MStatus SwirlDeformer::deform( MDataBlock& block, MItGeometry &iter,
												const MMatrix &localToWorld, unsigned int geomIndex )
{
MStatus stat;
	
MDataHandle envData = block.inputValue( envelope );
float env = envData.asFloat();	
if( env == 0.0 ) // Deformer has no effect
	return MS::kSuccess;

MDataHandle matData = block.inputValue( deformSpace );
MMatrix mat = matData.asMatrix();
MMatrix invMat = mat.inverse();

MDataHandle startDistHnd = block.inputValue( startDist );
double startDist = startDistHnd.asDouble();	

MDataHandle endDistHnd = block.inputValue( endDist );
double endDist = endDistHnd.asDouble();	

MPoint pt;
float weight;
double dist;
double ang;
double cosAng;
double sinAng;
double x;
double distFactor;
for( iter.reset(); !iter.isDone(); iter.next() ) 
	{
	weight = weightValue( block, geomIndex, iter.index() );
	if( weight == 0.0f )
		continue;

	pt = iter.position();
	pt *= invMat;

	dist = sqrt( pt.x * pt.x + pt.z * pt.z );
	if( dist < startDist || dist > endDist )
		continue;

	distFactor = 1 - ((dist - startDist) / (endDist - startDist));

	ang = distFactor * M_PI * 2.0 * env * weight;
	if( ang == 0.0 )
		continue;

	cosAng = cos( ang );
	sinAng = sin( ang );
	x = pt.x * cosAng - pt.z * sinAng;
	pt.z = pt.x * sinAng + pt.z * cosAng;
	pt.x = x;

	pt *= mat;
	
	iter.setPosition( pt );
	}

return stat;
}
Пример #2
0
MStatus
offset::deform( MDataBlock& block,
				MItGeometry& iter,
				const MMatrix& /*m*/,
				unsigned int multiIndex)
//
// Method: deform
//
// Description:   Deform the point with a squash algorithm
//
// Arguments:
//   block		: the datablock of the node
//	 iter		: an iterator for the geometry to be deformed
//   m    		: matrix to transform the point into world space
//	 multiIndex : the index of the geometry that we are deforming
//
//
{
	MStatus returnStatus;
	
	// Envelope data from the base class.
	// The envelope is simply a scale factor.
	//
	MDataHandle envData = block.inputValue(envelope, &returnStatus);
	if (MS::kSuccess != returnStatus) return returnStatus;
	float env = envData.asFloat();	

	// Get the matrix which is used to define the direction and scale
	// of the offset.
	//
	MDataHandle matData = block.inputValue(offsetMatrix, &returnStatus );
	if (MS::kSuccess != returnStatus) return returnStatus;
	MMatrix omat = matData.asMatrix();
	MMatrix omatinv = omat.inverse();

	// iterate through each point in the geometry
	//
	for ( ; !iter.isDone(); iter.next()) {
		MPoint pt = iter.position();
		pt *= omatinv;
		
		float weight = weightValue(block,multiIndex,iter.index());
		
		// offset algorithm
		//
		pt.y = pt.y + env*weight;
		//
		// end of offset algorithm

		pt *= omat;
		iter.setPosition(pt);
	}
	return returnStatus;
}
Пример #3
0
MStatus RippleDeformer::deform(MDataBlock& dataBlock,
								MItGeometry& itGeo,
								const MMatrix& localToWorldMatrix,
								unsigned int geomIndex)
{
	MStatus status;
	
	//get attriubtes as a datahandle
	float env = dataBlock.inputValue(envelope).asFloat();
	float amplitude = dataBlock.inputValue(aAmplitude).asFloat();
	float displace = dataBlock.inputValue(aDisplace).asFloat();
	//get the mesh 
	
	//retrieve the handle to the input attribute
	MArrayDataHandle hInput = dataBlock.outputArrayValue(input, &status);
	CHECK_MSTATUS_AND_RETURN_IT(status);
	//get the input array index handle
	status = hInput.jumpToElement(geomIndex);
	//get the handle of geomIndex attribute
	MDataHandle hInputElement = hInput.outputValue(&status);
	//Get the MObject of the input geometry of geomindex
	MObject oInputGeom = hInputElement.child(inputGeom).asMesh();

	MFnMesh fnMesh(oInputGeom, &status);
	CHECK_MSTATUS_AND_RETURN_IT(status);
	if (oInputGeom.isNull())
	{
		return MS::kSuccess;
	}

	MFloatVectorArray normals;
	fnMesh.getVertexNormals(false, normals);

	MPoint pointPos;
	float weight;
	
	for (; !itGeo.isDone(); itGeo.next())
	{
		//get current point position
		pointPos = itGeo.position();
		weight = weightValue(dataBlock, geomIndex, itGeo.index());
		pointPos.x = pointPos.x + sin(itGeo.index() + displace) * amplitude * normals[itGeo.index()].x * weight * env;
		pointPos.y = pointPos.y + sin(itGeo.index() + displace) * amplitude * normals[itGeo.index()].y * weight * env;
		pointPos.z = pointPos.z + sin(itGeo.index() + displace) * amplitude * normals[itGeo.index()].z * weight * env;
		//setPosition
		itGeo.setPosition(pointPos);
	}	
	
	return MS::kSuccess;
}
Пример #4
0
//
//      Deform computation
//
MStatus jhMeshBlur::deform( MDataBlock& block,MItGeometry& iter,const MMatrix& m,unsigned int multiIndex)
{
    MStatus returnStatus;

    // Envelope
    float envData = block.inputValue(envelope, &returnStatus).asFloat();
	CHECK_MSTATUS(returnStatus);

    if(envData == 0)
		return MS::kFailure;

    /*
     VARIABLES
     */
    //float factor = block.inputValue(aShapeFactor, &returnStatus).asFloat();
    float fStrength = block.inputValue(aStrength, &returnStatus).asFloat();
	CHECK_MSTATUS(returnStatus);
	
	if (fStrength == 0)
		return MS::kFailure;
	
    float fThreshold = block.inputValue(aTreshhold, &returnStatus).asFloat();
	CHECK_MSTATUS(returnStatus);
    float fW = 0.0f; // weight
    float fDistance;
    fStrength *= envData;

    double dKracht = block.inputValue(aInterpPower, &returnStatus).asDouble();
	CHECK_MSTATUS(returnStatus);
    double dDotProduct;  // Dotproduct of the point

    bool bTweakblur = block.inputValue(aTweakBlur, &returnStatus).asBool();
	CHECK_MSTATUS(returnStatus);
	
    bool bQuad = block.inputValue(aQuadInterp, &returnStatus).asBool();
	CHECK_MSTATUS(returnStatus);
	
	MTime inTime = block.inputValue(aTime).asTime();
    int nTijd = (int)inTime.as(MTime::kFilm);


    MFloatVectorArray currentNormals;   // normals of mesh
    MFnPointArrayData fnPoints;         // help converting to MPointArrays
    MFloatVector dirVector;             // direction vector of the point
    MFloatVector normal;                // normal of the point
    MPointArray savedPoints;            // save all point before edited
    MMatrix matInv = m.inverse();       // inversed matrix
    MPoint ptA;                         // current point (iter mesh)
    MPoint ptB;                         // previous point (iter mesh)
    MPoint ptC;                         // mesh before previous point (iter mesh)

    // get node, use node to get inputGeom, use inputGeom to get mesh data, use mesh data to get normal data
    MFnDependencyNode nodeFn(this->thisMObject());

    MPlug inGeomPlug(nodeFn.findPlug(this->inputGeom,true));
    MObject inputObject(inGeomPlug.asMObject());
    MFnMesh inMesh(inputObject);

    inMesh.getVertexNormals(true, currentNormals);

    // get the previous mesh data
    MPlug oldMeshPlug = nodeFn.findPlug(MString("oldMesh"));
    MPlug oldMeshPositionsAPlug = oldMeshPlug.elementByLogicalIndex((multiIndex*4) + 0);
    MPlug oldMeshPositionsBPlug = oldMeshPlug.elementByLogicalIndex((multiIndex*4) + 1);
    MPlug oldMeshPositionsCPlug = oldMeshPlug.elementByLogicalIndex((multiIndex*4) + 2); // cache for tweak mode
    MPlug oldMeshPositionsDPlug = oldMeshPlug.elementByLogicalIndex((multiIndex*4) + 3); // cache for tweak mode

    // convert to MPointArrays
    MObject objOldMeshA;
    MObject objOldMeshB;
    MObject objOldMeshC; // cache
    MObject objOldMeshD; // cache

    oldMeshPositionsAPlug.getValue(objOldMeshA);
    oldMeshPositionsBPlug.getValue(objOldMeshB);
    oldMeshPositionsCPlug.getValue(objOldMeshC); // cache
    oldMeshPositionsDPlug.getValue(objOldMeshD); // cache

    fnPoints.setObject(objOldMeshA);
    MPointArray oldMeshPositionsA = fnPoints.array();
    
    fnPoints.setObject(objOldMeshB);
    MPointArray oldMeshPositionsB = fnPoints.array();
    
    fnPoints.setObject(objOldMeshC);
    MPointArray oldMeshPositionsC = fnPoints.array(); // cache
    
    fnPoints.setObject(objOldMeshD);
    MPointArray oldMeshPositionsD = fnPoints.array(); // cache

    
    
    // If mesh position variables are empty,fill them with default values
    if(oldMeshPositionsA.length() == 0 || nTijd <= 1){
        iter.allPositions(oldMeshPositionsA);

        for(int i=0; i < oldMeshPositionsA.length(); i++)
        {
            // convert to world
            oldMeshPositionsA[i] = oldMeshPositionsA[i] * m;
        }
		
        oldMeshPositionsB.copy(oldMeshPositionsA);
        oldMeshPositionsC.copy(oldMeshPositionsA); // cache
        oldMeshPositionsD.copy(oldMeshPositionsA); // cache
    }
	
	// get back old date again
	if (bTweakblur == true) { // restore cache
		oldMeshPositionsA.copy(oldMeshPositionsC);
		oldMeshPositionsB.copy(oldMeshPositionsD);
	}
    
    
    iter.allPositions(savedPoints);
    for(int i=0; i < savedPoints.length(); i++)
    {
        // convert points to world points
        savedPoints[i] = savedPoints[i] * m;
    }

    // Actual Iteration through points
    for (; !iter.isDone(); iter.next()){
        // get current position
        ptA = iter.position();
        // get old positions
        ptB = oldMeshPositionsA[iter.index()] * matInv;
        ptC = oldMeshPositionsB[iter.index()] * matInv;

        fDistance = ptA.distanceTo(ptB);
        fW = weightValue(block,multiIndex,iter.index());


        if (fDistance * (fStrength*fW) < fThreshold && fThreshold > 0){
            iter.setPosition(ptA);
        } else {
            // aim/direction vector to calculate strength
            dirVector = (ptA - ptB); // (per punt)
            dirVector.normalize();

            normal = currentNormals[iter.index()];

            dDotProduct = normal.x * dirVector.x + normal.y * dirVector.y + normal.z * dirVector.z;

            
            if(bQuad == true){
                MVector vecA(((ptB - ptC) + (ptA - ptB)) / 2);
                vecA.normalize();

                MPoint hiddenPt(ptB + (vecA * fDistance) * dKracht);
                ptA = quadInterpBetween(ptB, hiddenPt, ptA, (1 - fStrength * fW) + (linearInterp(dDotProduct, -1, 1) * (fStrength * fW) ) );
            } else {
                MPoint halfway = (ptA - ptB) * 0.5;
                MPoint offset = halfway * dDotProduct * (fStrength*fW);
                ptA = ptA - ((halfway * (fStrength*fW)) - offset); // + (offset * strength);
            }
            // set new value

            iter.setPosition(ptA);
        }
    }
    if(bTweakblur == false){
        oldMeshPositionsD.copy(oldMeshPositionsB);
        oldMeshPositionsC.copy(oldMeshPositionsA);
        oldMeshPositionsB.copy(oldMeshPositionsA);
        oldMeshPositionsA.copy(savedPoints);

        // Save back to plugs
        objOldMeshA = fnPoints.create(oldMeshPositionsA);
        objOldMeshB = fnPoints.create(oldMeshPositionsB);
        objOldMeshC = fnPoints.create(oldMeshPositionsC);
        objOldMeshD = fnPoints.create(oldMeshPositionsD);
		
        oldMeshPositionsAPlug.setValue(objOldMeshA);
        oldMeshPositionsBPlug.setValue(objOldMeshB);
        oldMeshPositionsCPlug.setValue(objOldMeshC);
        oldMeshPositionsDPlug.setValue(objOldMeshD);
    }
    
    return returnStatus;
}
Пример #5
0
MStatus mapBlendShape::deform(MDataBlock& data, 
							  MItGeometry& itGeo, 
							  const MMatrix& localToWorldMatrix, 
							  unsigned int geomIndex)
{
    MStatus status;

	// get the blendMesh 
	MDataHandle hBlendMesh = data.inputValue( aBlendMesh, &status );
    CHECK_MSTATUS_AND_RETURN_IT( status );
    MObject oBlendMesh = hBlendMesh.asMesh();
    if (oBlendMesh.isNull())
    {
        return MS::kSuccess;
    }

	MFnMesh fnMesh( oBlendMesh, &status );
    CHECK_MSTATUS_AND_RETURN_IT( status );
    MPointArray blendPoints;
    fnMesh.getPoints( blendPoints );

	// get the dirty flags for the input and blendMap
	bool inputGeomClean = data.isClean(inputGeom, &status);
	bool blendMapClean  = data.isClean(aBlendMap, &status);

	if (!blendMapClean) {
		lumValues.reserve(itGeo.count());
	}
	
	MDoubleArray uCoords, vCoords;
	MVectorArray resultColors;
	MDoubleArray resultAlphas;

	uCoords.setLength(1);
	vCoords.setLength(1);

	bool hasTextureNode;
	bool useBlendMap = data.inputValue(aUseBlendMap).asBool();
	float blendMapMultiplier = data.inputValue(aBlendMapMultiplier).asFloat();

	if (blendMapMultiplier<=0.0) {
		useBlendMap = false;
	}

	if (useBlendMap) {
		hasTextureNode = MDynamicsUtil::hasValidDynamics2dTexture(thisMObject(), aBlendMap);
	}

	float env = data.inputValue(envelope).asFloat();
    MPoint point;
	float2 uvPoint;
    float w, lum;

    for ( ; !itGeo.isDone(); itGeo.next() )
    {
		lum = 1.0;

		if (useBlendMap) {
			if (!blendMapClean) {
				fnMesh.getUVAtPoint(blendPoints[itGeo.index()], uvPoint);

				if (hasTextureNode) {
					uCoords[0] = uvPoint[0];
					vCoords[0] = uvPoint[1];
					MDynamicsUtil::evalDynamics2dTexture(thisMObject(), aBlendMap, uCoords, vCoords, &resultColors, &resultAlphas);
					lum = float(resultColors[0][0]);
				}
				lumValues[itGeo.index()] = lum;
			} else {
				lum = lumValues[itGeo.index()];
			}
		}

        point = itGeo.position();
        w = weightValue( data, geomIndex, itGeo.index() );
        point += (blendPoints[itGeo.index()] - point) * env * w * lum * blendMapMultiplier;
        itGeo.setPosition( point );
    }

	return MS::kSuccess;
}
Пример #6
0
MStatus PushDeformer::deform(MDataBlock& dataBlock,
								MItGeometry& itGeo,
								const MMatrix& localToWorldMatrix,
								unsigned int geomIndex)
{
	MStatus status;
	//get attribute handles
	double bulgeAmount = dataBlock.inputValue(aAmount, &status).asDouble();
	CHECK_MSTATUS_AND_RETURN_IT(status);
	m_taskData.envelope = dataBlock.inputValue(envelope, &status).asFloat();
	CHECK_MSTATUS_AND_RETURN_IT(status);
	bool useStressV = dataBlock.inputValue(aUseStress, &status).asBool();
	CHECK_MSTATUS_AND_RETURN_IT(status);
	int multiThreadingType = dataBlock.inputValue(aMultiThreadingType, &status).asBool();
	CHECK_MSTATUS_AND_RETURN_IT(status);

	if (m_taskData.envelope <= 0.001)
	{
		return MS::kSuccess;
	}
	// if the use stress plug is turned on pull 
	MDoubleArray stressV;
	if (useStressV == true)
	{
		//pull out the raw data as an Mobject
		MObject stressMap = dataBlock.inputValue(aStressMap, &status).data();
		CHECK_MSTATUS_AND_RETURN_IT(status);
		MFnDoubleArrayData stressDataFn(stressMap);
    m_taskData.stressV = stressDataFn.array();
	}

	//retrieve the handle to the output array attribute
	MArrayDataHandle hInput = dataBlock.outputArrayValue(input, &status);
	CHECK_MSTATUS_AND_RETURN_IT(status);
	//get the input array index handle
	status = hInput.jumpToElement(geomIndex);
	//get the handle of geomIndex attribute
	MDataHandle hInputElement = hInput.outputValue(&status);
	CHECK_MSTATUS_AND_RETURN_IT(status);
	//Get the MObject of the input geometry of geomindex
	MObject oInputGeom = hInputElement.child(inputGeom).asMesh();
	MFnMesh fnMesh(oInputGeom, &status);
	CHECK_MSTATUS_AND_RETURN_IT(status);

  
	fnMesh.getVertexNormals(false, m_taskData.normals, MSpace::kWorld);
	itGeo.allPositions(m_taskData.points, MSpace::kWorld);
  //MGlobal::displayInfo( "test" );
  /*for (int i = 0; i < itGeo.count();  i++)
	{
    MGlobal::displayInfo( MFnAttribute(weightList).isArray );
  }*/
  m_taskData.bulgeAmount = bulgeAmount;

  if(multiThreadingType == 1)
  {
    ThreadData* pThreadData = createThreadData( NUM_TASKS, &m_taskData );
    MThreadPool::newParallelRegion( createTasks, (void*)pThreadData );
    itGeo.setAllPositions(m_taskData.points);
    delete [] pThreadData;
    return MS::kSuccess;
  }


  else if(multiThreadingType == 2)
  {
    tbb::parallel_for(size_t(0), size_t(itGeo.count()), [this](size_t i)
    {
		  //const float w = weightValue(dataBlock, geomIndex, i);
      const float w = 1.0;
		  if (m_taskData.useStressV == true && (m_taskData.stressV.length() > 0))
		  {
			  //deform
			  m_taskData.points[i] += (MVector(m_taskData.normals[i]) * m_taskData.bulgeAmount * m_taskData.envelope * w * m_taskData.stressV[i]);
		  }
		  else
		  {
			  //deform
        m_taskData.points[i] += m_taskData.normals[i] * m_taskData.bulgeAmount * m_taskData.envelope * w;
		  }  
  
    });
  }

  
	//
  else if(multiThreadingType == 3)
  #pragma omp parallel for 

  for (int i = 0; i < itGeo.count();  i++)
	{
		float w = weightValue(dataBlock, geomIndex, itGeo.index());
		if (useStressV == true && (stressV.length() > 0))
		{
			//deform
      m_taskData.points[i] += (MVector(m_taskData.normals[i]) * bulgeAmount * m_taskData.envelope * w * m_taskData.stressV[i]);
			
		}
		else
		{
			//deform
      m_taskData.points[i] += m_taskData.normals[i] * bulgeAmount * m_taskData.envelope * w;

		}
	}
  else
  {
    for (; !itGeo.isDone(); itGeo.next())
	  {
		  float w = weightValue(dataBlock, geomIndex, itGeo.index());
		  if (useStressV == true && (stressV.length() > 0))
		  {
			  //deform
        m_taskData.points[itGeo.index()] += (MVector(m_taskData.normals[itGeo.index()]) * bulgeAmount * m_taskData.envelope * w * m_taskData.stressV[itGeo.index()]);
			
		  }
		  else
		  {
			  //deform
        m_taskData.points[itGeo.index()] += m_taskData.normals[itGeo.index()] * bulgeAmount * m_taskData.envelope * w;
		  }
	  }
  }
	itGeo.setAllPositions(m_taskData.points);

	return MS::kSuccess;

}
Пример #7
0
void TestDeformer::_deform_on_one_mesh(MDataBlock& data,
                                      MItGeometry& iter,
                                      const MMatrix& localToWorldMatrix,
                                      unsigned int mIndex,
                                      MObject &driver_mesh,
                                      const MDataHandle &envelopeHandle, MArrayDataHandle &vertMapArrayData, MPointArray &tempOutputPts)
{
    MStatus status;

    float env = envelopeHandle.asFloat();

    // use driver_meshVertIter to walk through the vertex of the current driver mesh
    MItMeshVertex driver_meshVertIter( driver_mesh, &status );
    CHECK_MSTATUS( status );

    int i = 0;
    iter.reset();
    while( !iter.isDone(&status) )
    {
        CHECK_MSTATUS( status );

        // get the weight
        float weight = weightValue( data, mIndex, iter.index() ); //painted weight
        float ww = weight * env;

        if ( fabs(ww) > FLT_EPSILON )//if ( ww != 0 )
        {
            __debug("%s(), vertMapArrayData.elementCount()=%d, iter.index()=%d",
                    __FUNCTION__, vertMapArrayData.elementCount(), iter.index());

            // get index_mapped to which the currrent vertex vI is mapped
            CHECK_MSTATUS(vertMapArrayData.jumpToElement(iter.index()));
            int index_mapped = vertMapArrayData.inputValue(&status).asInt();
            CHECK_MSTATUS( status );

            if( index_mapped >= 0 )
            {
                __debug("index_mapped=%d", index_mapped);

                int prevInt;
                CHECK_MSTATUS( driver_meshVertIter.setIndex(index_mapped, prevInt) );

                // vertex wrold position on driver mesh
                MPoint mappedPt = driver_meshVertIter.position( MSpace::kWorld, &status );
                CHECK_MSTATUS( status );
                // vertex wrold position on driven mesh
                MPoint iterPt = iter.position(MSpace::kObject, &status) * localToWorldMatrix;
                CHECK_MSTATUS( status );

                // use ww to interpolate between mappedPt and iterPt
                MPoint pt = iterPt + ((mappedPt - iterPt) * ww );
                pt = pt * localToWorldMatrix.inverse();

                /// put the deform points to tempOutputPts
                tempOutputPts[i] += pt;
            }
        }//if
        CHECK_MSTATUS(iter.next());
        ++i;
    }//while
}
Пример #8
0
MStatus snapDeformer::deform(MDataBlock &data, MItGeometry &iter, const MMatrix &mat, unsigned int multiIndex) {
	MStatus stat;


    //lets see if we need to do anything
	MDataHandle DataHandle = data.inputValue(envelope, &stat);
	float env = DataHandle.asFloat();
	if (env == 0)
		return stat;
    DataHandle = data.inputValue(weight, &stat);
	const float weight = DataHandle.asFloat();
    if (weight == 0)
		return stat;
    
    env = (env*weight);


	//space target
	DataHandle = data.inputValue(space, &stat);
    int SpaceInt = DataHandle.asInt();

    //space source
	DataHandle = data.inputValue(spaceSource, &stat);
    int SpaceSourceInt = DataHandle.asInt();

    //pointlist
    MArrayDataHandle pointArrayHandle = data.inputArrayValue(pointList);


	//snapMesh
	MFnMesh	SnapMesh;
	DataHandle = data.inputValue(snapMesh, &stat);
    if (!stat)
        return Err(stat,"Can't get mesh to snap to");
    MObject SnapMeshObj = DataHandle.asMesh();
    SnapMesh.setObject(SnapMeshObj);
    MPointArray snapPoints;
    if (SpaceSourceInt==0)
        SnapMesh.getPoints(snapPoints, MSpace::kWorld);
    else
        SnapMesh.getPoints(snapPoints, MSpace::kObject);
    


    iter.reset();
    for ( ; !iter.isDone(); iter.next()) 	{
        //check for painted weights
        float currEnv = env * weightValue(data, multiIndex, iter.index());

        //get point to snap to
        unsigned int index;
        stat = pointArrayHandle.jumpToElement(iter.index());
        if (!stat)
            index = 0;
        else {
            DataHandle = pointArrayHandle.outputValue();
            index = DataHandle.asInt();
        }

        if (index != -1) {
            //calc point location
            MPoint currPoint;
            if (snapPoints.length() > index)
                currPoint = snapPoints[index];

            if (SpaceInt == 0)
                currPoint *= mat.inverse();

            if (currEnv !=1)
            {
                MPoint p = (currPoint- iter.position());
                currPoint = iter.position() + (p*currEnv);
            }


            //set point location
            iter.setPosition(currPoint);
        }
            
            
    }

    return stat;
}
Пример #9
0
MStatus AlembicCurvesDeformNode::deform(MDataBlock &dataBlock,
                                        MItGeometry &iter,
                                        const MMatrix &localToWorld,
                                        unsigned int geomIndex)
{
  // get the envelope data
  float env = dataBlock.inputValue(envelope).asFloat();
  if (env == 0.0f) {  // deformer turned off
    return MStatus::kSuccess;
  }

  // update the frame number to be imported
  double inputTime =
      dataBlock.inputValue(mTimeAttr).asTime().as(MTime::kSeconds);
  MString &fileName = dataBlock.inputValue(mFileNameAttr).asString();
  MString &identifier = dataBlock.inputValue(mIdentifierAttr).asString();

  // check if we have the file
  if (fileName != mFileName || identifier != mIdentifier) {
    mSchema.reset();
    if (fileName != mFileName) {
      delRefArchive(mFileName);
      mFileName = fileName;
      addRefArchive(mFileName);
    }
    mIdentifier = identifier;

    // get the object from the archive
    Abc::IObject iObj = getObjectFromArchive(mFileName, identifier);
    if (!iObj.valid()) {
      MGlobal::displayWarning("[ExocortexAlembic] Identifier '" + identifier +
                              "' not found in archive '" + mFileName + "'.");
      return MStatus::kFailure;
    }
    AbcG::ICurves obj(iObj, Abc::kWrapExisting);
    if (!obj.valid()) {
      MGlobal::displayWarning("[ExocortexAlembic] Identifier '" + identifier +
                              "' in archive '" + mFileName +
                              "' is not a Curves.");
      return MStatus::kFailure;
    }
    mSchema = obj.getSchema();
  }

  if (!mSchema.valid()) {
    return MStatus::kFailure;
  }

  {
    ESS_PROFILE_SCOPE("AlembicCurvesDeformNode::deform readProps");
    Alembic::Abc::ICompoundProperty arbProp = mSchema.getArbGeomParams();
    Alembic::Abc::ICompoundProperty userProp = mSchema.getUserProperties();
    readProps(inputTime, arbProp, dataBlock, thisMObject());
    readProps(inputTime, userProp, dataBlock, thisMObject());

    // Set all plugs as clean
    // Even if one of them failed to get set,
    // trying again in this frame isn't going to help
    for (unsigned int i = 0; i < mGeomParamPlugs.length(); i++) {
      dataBlock.outputValue(mGeomParamPlugs[i]).setClean();
    }

    for (unsigned int i = 0; i < mUserAttrPlugs.length(); i++) {
      dataBlock.outputValue(mUserAttrPlugs[i]).setClean();
    }
  }

  // get the sample
  SampleInfo sampleInfo = getSampleInfo(inputTime, mSchema.getTimeSampling(),
                                        mSchema.getNumSamples());

  // check if we have to do this at all
  if (mLastSampleInfo.floorIndex == sampleInfo.floorIndex &&
      mLastSampleInfo.ceilIndex == sampleInfo.ceilIndex) {
    return MStatus::kSuccess;
  }

  mLastSampleInfo = sampleInfo;

  // access the camera values
  AbcG::ICurvesSchema::Sample sample;
  AbcG::ICurvesSchema::Sample sample2;
  mSchema.get(sample, sampleInfo.floorIndex);
  if (sampleInfo.alpha != 0.0) {
    mSchema.get(sample2, sampleInfo.ceilIndex);
  }

  Abc::P3fArraySamplePtr samplePos = sample.getPositions();
  Abc::P3fArraySamplePtr samplePos2;
  if (sampleInfo.alpha != 0.0) {
    samplePos2 = sample2.getPositions();
  }

  // iteration should not be necessary. the iteration is only
  // required if the same mesh is attached to the same deformer
  // several times
  float blend = (float)sampleInfo.alpha;
  float iblend = 1.0f - blend;
  unsigned int index = 0;
  for (iter.reset(); !iter.isDone(); iter.next()) {
    index = iter.index();
    // MFloatPoint pt = iter.position();
    MPoint pt = iter.position();
    MPoint abcPos = pt;
    float weight = weightValue(dataBlock, geomIndex, index) * env;
    if (weight == 0.0f) {
      continue;
    }
    float iweight = 1.0f - weight;
    if (index >= samplePos->size()) {
      continue;
    }
    bool done = false;
    if (sampleInfo.alpha != 0.0) {
      if (samplePos2->size() == samplePos->size()) {
        abcPos.x = iweight * pt.x +
                   weight * (samplePos->get()[index].x * iblend +
                             samplePos2->get()[index].x * blend);
        abcPos.y = iweight * pt.y +
                   weight * (samplePos->get()[index].y * iblend +
                             samplePos2->get()[index].y * blend);
        abcPos.z = iweight * pt.z +
                   weight * (samplePos->get()[index].z * iblend +
                             samplePos2->get()[index].z * blend);
        done = true;
      }
    }
    if (!done) {
      abcPos.x = iweight * pt.x + weight * samplePos->get()[index].x;
      abcPos.y = iweight * pt.y + weight * samplePos->get()[index].y;
      abcPos.z = iweight * pt.z + weight * samplePos->get()[index].z;
    }
    iter.setPosition(abcPos);
  }
  return MStatus::kSuccess;
}
Пример #10
0
MStatus puttyNode::deform( MDataBlock& block, MItGeometry& iter, const MMatrix& worldMatrix, unsigned int multiIndex)
{
//	MGlobal::displayInfo("deform");
    MStatus status = MS::kSuccess;

    /////////////////////////////////////////////////////////////////////////////////////////////////
    //
    // get inputs
    //
	
	// get the node ready flag
	MDataHandle dh = block.inputValue(aScriptSourced,&status);
	SYS_ERROR_CHECK(status, "Error getting aScriptSourced data handle\n");
	bool scriptSourced = dh.asBool();
	if (!scriptSourced)
		return MS::kSuccess;


	dh = block.inputValue(aNodeReady,&status);
	SYS_ERROR_CHECK(status, "Error getting node ready data handle\n");
	bool nodeReady = dh.asBool();

	// if it's not ready, don't do anything
	if (!nodeReady)
		return MS::kSuccess;

    dh = block.inputValue(aDefSpace,&status);
    SYS_ERROR_CHECK(status, "Error getting defSpace data handle\n");
    short defSpace = dh.asShort();
    
    dh = block.inputValue(aDefWeights,&status);
    SYS_ERROR_CHECK(status, "Error getting defWeights data handle\n");
    short defWeights = dh.asShort();
 
    dh = block.inputValue(aDefEnvelope,&status);
    SYS_ERROR_CHECK(status, "Error getting defEnvelope data handle\n");
    short defEnvelope = dh.asShort();
    

    
    // get the command
    dh = block.inputValue(aCmdBaseName,&status);
    SYS_ERROR_CHECK(status, "Error getting aCmdBaseName  handle\n");    
    MString script =  dh.asString(); 
        
 /*   if (script == "")
    {
        status = MS::kFailure;
        USER_ERROR_CHECK(status, "no script provided!\n");    
    }
   */ 
    /////////////////////////////////////////////////////////////////////////////////////////////////
    //
    // build mel cmd string
    //
    
    // check if it's a valid cmd
        
   
    // get the envelope
    //
    double env = 1;
    
    if (defEnvelope == MSD_ENVELOPE_AUTO)
    {
        dh = block.inputValue(envelope,&status);
    	SYS_ERROR_CHECK(status, "Error getting envelope data handle\n");	
	    env = double(dh.asFloat());	
        
        // early stop 'cause there is nothing more to do
        if (env == 0.0)
            return MS::kSuccess;
    }
    
    // get the points, transform them into the right space if needed
    //
    int count = iter.count();
    MVectorArray points(count);
    for ( ; !iter.isDone(); iter.next()) 
        points[iter.index()] = iter.position();
        
    if ( defSpace == MSD_SPACE_WORLD )
    {
        for (int i = 0;i<count;i++)
            points[i] = MPoint(points[i]) * worldMatrix;
    }
    
    
    // get the weights
    //
    MDoubleArray weights;
    if ( defWeights == MSD_WEIGHTS_AUTO)
    {
        weights.setLength(count);
        
        for (int i = 0;i<count;i++)
            weights[i]  = weightValue(block,multiIndex,i);
        
    }


    // get the object name and type
    // get the input geometry, traverse through the data handles    
    MArrayDataHandle adh = block.outputArrayValue( input, &status );
    SYS_ERROR_CHECK(status,"error getting input array data handle.\n");

    status = adh.jumpToElement( multiIndex );
    SYS_ERROR_CHECK(status, "input jumpToElement failed.\n");

    // compound data 
    MDataHandle cdh = adh.inputValue( &status );
    SYS_ERROR_CHECK(status, "error getting input inputValue\n");
   
    // input geometry child
    dh = cdh.child( inputGeom );
    MObject dInputGeometry = dh.data();
   
    // get the type      
    MString geometryType = dInputGeometry.apiTypeStr();

    // get the name    
//    MFnDagNode dagFn( dInputGeometry, &status);
//    SYS_ERROR_CHECK(status, "error converting geometry obj to dag node\n");
   
//    MString geometryName = dagFn.fullPathName(&status);
//    SYS_ERROR_CHECK(status, "error getting full path name \n");

//    MString geometryType = "";
//    MString geometryName = "";
    
    /////////////////////////////////////////////////////////////////////////////////////////////////
    //  
    //  set the current values on the temp plugs for the script to be picked up
    //
    
    // the position
    MObject thisNode = thisMObject();
    
    MPlug currPlug(thisNode,aCurrPosition);
    MFnVectorArrayData vecD;
    MObject currObj = vecD.create(points,&status);
    currPlug.setValue(currObj);
    SYS_ERROR_CHECK(status, "error setting currPosPlug value\n");
    
    // the weights
    currPlug =MPlug(thisNode,aCurrWeight);
    MFnDoubleArrayData dblD;
    currObj = dblD.create(weights,&status);
    currPlug.setValue(currObj);
    SYS_ERROR_CHECK(status, "error setting currWeightsPlug value\n");
    
    // world matrix
    currPlug =MPlug(thisNode,aCurrWorldMatrix);
    MFnMatrixData matD;
    currObj = matD.create(worldMatrix,&status);
    currPlug.setValue(currObj);
    SYS_ERROR_CHECK(status, "error setting currWorldMatrixPlug value\n");

    // the multi index
    currPlug =MPlug(thisNode,aCurrMultiIndex);
    currPlug.setValue(int(multiIndex));
    SYS_ERROR_CHECK(status, "error setting currMultiIndexPlug value\n");
    
    // geometry name/type
//    currPlug =MPlug(thisNode,aCurrGeometryName);
//    currPlug.setValue(geometryName);
//    SYS_ERROR_CHECK(status, "error setting aCurrGeometryName value\n");

    currPlug =MPlug(thisNode,aCurrGeometryType);
    currPlug.setValue(geometryType);
    SYS_ERROR_CHECK(status, "error setting aCurrGeometryType value\n");

   
    /////////////////////////////////////////////////////////////////////////////////////////////////
    //
    // execute the mel script
    //
    MString melCmd = script+"(\"" +name()+"\","+count+")";
    
    MCommandResult melResult;
    status = MGlobal::executeCommand(melCmd,melResult);
	
	// if the command did not work, then try to resource the script
	// (might have been that we were in a fresh scene and nothing was ready yet
	if (status != MS::kSuccess)
	{
		dh = block.inputValue(aScript,&status);
	    SYS_ERROR_CHECK(status, "Error getting aCmdBaseName  handle\n");    
		MString scriptFile =  dh.asString(); 	

		// try to source the script
		MString cmd = "source \"" + scriptFile+"\"";
			
		MCommandResult melResult;
		status = MGlobal::executeCommand(cmd,melResult);
		// if successfull, retry the command 
		if (!status.error())
		{
			status = MGlobal::executeCommand(melCmd,melResult);
		}
	}

	USER_ERROR_CHECK(status, "Error executing mel command, please check the function you provided is valid, error free and has the appropriate parameters!");

    // check the result type
    if ((melResult.resultType()) != (MCommandResult::kDoubleArray))
    {
        USER_ERROR_CHECK(MS::kFailure, "result of mel command has wrong type, should be doubleArray (which will be interpreted as vectorArray)!");
    }
    
    // get the result as a double array
    MDoubleArray newP;  
    status = melResult.getResult(newP);
    USER_ERROR_CHECK(status, "Error getting result of mel command!");
    
    int newCount = newP.length()/3;
    // size check
    if (newCount != count)
    {
        USER_ERROR_CHECK(MS::kFailure, "the size of the result does not match the size of the input!");
    }

    // convert the double array into a vector array
    MPointArray newPoints(newCount);
    
    for(int i=0;i<newCount;i++)
        newPoints[i]=MPoint(newP[i*3],newP[i*3+1],newP[i*3+2]);
    
    /////////////////////////////////////////////////////////////////////////////////////////////////
    //
    // interprete and apply the result
    //


  
    // do the envelope and weights   
    if ((defEnvelope == MSD_ENVELOPE_AUTO)||((defWeights == MSD_WEIGHTS_AUTO)))
    {
        MDoubleArray envPP(count, env);
    
        if (defWeights == MSD_WEIGHTS_AUTO)
        { 
            for (int i = 0;i<count;i++)
                envPP[i] *= weights[i];
        }

        // linear interpolation between old and new points
        for (int i = 0;i<count;i++)
            newPoints[i] = (points[i] * (1-envPP[i])) + (newPoints[i] * envPP[i]);
    }


    // retransform the result if it was in world space
    if ( defSpace == MSD_SPACE_WORLD )
    {
        MMatrix worldMatrixInv = worldMatrix.inverse();
        
        for (int i = 0;i<count;i++)
            newPoints[i] *= worldMatrixInv;
    }
 
 
    // set the points    
    iter.reset();
  	for ( ; !iter.isDone(); iter.next()) 
     	iter.setPosition(newPoints[iter.index()]);    

    return status;
}
Пример #11
0
    bool AssimpModelImporter::Load(const std::string& Filename)
    {
        // Assimp Importer
        Assimp::Importer Importer;
        
        // Load Model
        assimp_model = Importer.ReadFile(Filename.c_str(),aiProcessPreset_TargetRealtime_Fast | aiProcess_OptimizeMeshes | aiProcess_JoinIdenticalVertices | aiProcess_LimitBoneWeights | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);

        // Path Relative to Model File
        std::string RelativePath = Filename.substr(0,Filename.find_last_of("/")+1);

        if (!assimp_model)
        {
            echo("Failed To Import Model: " + Filename + " ERROR: " + Importer.GetErrorString());
            return false;
        } else {
            
            // Build Skeleton
            // initial bone count
            boneCount = 0;
            // Get Skeleton
            GetBone(assimp_model->mRootNode);
            
            for (uint32 i=0;i<assimp_model->mNumMeshes;i++)
            {
                // loop through meshes
                const aiMesh* mesh = assimp_model->mMeshes[i];

                // create submesh
                SubMesh subMesh;
                
                // set submesh id
                subMesh.ID = i;
                
                // set name
                subMesh.Name = mesh->mName.data;
                
                for (uint32 t = 0; t < mesh->mNumFaces;t++) {
                    const aiFace* face = &mesh->mFaces[t];
                    subMesh.tIndex.push_back(face->mIndices[0]);
                    subMesh.tIndex.push_back(face->mIndices[1]);
                    subMesh.tIndex.push_back(face->mIndices[2]);
                }

                // get posisitons
                if (mesh->HasPositions())
                {
                    subMesh.hasVertex = true;
                    subMesh.tVertex.resize(mesh->mNumVertices);
                    memcpy(&subMesh.tVertex[0],&mesh->mVertices[0],mesh->mNumVertices*sizeof(Vec3));
                } else subMesh.hasVertex = false;

                // get normals
                if (mesh->HasNormals())
                {                    
                    subMesh.hasNormal = true;
                    subMesh.tNormal.resize(mesh->mNumVertices);
                    memcpy(&subMesh.tNormal[0],&mesh->mNormals[0],mesh->mNumVertices*sizeof(Vec3));
                } else subMesh.hasNormal = false;

                // get texcoords
                if (mesh->HasTextureCoords(0))
                {               
                    subMesh.hasTexcoord = true;
                    for (uint32 k = 0; k < mesh->mNumVertices;k++) 
                    {
                        subMesh.tTexcoord.push_back(Vec2(mesh->mTextureCoords[0][k].x,mesh->mTextureCoords[0][k].y));                            
                    }
                } else subMesh.hasTexcoord = false;

                // get tangent
                if (mesh->HasTangentsAndBitangents())
                {
                    subMesh.hasTangentBitangent = true;
                    subMesh.tTangent.resize(mesh->mNumVertices);
                    subMesh.tBitangent.resize(mesh->mNumVertices);
                    memcpy(&subMesh.tTangent[0],&mesh->mTangents[0],mesh->mNumVertices*sizeof(Vec3));
                    memcpy(&subMesh.tBitangent[0],&mesh->mBitangents[0],mesh->mNumVertices*sizeof(Vec3));
                } else subMesh.hasTangentBitangent = false;

                // get vertex colors
                if (mesh->HasVertexColors(0))
                {
                    subMesh.hasVertexColor = true;
                    subMesh.tVertexColor.resize(mesh->mNumVertices);
                    memcpy(&subMesh.tVertexColor[0],&mesh->mColors[0],mesh->mNumVertices*sizeof(Vec4));
                } else subMesh.hasVertexColor = false;

                // get vertex weights
                if (mesh->HasBones())
                {
                    // Set Flag
                    subMesh.hasBones = true;
                    
                    // Create Bone's Sub Mesh Internal ID
                    uint32 count = 0;
                    for (uint32 k = 0; k < mesh->mNumBones; k++)
                    {
                        // Save Offset Matrix
                        Matrix _offsetMatrix;
                        _offsetMatrix.m[0]  = mesh->mBones[k]->mOffsetMatrix.a1; _offsetMatrix.m[1]  = mesh->mBones[k]->mOffsetMatrix.b1;  _offsetMatrix.m[2]   = mesh->mBones[k]->mOffsetMatrix.c1; _offsetMatrix.m[3]  = mesh->mBones[k]->mOffsetMatrix.d1;
                        _offsetMatrix.m[4]  = mesh->mBones[k]->mOffsetMatrix.a2; _offsetMatrix.m[5]  = mesh->mBones[k]->mOffsetMatrix.b2;  _offsetMatrix.m[6]   = mesh->mBones[k]->mOffsetMatrix.c2; _offsetMatrix.m[7]  = mesh->mBones[k]->mOffsetMatrix.d2;
                        _offsetMatrix.m[8]  = mesh->mBones[k]->mOffsetMatrix.a3; _offsetMatrix.m[9]  = mesh->mBones[k]->mOffsetMatrix.b3;  _offsetMatrix.m[10]  = mesh->mBones[k]->mOffsetMatrix.c3; _offsetMatrix.m[11] = mesh->mBones[k]->mOffsetMatrix.d3;
                        _offsetMatrix.m[12] = mesh->mBones[k]->mOffsetMatrix.a4; _offsetMatrix.m[13] = mesh->mBones[k]->mOffsetMatrix.b4;  _offsetMatrix.m[14]  = mesh->mBones[k]->mOffsetMatrix.c4; _offsetMatrix.m[15] = mesh->mBones[k]->mOffsetMatrix.d4;

                        uint32 boneID = GetBoneID(mesh->mBones[k]->mName.data);
                        subMesh.BoneOffsetMatrix[boneID] = _offsetMatrix;
                        subMesh.MapBoneIDs[boneID] = count;
                        count++;
                    }
                    
                    // Add Bones and Weights to SubMesh Structure, based on Internal IDs
                    for (uint32 j = 0; j < mesh->mNumVertices; j++)
                    {
                        // get values
                        std::vector<uint32> boneID(4,0);
                        std::vector<f32> weightValue(4,0.f);
                        
                        uint32 count = 0;
                        for (uint32 k = 0; k < mesh->mNumBones; k++) 
                        {
                            for (uint32 l = 0; l < mesh->mBones[k]->mNumWeights; l++)
                            {
                                if (mesh->mBones[k]->mWeights[l].mVertexId == j)
                                {
                                    // Convert Bone ID to Internal of the Sub Mesh
                                    boneID[count] = subMesh.MapBoneIDs[GetBoneID(mesh->mBones[k]->mName.data)];
                                    // Add Bone Weight
                                    weightValue[count] = mesh->mBones[k]->mWeights[l].mWeight;
                                    count++;
                                }
                            }
                        }
                        subMesh.tBonesID.push_back(Vec4((f32)boneID[0],(f32)boneID[1],(f32)boneID[2],(f32)boneID[3]));
                        subMesh.tBonesWeight.push_back(Vec4(weightValue[0],weightValue[1],weightValue[2],weightValue[3]));                        
                    }
                    
                } else subMesh.hasBones = false;
                
                // Get SubMesh Material ID
                subMesh.materialID = mesh->mMaterialIndex;
                
                // add to submeshes vector
                subMeshes.push_back(subMesh);
            }
            
            // Build Materials List
            for (uint32 i=0;i<assimp_model->mNumMaterials;++i)
            {
                MaterialProperties material;
                // Get Material
                const aiMaterial* pMaterial = assimp_model->mMaterials[i];
                material.id = i;
                
                aiString name;
                pMaterial->Get(AI_MATKEY_NAME, name);
                material.Name.resize(name.length);
                memcpy(&material.Name[0], name.data, name.length);
                
                aiColor3D color;
				material.haveColor = false;
                if (pMaterial->Get(AI_MATKEY_COLOR_DIFFUSE, color)==AI_SUCCESS) 
                {
                    material.haveColor = true;
                    material.Color = Vec4(color.r, color.g, color.b, 1.0);                
                }
				material.haveAmbient = false;
                if (pMaterial->Get(AI_MATKEY_COLOR_AMBIENT, color)==AI_SUCCESS) 
                {
                    material.haveAmbient = true;
                    material.Ambient = Vec4(color.r, color.g, color.b, 1.0);                                
                }
				material.haveSpecular = false;
                if (pMaterial->Get(AI_MATKEY_COLOR_SPECULAR, color)==AI_SUCCESS) 
                {
                    material.haveSpecular = true;
                    material.Specular = Vec4(color.r, color.g, color.b, 1.0);
                }
                material.haveEmissive = false;
                if (pMaterial->Get(AI_MATKEY_COLOR_EMISSIVE, color)==AI_SUCCESS) 
                {
                    material.haveEmissive = true;
                    material.Emissive = Vec4(color.r, color.g, color.b, 1.0);
                }
                
                bool flag = false;
                pMaterial->Get(AI_MATKEY_ENABLE_WIREFRAME, flag);
                material.WireFrame = flag;

                flag = false;
                pMaterial->Get(AI_MATKEY_TWOSIDED, flag);
                material.Twosided = flag;
                
                f32 value = 1.0f;
                pMaterial->Get(AI_MATKEY_OPACITY, value);
                material.Opacity = value;
                
                value = 0.0f;
                pMaterial->Get(AI_MATKEY_SHININESS, value);
                material.Shininess = value;
                
                value = 0.0f;
                pMaterial->Get(AI_MATKEY_SHININESS_STRENGTH, value);
                material.ShininessStrength = value;                
                // Save Properties                
                
                aiString path;
                aiReturn texFound;

                // Diffuse
                texFound = assimp_model->mMaterials[i]->GetTexture(aiTextureType_DIFFUSE, 0, &path);
                if (texFound==AI_SUCCESS)
                {
                    material.haveColorMap = true;
                    material.colorMap.resize(path.length);
                    memcpy(&material.colorMap[0],&path.data,path.length);
                    std::replace(material.colorMap.begin(), material.colorMap.end(),'\\','/');
                }
                
                // Bump Map
                texFound = assimp_model->mMaterials[i]->GetTexture(aiTextureType_NORMALS, 0, &path);
                if (texFound==AI_SUCCESS)
                {
                    material.haveNormalMap = true;
                    material.normalMap.resize(path.length);
                    memcpy(&material.normalMap[0],&path.data,path.length);
                    std::replace(material.normalMap.begin(), material.normalMap.end(),'\\','/');
                } else {
                    // Height Map
                    texFound = assimp_model->mMaterials[i]->GetTexture(aiTextureType_HEIGHT, 0, &path);
                    if (texFound==AI_SUCCESS)
                    {
                        material.haveNormalMap = true;
                        material.normalMap.resize(path.length);
                        memcpy(&material.normalMap[0],&path.data,path.length);
                        std::replace(material.normalMap.begin(), material.normalMap.end(),'\\','/');
                    }
                }
                // Specular
                texFound = assimp_model->mMaterials[i]->GetTexture(aiTextureType_SPECULAR, 0, &path);
                if (texFound==AI_SUCCESS)
                {
                    material.haveSpecularMap = true;
                    material.specularMap.resize(path.length);
                    memcpy(&material.specularMap[0],&path.data,path.length);
                    std::replace(material.specularMap.begin(), material.specularMap.end(),'\\','/');
                }
                // Add Material to List
                materials.push_back(material);
            }
        }
		Importer.FreeScene();

        return true;
    }