);
                imshow("corners", cimg1);
                char c = (char)waitKey(500);
                if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
                    exit(-1);
            }
            else
                putchar('.');
            if( !found )
                break;
            cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
                         TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
                                      30, 0.01));
        }
        if( k == 2 )
        {
            goodImageList.push_back(imagelist[i*2]);
            goodImageList.push_back(imagelist[i*2+1]);
            j++;
        }
    }
    cout << j << " pairs have been successfully detected.\n";
    nimages = j;
    if( nimages < 2 )
    {
        cout << "Error: too little pairs to run the calibration\n";
        return;
    }

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    objectPoints.resize(nimages);

    for( i = 0; i < nimages; i++ )
    {
        for( j = 0; j < boardSize.height; j++ )
            for( k = 0; k < boardSize.width; k++ )
                objectPoints[i].push_back(Point3f(j*squareSize, k*squareSize, 0));
    }

    cout << "Running stereo calibration ...\n";

    Mat cameraMatrix[2], distCoeffs[2];
    cameraMatrix[0] = Mat::eye(3, 3, CV_64F);
    cameraMatrix[1] = Mat::eye(3, 3, CV_64F);
    Mat R, T, E, F;

    double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
                    cameraMatrix[0], distCoeffs[0],
                    cameraMatrix[1], distCoeffs[1],
                    imageSize, R, T, E, F,
                    TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5),
                    CV_CALIB_FIX_ASPECT_RATIO +
                    CV_CALIB_ZERO_TANGENT_DIST +
                    //CV_CALIB_SAME_FOCAL_LENGTH +
                    CV_CALIB_RATIONAL_MODEL +
                    CV_CALIB_FIX_K3 + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5);
    cout << "done with RMS error=" << rms << endl;

// CALIBRATION QUALITY CHECK
// because the output fundamental matrix implicitly
// includes all the output information,
// we can check the quality of calibration using the
// epipolar geometry constraint: m2^t*F*m1=0
    double err = 0;
    int npoints = 0;
    vector<Vec3f> lines[2];
    for( i = 0; i < nimages; i++ )
    {
        int npt = (int)imagePoints[0][i].size();
        Mat imgpt[2];
        for( k = 0; k < 2; k++ )
        {
            imgpt[k] = Mat(imagePoints[k][i]);
            undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
            computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
        }
        for( j = 0; j < npt; j++ )
        {
            double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
                                imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
                           fabs(imagePoints[1][i][j].x*lines[0][j][0] +
                                imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
            err += errij;
        }
        npoints += npt;
    }
    cout << "average reprojection err = " <<  err/npoints << endl;

    // save intrinsic parameters
    FileStorage fs("calib/intrinsics.yml", CV_STORAGE_WRITE);
    if( fs.isOpened() )
    {
        fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
            "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
        fs.release();
    }
    else
        cout << "Error: can not save the intrinsic parameters\n";

    Mat R1, R2, P1, P2, Q;
    Rect validRoi[2];

    stereoRectify(cameraMatrix[0], distCoeffs[0],
                  cameraMatrix[1], distCoeffs[1],
                  imageSize, R, T, R1, R2, P1, P2, Q,
                  CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);

    fs.open("calib/extrinsics.yml", CV_STORAGE_WRITE);
    if( fs.isOpened() )
    {
        fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
        fs.release();
    }
    else
        cout << "Error: can not save the intrinsic parameters\n";

    // OpenCV can handle left-right
    // or up-down camera arrangements
    bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));

// COMPUTE AND DISPLAY RECTIFICATION
    if( !showRectified )
        return;

    Mat rmap[2][2];
// IF BY CALIBRATED (BOUGUET'S METHOD)
    if( useCalibrated )
    {
        // we already computed everything
    }
// OR ELSE HARTLEY'S METHOD
    else
 // use intrinsic parameters of each camera, but
 // compute the rectification transformation directly
 // from the fundamental matrix
    {
        vector<Point2f> allimgpt[2];
        for( k = 0; k < 2; k++ )
        {
            for( i = 0; i < nimages; i++ )
                std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
        }
        F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
        Mat H1, H2;
        stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);

        R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
        R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
        P1 = cameraMatrix[0];
        P2 = cameraMatrix[1];
    }

    //Precompute maps for cv::remap()
    initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
    initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);

    Mat canvas;
    double sf;
    int w, h;
    if( !isVerticalStereo )
    {
        sf = 600./MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h, w*2, CV_8UC3);
    }
    else
    {
        sf = 300./MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h*2, w, CV_8UC3);
    }

    for( i = 0; i < nimages; i++ )
    {
        for( k = 0; k < 2; k++ )
        {
            Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;
            remap(img, rimg, rmap[k][0], rmap[k][1], CV_INTER_LINEAR);
            cvtColor(rimg, cimg, CV_GRAY2BGR);
            Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
            resize(cimg, canvasPart, canvasPart.size(), 0, 0, CV_INTER_AREA);
            if( useCalibrated )
            {
                Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
                          cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
                rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);
            }
        }

        if( !isVerticalStereo )
            for( j = 0; j < canvas.rows; j += 16 )
                line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
        else
            for( j = 0; j < canvas.cols; j += 16 )
                line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
        imshow("rectified", canvas);
        char c = (char)waitKey();
        if( c == 27 || c == 'q' || c == 'Q' )
            break;
    }
}
int main(int argc, char *argv[]) {
    gflags::ParseCommandLineFlags(&argc, &argv, true);

    cv::vector<cv::Mat> lefts, rights;
    const cv::Size patternSize(9, 6);
    cv::vector<cv::vector<cv::Point3f>> worldPoints;
    cv::vector<cv::vector<cv::vector<cv::Point2f>>> imagePoints(2);

    for (size_t i = 0; i < 2; i++)
        imagePoints[i].resize(FLAGS_size);

    loadImages(lefts, rights, FLAGS_size);
    FLAGS_size = findChessboards(lefts, rights, imagePoints, patternSize, FLAGS_size);
    std::cout << "number of correct files = " << FLAGS_size << std::endl;
    setWorldPoints(worldPoints, patternSize, 0.024, FLAGS_size);

    std::cout << "calibrate stereo cameras" << std::endl;
    cv::vector<cv::Mat> cameraMatrix(2);
    cv::vector<cv::Mat> distCoeffs(2);
    cameraMatrix[0] = cv::Mat::eye(3, 3, CV_64FC1);
    cameraMatrix[1] = cv::Mat::eye(3, 3, CV_64FC1);
    distCoeffs[0] = cv::Mat(8, 1, CV_64FC1);
    distCoeffs[1] = cv::Mat(8, 1, CV_64FC1);
    cv::Mat R, T, E, F;

    double rms = stereoCalibrate(
            worldPoints, imagePoints[0], imagePoints[1], cameraMatrix[0],
            distCoeffs[0], cameraMatrix[1], distCoeffs[1], lefts[0].size(),
            R, T, E, F, cv::TermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 100, 1e-5),
            CV_CALIB_FIX_ASPECT_RATIO +
            CV_CALIB_ZERO_TANGENT_DIST +
            CV_CALIB_SAME_FOCAL_LENGTH +
            CV_CALIB_RATIONAL_MODEL +
            CV_CALIB_FIX_K3 + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5);
    std::cout << "done with RMS error = " << rms << std::endl;

    double err = 0;
    int npoints = 0;
    for (int i = 0; i < FLAGS_size; i++) {
        int size = (int) imagePoints[0][i].size();
        cv::vector<cv::Vec3f> lines[2];
        cv::Mat imgpt[2];
        for (int k = 0; k < 2; k++) {
            imgpt[k] = cv::Mat(imagePoints[k][i]);
            cv::undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k],
                                cv::Mat(), cameraMatrix[k]);
            cv::computeCorrespondEpilines(imgpt[k], k + 1, F, lines[k]);
        }

        for (int j = 0; j < size; j++) {
            double errij =
                    std::fabs(imagePoints[0][i][j].x * lines[1][j][0] +
                              imagePoints[0][i][j].y * lines[1][j][1] +
                              lines[1][j][2]) +
                    std::fabs(imagePoints[1][i][j].x * lines[0][j][0] +
                              imagePoints[1][i][j].y * lines[0][j][1] +
                              lines[0][j][2]);
            err += errij;
        }
        npoints += size;
    }
    std::cout << "average reprojection error = " << err / npoints << std::endl;

    cv::Mat R1, R2, P1, P2, Q;
    cv::Rect validROI[2];
    stereoRectify(cameraMatrix[0], distCoeffs[0], cameraMatrix[1],
                  distCoeffs[1], lefts[0].size(), R, T, R1, R2, P1, P2, Q,
                  cv::CALIB_ZERO_DISPARITY, 1, lefts[0].size(),
                  &validROI[0], &validROI[1]);

    {
        cv::FileStorage fs(FLAGS_intrinsics.c_str(), cv::FileStorage::WRITE);
        if (fs.isOpened()) {
            fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0]
                << "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
            fs.release();
        }
    }

    cv::Mat rmap[2][2];
    cv::initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1,
                                lefts[0].size(),
                                CV_16SC2,
                                rmap[0][0], rmap[0][1]);
    cv::initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2,
                                lefts[0].size(),
                                CV_16SC2,
                                rmap[1][0], rmap[1][1]);

    {
        cv::FileStorage fs(FLAGS_extrinsics.c_str(), cv::FileStorage::WRITE);
        if (fs.isOpened()) {
            fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2
               << "P1" << P1 << "P2" << P2 << "Q" << Q
               << "V1" << validROI[0] << "V2" << validROI[1];
            fs.release();
        }
    }

    cv::Mat canvas;
    double sf;
    int w, h;

    sf = 600. / MAX(lefts[0].size().width, lefts[0].size().height);
    w = cvRound(lefts[0].size().width * sf);
    h = cvRound(lefts[0].size().height * sf);
    canvas.create(h, w * 2, CV_8UC3);

    cv::namedWindow("Rectified", CV_WINDOW_AUTOSIZE | CV_WINDOW_FREERATIO);

    for (int i = 0; i < FLAGS_size; i++) {
        for (int k = 0; k < 2; k++) {
            if (k == 0) {
                cv::Mat img = lefts[i].clone(), rimg, cimg;
                cv::remap(img, rimg, rmap[k][0], rmap[k][1], CV_INTER_LINEAR);
                cv::cvtColor(rimg, cimg, CV_GRAY2BGR);
                cv::Mat canvasPart = canvas(cv::Rect(w * k, 0, w, h));
                cv::resize(cimg, canvasPart, canvasPart.size(), 0, 0, CV_INTER_AREA);

                cv::Rect vroi(cvRound(validROI[k].x * sf),
                              cvRound(validROI[k].y * sf),
                              cvRound(validROI[k].width * sf),
                              cvRound(validROI[k].height * sf));
                cv::rectangle(canvasPart, vroi, cv::Scalar(0, 0, 255), 3, 8);
            } else {
                cv::Mat img = rights[i].clone(), rimg, cimg;
                cv::remap(img, rimg, rmap[k][0], rmap[k][1], CV_INTER_LINEAR);
                cvtColor(rimg, cimg, CV_GRAY2BGR);
                cv::Mat canvasPart = canvas(cv::Rect(w * k, 0, w, h));
                cv::resize(cimg, canvasPart, canvasPart.size(), 0, 0, CV_INTER_AREA);

                cv::Rect vroi(cvRound(validROI[k].x * sf),
                              cvRound(validROI[k].y * sf),
                              cvRound(validROI[k].width * sf),
                              cvRound(validROI[k].height * sf));
                cv::rectangle(canvasPart, vroi, cv::Scalar(0, 0, 255), 3, 8);
            }
        }

        for (int j = 0; j < canvas.rows; j += 16)
            cv::line(canvas, cv::Point(0, j), cv::Point(canvas.cols, j),
                     cv::Scalar(0, 255, 0), 1, 8);

        cv::imshow("Rectified", canvas);

        if (cv::waitKey(0) == 'q')
            break;
    }

    cv::destroyAllWindows();
    return 0;
}