Пример #1
0
int colvarbias_abf::update()
{
  if (cvm::debug()) cvm::log("Updating ABF bias " + this->name);

  size_t i;
  for (i = 0; i < num_variables(); i++) {
    bin[i] = samples->current_bin_scalar(i);
  }
  if (cvm::proxy->total_forces_same_step()) {
    // e.g. in LAMMPS, total forces are current
    force_bin = bin;
  }

  if (cvm::step_relative() > 0 || cvm::proxy->total_forces_same_step()) {

    if (update_bias) {
//       if (b_adiabatic_reweighting) {
//         // Update gradients non-locally based on conditional distribution of
//         // fictitious variable TODO
//
//       } else
      if (samples->index_ok(force_bin)) {
        // Only if requested and within bounds of the grid...

        for (i = 0; i < num_variables(); i++) {
          // get total forces (lagging by 1 timestep) from colvars
          // and subtract previous ABF force if necessary
          update_system_force(i);
        }
        gradients->acc_force(force_bin, system_force);
        if ( b_integrate ) {
          pmf->update_div_neighbors(force_bin);
        }
      }
    }

    if ( z_gradients && update_bias ) {
      for (i = 0; i < num_variables(); i++) {
        z_bin[i] = z_samples->current_bin_scalar(i);
      }
      if ( z_samples->index_ok(z_bin) ) {
        for (i = 0; i < num_variables(); i++) {
          // If we are outside the range of xi, the force has not been obtained above
          // the function is just an accessor, so cheap to call again anyway
          update_system_force(i);
        }
        z_gradients->acc_force(z_bin, system_force);
      }
    }

    if ( b_integrate ) {
      if ( pabf_freq && cvm::step_relative() % pabf_freq == 0 ) {
        cvm::real err;
        int iter = pmf->integrate(integrate_steps, integrate_tol, err);
        if ( iter == integrate_steps ) {
          cvm::log("Warning: PMF integration did not converge to " + cvm::to_str(integrate_tol)
            + " in " + cvm::to_str(integrate_steps)
            + " steps. Residual error: " +  cvm::to_str(err));
        }
        pmf->set_zero_minimum(); // TODO: do this only when necessary
      }
    }
  }

  if (!cvm::proxy->total_forces_same_step()) {
    // e.g. in NAMD, total forces will be available for next timestep
    // hence we store the current colvar bin
    force_bin = bin;
  }

  // Reset biasing forces from previous timestep
  for (i = 0; i < num_variables(); i++) {
    colvar_forces[i].reset();
  }

  // Compute and apply the new bias, if applicable
  if (is_enabled(f_cvb_apply_force) && samples->index_ok(bin)) {

    cvm::real count = samples->value(bin);
    cvm::real fact = 1.0;

    // Factor that ensures smooth introduction of the force
    if ( count < full_samples ) {
      fact = (count < min_samples) ? 0.0 :
        (cvm::real(count - min_samples)) / (cvm::real(full_samples - min_samples));
    }

    std::vector<cvm::real>  grad(num_variables());

    if ( pabf_freq ) {
      // In projected ABF, the force is the PMF gradient estimate
      pmf->vector_gradient_finite_diff(bin, grad);
    } else {
      // Normal ABF
      gradients->vector_value(bin, grad);
    }

//     if ( b_adiabatic_reweighting) {
//       // Average of force according to conditional distribution of fictitious variable
//       // need freshly integrated PMF, gradient TODO
//     } else
    if ( fact != 0.0 ) {
      if ( (num_variables() == 1) && colvars[0]->periodic_boundaries() ) {
        // Enforce a zero-mean bias on periodic, 1D coordinates
        // in other words: boundary condition is that the biasing potential is periodic
        // This is enforced naturally if using integrated PMF
        colvar_forces[0].real_value = fact * (grad[0] - gradients->average ());
      } else {
        for (size_t i = 0; i < num_variables(); i++) {
          // subtracting the mean force (opposite of the FE gradient) means adding the gradient
          colvar_forces[i].real_value = fact * grad[i];
        }
      }
      if (cap_force) {
        for (size_t i = 0; i < num_variables(); i++) {
          if ( colvar_forces[i].real_value * colvar_forces[i].real_value > max_force[i] * max_force[i] ) {
            colvar_forces[i].real_value = (colvar_forces[i].real_value > 0 ? max_force[i] : -1.0 * max_force[i]);
          }
        }
      }
    }
  }

  // update the output prefix; TODO: move later to setup_output() function
  if (cvm::main()->num_biases_feature(colvardeps::f_cvb_calc_pmf) == 1) {
    // This is the only bias computing PMFs
    output_prefix = cvm::output_prefix();
  } else {
    output_prefix = cvm::output_prefix() + "." + this->name;
  }

  if (output_freq && (cvm::step_absolute() % output_freq) == 0) {
    if (cvm::debug()) cvm::log("ABF bias trying to write gradients and samples to disk");
    write_gradients_samples(output_prefix);
  }

  if (b_history_files && (cvm::step_absolute() % history_freq) == 0) {
    // file already exists iff cvm::step_relative() > 0
    // otherwise, backup and replace
    write_gradients_samples(output_prefix + ".hist", (cvm::step_relative() > 0));
  }

  if (shared_on && shared_last_step >= 0 && cvm::step_absolute() % shared_freq == 0) {
    // Share gradients and samples for shared ABF.
    replica_share();
  }

  // Prepare for the first sharing.
  if (shared_last_step < 0) {
    // Copy the current gradient and count values into last.
    last_gradients->copy_grid(*gradients);
    last_samples->copy_grid(*samples);
    shared_last_step = cvm::step_absolute();
    cvm::log("Prepared sample and gradient buffers at step "+cvm::to_str(cvm::step_absolute())+".");
  }

  // update UI estimator every step
  if (b_UI_estimator)
  {
    std::vector<double> x(num_variables(),0);
    std::vector<double> y(num_variables(),0);
    for (size_t i = 0; i < num_variables(); i++)
    {
      x[i] = colvars[i]->actual_value();
      y[i] = colvars[i]->value();
    }
    eabf_UI.update_output_filename(output_prefix);
    eabf_UI.update(cvm::step_absolute(), x, y);
  }

  return COLVARS_OK;
}
Пример #2
0
int colvarbias_abf::write_output_files()
{
  write_gradients_samples(output_prefix);
  return COLVARS_OK;
}
Пример #3
0
int colvarbias_abf::update()
{
  if (cvm::debug()) cvm::log("Updating ABF bias " + this->name);

  if (cvm::step_relative() == 0) {

    // At first timestep, do only:
    // initialization stuff (file operations relying on n_abf_biases
    // compute current value of colvars

    for (size_t i = 0; i < colvars.size(); i++) {
      bin[i] = samples->current_bin_scalar(i);
    }

  } else {

    for (size_t i = 0; i < colvars.size(); i++) {
      bin[i] = samples->current_bin_scalar(i);
    }

    if ( update_bias && samples->index_ok(force_bin) ) {
      // Only if requested and within bounds of the grid...

      for (size_t i = 0; i < colvars.size(); i++) {
        // get total forces (lagging by 1 timestep) from colvars
        // and subtract previous ABF force if necessary
        update_system_force(i);
      }
      gradients->acc_force(force_bin, system_force);
    }
    if ( z_gradients && update_bias ) {
      for (size_t i = 0; i < colvars.size(); i++) {
        z_bin[i] = z_samples->current_bin_scalar(i);
      }
      if ( z_samples->index_ok(z_bin) ) {
        for (size_t i = 0; i < colvars.size(); i++) {
          // If we are outside the range of xi, the force has not been obtained above
          // the function is just an accessor, so cheap to call again anyway
          update_system_force(i);
        }
        z_gradients->acc_force(z_bin, system_force);
      }
    }
  }

  // save bin for next timestep
  force_bin = bin;

  // Reset biasing forces from previous timestep
  for (size_t i = 0; i < colvars.size(); i++) {
    colvar_forces[i].reset();
  }

  // Compute and apply the new bias, if applicable
  if (is_enabled(f_cvb_apply_force) && samples->index_ok(bin)) {

    size_t count = samples->value(bin);
    cvm::real fact = 1.0;

    // Factor that ensures smooth introduction of the force
    if ( count < full_samples ) {
      fact = (count < min_samples) ? 0.0 :
        (cvm::real(count - min_samples)) / (cvm::real(full_samples - min_samples));
    }

    const cvm::real * grad  = &(gradients->value(bin));

    if ( fact != 0.0 ) {
      if ( (colvars.size() == 1) && colvars[0]->periodic_boundaries() ) {
        // Enforce a zero-mean bias on periodic, 1D coordinates
        // in other words: boundary condition is that the biasing potential is periodic
        colvar_forces[0].real_value = fact * (grad[0] / cvm::real(count) - gradients->average());
      } else {
        for (size_t i = 0; i < colvars.size(); i++) {
          // subtracting the mean force (opposite of the FE gradient) means adding the gradient
          colvar_forces[i].real_value = fact * grad[i] / cvm::real(count);
        }
      }
      if (cap_force) {
        for (size_t i = 0; i < colvars.size(); i++) {
          if ( colvar_forces[i].real_value * colvar_forces[i].real_value > max_force[i] * max_force[i] ) {
            colvar_forces[i].real_value = (colvar_forces[i].real_value > 0 ? max_force[i] : -1.0 * max_force[i]);
          }
        }
      }
    }
  }

  // update the output prefix; TODO: move later to setup_output() function
  if (cvm::num_biases_feature(colvardeps::f_cvb_calc_pmf) == 1) {
    // This is the only bias computing PMFs
    output_prefix = cvm::output_prefix();
  } else {
    output_prefix = cvm::output_prefix() + "." + this->name;
  }

  if (output_freq && (cvm::step_absolute() % output_freq) == 0) {
    if (cvm::debug()) cvm::log("ABF bias trying to write gradients and samples to disk");
    write_gradients_samples(output_prefix);
  }

  if (b_history_files && (cvm::step_absolute() % history_freq) == 0) {
    // file already exists iff cvm::step_relative() > 0
    // otherwise, backup and replace
    write_gradients_samples(output_prefix + ".hist", (cvm::step_relative() > 0));
  }

  if (shared_on && shared_last_step >= 0 && cvm::step_absolute() % shared_freq == 0) {
    // Share gradients and samples for shared ABF.
    replica_share();
  }

  // Prepare for the first sharing.
  if (shared_last_step < 0) {
    // Copy the current gradient and count values into last.
    last_gradients->copy_grid(*gradients);
    last_samples->copy_grid(*samples);
    shared_last_step = cvm::step_absolute();
    cvm::log("Prepared sample and gradient buffers at step "+cvm::to_str(cvm::step_absolute())+".");
  }

  return COLVARS_OK;
}