Пример #1
0
void test_sema_reset(void)
{
	k_sem_init(&sema, SEM_INITIAL, SEM_LIMIT);
	k_sem_give(&sema);
	k_sem_reset(&sema);
	zassert_false(k_sem_count_get(&sema), NULL);
	/**TESTPOINT: sem take return -EBUSY*/
	zassert_equal(k_sem_take(&sema, K_NO_WAIT), -EBUSY, NULL);
	/**TESTPOINT: sem take return -EAGAIN*/
	zassert_equal(k_sem_take(&sema, TIMEOUT), -EAGAIN, NULL);
	k_sem_give(&sema);
	zassert_false(k_sem_take(&sema, K_FOREVER), NULL);
}
static void tcoop_ctx(void *p1, void *p2, void *p3)
{
	/** TESTPOINT: The thread's priority is in the cooperative range.*/
	zassert_false(k_is_preempt_thread(), NULL);
	k_thread_priority_set(k_current_get(), K_PRIO_PREEMPT(1));
	/** TESTPOINT: The thread's priority is in the preemptible range.*/
	zassert_true(k_is_preempt_thread(), NULL);
	k_sched_lock();
	/** TESTPOINT: The thread has locked the scheduler.*/
	zassert_false(k_is_preempt_thread(), NULL);
	k_sched_unlock();
	/** TESTPOINT: The thread has not locked the scheduler.*/
	zassert_true(k_is_preempt_thread(), NULL);
	k_sem_give(&end_sema);
}
Пример #3
0
static void threads_suspend_resume(int prio)
{
	int old_prio = k_thread_priority_get(k_current_get());

	/* set current thread */
	last_prio = prio;
	k_thread_priority_set(k_current_get(), last_prio);

	/* create thread with lower priority */
	int create_prio = last_prio + 1;

	k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
				      thread_entry, NULL, NULL, NULL,
				      create_prio, 0, 0);
	/* checkpoint: suspend current thread */
	k_thread_suspend(tid);
	k_sleep(100);
	/* checkpoint: created thread shouldn't be executed after suspend */
	zassert_false(last_prio == create_prio, NULL);
	k_thread_resume(tid);
	k_sleep(100);
	/* checkpoint: created thread should be executed after resume */
	zassert_true(last_prio == create_prio, NULL);

	k_thread_abort(tid);

	/* restore environment */
	k_thread_priority_set(k_current_get(), old_prio);
}
Пример #4
0
/*
 * NIST SHA256 test vector 2.
 */
void test_2(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #2:\n");
	const u8_t expected[32] = {
		0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 0xe5, 0xc0,
		    0x26, 0x93,
		0x0c, 0x3e, 0x60, 0x39, 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff,
		    0x21, 0x67,
		0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1
	};
	const char *m =
	    "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq";
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, (const u8_t *)m, strlen(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(2, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #2 failed.");
}
Пример #5
0
/*
 * NIST SHA256 test vector 1.
 */
void test_1(void)
{
	TC_START("Performing SHA256 tests (NIST tests vectors):");

	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #1:\n");
	const u8_t expected[32] = {
		0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41,
		    0x40, 0xde,
		0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17,
		    0x7a, 0x9c,
		0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad
	};
	const char *m = "abc";
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, (const u8_t *)m, strlen(m));
	(void)tc_sha256_final(digest, &s);
	result = check_result(1, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #1 failed.");
}
Пример #6
0
void test_14(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #14:\n");
	const u8_t expected[32] = {
		0x46, 0x1c, 0x19, 0xa9, 0x3b, 0xd4, 0x34, 0x4f, 0x92, 0x15,
		    0xf5, 0xec,
		0x64, 0x35, 0x70, 0x90, 0x34, 0x2b, 0xc6, 0x6b, 0x15, 0xa1,
		    0x48, 0x31,
		0x7d, 0x27, 0x6e, 0x31, 0xcb, 0xc2, 0x0b, 0x53
	};
	u8_t m[32768];
	u8_t digest[32];
	struct tc_sha256_state_struct s;
	u32_t i;

	(void)memset(m, 0x00, sizeof(m));

	(void)tc_sha256_init(&s);
	for (i = 0; i < 33280; ++i) {
		tc_sha256_update(&s, m, sizeof(m));
	}
	(void)tc_sha256_final(digest, &s);

	result = check_result(14, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #14 failed.");

}
Пример #7
0
void test_12(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #12:\n");
	const u8_t expected[32] = {
		0xd2, 0x97, 0x51, 0xf2, 0x64, 0x9b, 0x32, 0xff, 0x57, 0x2b,
		    0x5e, 0x0a,
		0x9f, 0x54, 0x1e, 0xa6, 0x60, 0xa5, 0x0f, 0x94, 0xff, 0x0b,
		    0xee, 0xdf,
		0xb0, 0xb6, 0x92, 0xb9, 0x24, 0xcc, 0x80, 0x25
	};
	u8_t m[1000];
	u8_t digest[32];
	struct tc_sha256_state_struct s;
	u32_t i;

	(void)memset(m, 0x00, sizeof(m));

	(void)tc_sha256_init(&s);
	for (i = 0; i < 1000; ++i) {
		tc_sha256_update(&s, m, sizeof(m));
	}
	(void)tc_sha256_final(digest, &s);

	result = check_result(12, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #12 failed.");
}
Пример #8
0
void test_10(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #10:\n");
	const u8_t expected[32] = {
		0xc2, 0xe6, 0x86, 0x82, 0x34, 0x89, 0xce, 0xd2, 0x01, 0x7f,
		    0x60, 0x59,
		0xb8, 0xb2, 0x39, 0x31, 0x8b, 0x63, 0x64, 0xf6, 0xdc, 0xd8,
		    0x35, 0xd0,
		0xa5, 0x19, 0x10, 0x5a, 0x1e, 0xad, 0xd6, 0xe4
	};
	u8_t m[1000];
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)memset(m, 0x41, sizeof(m));

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, m, sizeof(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(10, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #10 failed.");

}
Пример #9
0
void test_8(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #8:\n");
	const u8_t expected[32] = {
		0xf5, 0xa5, 0xfd, 0x42, 0xd1, 0x6a, 0x20, 0x30, 0x27, 0x98,
		    0xef, 0x6e,
		0xd3, 0x09, 0x97, 0x9b, 0x43, 0x00, 0x3d, 0x23, 0x20, 0xd9,
		    0xf0, 0xe8,
		0xea, 0x98, 0x31, 0xa9, 0x27, 0x59, 0xfb, 0x4b
	};
	u8_t m[64];
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)memset(m, 0x00, sizeof(m));

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, m, sizeof(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(8, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #8 failed.");

}
Пример #10
0
void test_9(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #9:\n");
	const u8_t expected[32] = {
		0x54, 0x1b, 0x3e, 0x9d, 0xaa, 0x09, 0xb2, 0x0b, 0xf8, 0x5f,
		    0xa2, 0x73,
		0xe5, 0xcb, 0xd3, 0xe8, 0x01, 0x85, 0xaa, 0x4e, 0xc2, 0x98,
		    0xe7, 0x65,
		0xdb, 0x87, 0x74, 0x2b, 0x70, 0x13, 0x8a, 0x53
	};
	u8_t m[1000];
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)memset(m, 0x00, sizeof(m));

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, m, sizeof(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(9, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #9 failed.");

}
Пример #11
0
void test_7(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #7:\n");
	const u8_t expected[32] = {
		0x65, 0xa1, 0x6c, 0xb7, 0x86, 0x13, 0x35, 0xd5, 0xac, 0xe3,
		    0xc6, 0x07,
		0x18, 0xb5, 0x05, 0x2e, 0x44, 0x66, 0x07, 0x26, 0xda, 0x4c,
		    0xd1, 0x3b,
		0xb7, 0x45, 0x38, 0x1b, 0x23, 0x5a, 0x17, 0x85
	};
	u8_t m[57];
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)memset(m, 0x00, sizeof(m));

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, m, sizeof(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(7, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #7 failed.");

}
Пример #12
0
void test_6(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #6:\n");
	const u8_t expected[32] = {
		0xd4, 0x81, 0x7a, 0xa5, 0x49, 0x76, 0x28, 0xe7, 0xc7, 0x7e,
		    0x6b, 0x60,
		0x61, 0x07, 0x04, 0x2b, 0xbb, 0xa3, 0x13, 0x08, 0x88, 0xc5,
		    0xf4, 0x7a,
		0x37, 0x5e, 0x61, 0x79, 0xbe, 0x78, 0x9f, 0xbb
	};
	u8_t m[56];
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)memset(m, 0x00, sizeof(m));

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, m, sizeof(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(6, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #6 failed.");

}
Пример #13
0
void test_5(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #5:\n");
	const u8_t expected[32] = {
		0x02, 0x77, 0x94, 0x66, 0xcd, 0xec, 0x16, 0x38, 0x11, 0xd0,
		    0x78, 0x81,
		0x5c, 0x63, 0x3f, 0x21, 0x90, 0x14, 0x13, 0x08, 0x14, 0x49,
		    0x00, 0x2f,
		0x24, 0xaa, 0x3e, 0x80, 0xf0, 0xb8, 0x8e, 0xf7
	};
	u8_t m[55];
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)memset(m, 0x00, sizeof(m));

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, m, sizeof(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(5, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #5 failed.");

}
Пример #14
0
void test_4(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #4:\n");
	const u8_t expected[32] = {
		0x7a, 0xbc, 0x22, 0xc0, 0xae, 0x5a, 0xf2, 0x6c, 0xe9, 0x3d,
		    0xbb, 0x94,
		0x43, 0x3a, 0x0e, 0x0b, 0x2e, 0x11, 0x9d, 0x01, 0x4f, 0x8e,
		    0x7f, 0x65,
		0xbd, 0x56, 0xc6, 0x1c, 0xcc, 0xcd, 0x95, 0x04
	};
	const u8_t m[4] = { 0xc9, 0x8c, 0x8e, 0x55 };
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, m, sizeof(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(4, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #4 failed.");

}
Пример #15
0
void test_11(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #11:\n");
	const u8_t expected[32] = {
		0xf4, 0xd6, 0x2d, 0xde, 0xc0, 0xf3, 0xdd, 0x90, 0xea, 0x13,
		    0x80, 0xfa,
		0x16, 0xa5, 0xff, 0x8d, 0xc4, 0xc5, 0x4b, 0x21, 0x74, 0x06,
		    0x50, 0xf2,
		0x4a, 0xfc, 0x41, 0x20, 0x90, 0x35, 0x52, 0xb0
	};
	u8_t m[1005];
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)memset(m, 0x55, sizeof(m));

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, m, sizeof(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(11, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #11 failed.");

}
Пример #16
0
void test_arm_irq_vector_table(void)
{
	printk("Test Cortex-M3 IRQ installed directly in vector table\n");

	for (int ii = 0; ii < 3; ii++) {
		irq_enable(ii);
		_irq_priority_set(ii, 0, 0);
		k_sem_init(&sem[ii], 0, UINT_MAX);
	}

	zassert_true((k_sem_take(&sem[0], K_NO_WAIT) ||
		      k_sem_take(&sem[1], K_NO_WAIT) ||
		      k_sem_take(&sem[2], K_NO_WAIT)), NULL);

	for (int ii = 0; ii < 3; ii++) {
#if defined(CONFIG_SOC_TI_LM3S6965_QEMU)
			/* the QEMU does not simulate the
			 * STIR register: this is a workaround
			 */
		NVIC_SetPendingIRQ(ii);
#else
		NVIC->STIR = ii;
#endif
	}

	zassert_false((k_sem_take(&sem[0], K_NO_WAIT) ||
		       k_sem_take(&sem[1], K_NO_WAIT) ||
		       k_sem_take(&sem[2], K_NO_WAIT)), NULL);

}
Пример #17
0
void test_13(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #13:\n");
	const u8_t expected[32] = {
		0x15, 0xa1, 0x86, 0x8c, 0x12, 0xcc, 0x53, 0x95, 0x1e, 0x18,
		    0x23, 0x44,
		0x27, 0x74, 0x47, 0xcd, 0x09, 0x79, 0x53, 0x6b, 0xad, 0xcc,
		    0x51, 0x2a,
		0xd2, 0x4c, 0x67, 0xe9, 0xb2, 0xd4, 0xf3, 0xdd
	};
	u8_t m[32768];
	u8_t digest[32];
	struct tc_sha256_state_struct s;
	u32_t i;

	(void)memset(m, 0x5a, sizeof(m));

	(void)tc_sha256_init(&s);
	for (i = 0; i < 16384; ++i) {
		tc_sha256_update(&s, m, sizeof(m));
	}
	(void)tc_sha256_final(digest, &s);

	result = check_result(13, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #13 failed.");

}
Пример #18
0
void test_priority_preemptible(void)
{
	int old_prio = k_thread_priority_get(k_current_get());

	/* set current thread to a non-negative priority */
	last_prio = 2;
	k_thread_priority_set(k_current_get(), last_prio);

	int spawn_prio = last_prio - 1;

	k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
				      thread_entry, NULL, NULL, NULL,
				      spawn_prio, 0, 0);
	/* checkpoint: thread is preempted by higher thread */
	zassert_true(last_prio == spawn_prio, NULL);

	k_sleep(100);
	k_thread_abort(tid);

	spawn_prio = last_prio + 1;
	tid = k_thread_create(&tdata, tstack, STACK_SIZE,
			      thread_entry, NULL, NULL, NULL,
			      spawn_prio, 0, 0);
	/* checkpoint: thread is not preempted by lower thread */
	zassert_false(last_prio == spawn_prio, NULL);
	k_thread_abort(tid);

	/* restore environment */
	k_thread_priority_set(k_current_get(), old_prio);
}
Пример #19
0
void test_3(void)
{
	u32_t result = TC_PASS;

	TC_PRINT("SHA256 test #3:\n");
	const u8_t expected[32] = {
		0x68, 0x32, 0x57, 0x20, 0xaa, 0xbd, 0x7c, 0x82, 0xf3, 0x0f,
		    0x55, 0x4b,
		0x31, 0x3d, 0x05, 0x70, 0xc9, 0x5a, 0xcc, 0xbb, 0x7d, 0xc4,
		    0xb5, 0xaa,
		0xe1, 0x12, 0x04, 0xc0, 0x8f, 0xfe, 0x73, 0x2b
	};
	const u8_t m[1] = { 0xbd };
	u8_t digest[32];
	struct tc_sha256_state_struct s;

	(void)tc_sha256_init(&s);
	tc_sha256_update(&s, m, sizeof(m));
	(void)tc_sha256_final(digest, &s);

	result = check_result(3, expected, sizeof(expected),
			      digest, sizeof(digest), 1);

	/**TESTPOINT: Check result*/
	zassert_false(result, "SHA256 test #3 failed.");

}
Пример #20
0
static void tsema_thread_thread(struct k_sem *psem)
{
	/**TESTPOINT: thread-thread sync via sema*/
	k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE,
				      tThread_entry, psem, NULL, NULL,
				      K_PRIO_PREEMPT(0), 0, 0);

	zassert_false(k_sem_take(psem, K_FOREVER), NULL);
	/*clean the spawn thread avoid side effect in next TC*/
	k_thread_abort(tid);
}
Пример #21
0
static void tpipe_put(struct k_pipe *ppipe)
{
	size_t to_wt, wt_byte = 0;

	for (int i = 0; i < PIPE_LEN; i += wt_byte) {
		/**TESTPOINT: pipe put*/
		to_wt = (PIPE_LEN - i) >= BYTES_TO_WRITE ?
			BYTES_TO_WRITE : (PIPE_LEN - i);
		zassert_false(k_pipe_put(ppipe, &data[i], to_wt,
				&wt_byte, 1, K_NO_WAIT), NULL);
		zassert_true(wt_byte == to_wt || wt_byte == 1, NULL);
	}
}
Пример #22
0
static void tpipe_get(struct k_pipe *ppipe)
{
	unsigned char rx_data[PIPE_LEN];
	size_t to_rd, rd_byte = 0;

	/*get pipe data from "pipe_put"*/
	for (int i = 0; i < PIPE_LEN; i += rd_byte) {
		/**TESTPOINT: pipe get*/
		to_rd = (PIPE_LEN - i) >= BYTES_TO_READ ?
			BYTES_TO_READ : (PIPE_LEN - i);
		zassert_false(k_pipe_get(ppipe, &rx_data[i], to_rd,
				&rd_byte, 1, K_FOREVER), NULL);
		zassert_true(rd_byte == to_rd || rd_byte == 1, NULL);
	}
	for (int i = 0; i < PIPE_LEN; i++) {
		zassert_equal(rx_data[i], data[i], NULL);
	}
}
Пример #23
0
void run_tests(void)
{
	k_thread_priority_set(k_current_get(), K_PRIO_COOP(7));

	test_failed = false;

	struct net_conn_handle *handlers[CONFIG_NET_MAX_CONN];
	struct net_if *iface = net_if_get_default();
	struct net_if_addr *ifaddr;
	struct ud *ud;
	int ret, i = 0;
	bool st;

	struct sockaddr_in6 any_addr6;
	const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;

	struct sockaddr_in6 my_addr6;
	struct in6_addr in6addr_my = { { { 0x20, 0x01, 0x0d, 0xb8, 0, 0, 0, 0,
					   0, 0, 0, 0, 0, 0, 0, 0x1 } } };

	struct sockaddr_in6 peer_addr6;
	struct in6_addr in6addr_peer = { { { 0x20, 0x01, 0x0d, 0xb8, 0, 0, 0, 0,
					  0, 0, 0, 0x4e, 0x11, 0, 0, 0x2 } } };

	struct sockaddr_in any_addr4;
	const struct in_addr in4addr_any = { { { 0 } } };

	struct sockaddr_in my_addr4;
	struct in_addr in4addr_my = { { { 192, 0, 2, 1 } } };

	struct sockaddr_in peer_addr4;
	struct in_addr in4addr_peer = { { { 192, 0, 2, 9 } } };

	net_ipaddr_copy(&any_addr6.sin6_addr, &in6addr_any);
	any_addr6.sin6_family = AF_INET6;

	net_ipaddr_copy(&my_addr6.sin6_addr, &in6addr_my);
	my_addr6.sin6_family = AF_INET6;

	net_ipaddr_copy(&peer_addr6.sin6_addr, &in6addr_peer);
	peer_addr6.sin6_family = AF_INET6;

	net_ipaddr_copy(&any_addr4.sin_addr, &in4addr_any);
	any_addr4.sin_family = AF_INET;

	net_ipaddr_copy(&my_addr4.sin_addr, &in4addr_my);
	my_addr4.sin_family = AF_INET;

	net_ipaddr_copy(&peer_addr4.sin_addr, &in4addr_peer);
	peer_addr4.sin_family = AF_INET;

	k_sem_init(&recv_lock, 0, UINT_MAX);

	ifaddr = net_if_ipv6_addr_add(iface, &in6addr_my, NET_ADDR_MANUAL, 0);
	if (!ifaddr) {
		printk("Cannot add %s to interface %p\n",
		       net_sprint_ipv6_addr(&in6addr_my), iface);
		zassert_true(0, "exiting");
	}

	ifaddr = net_if_ipv4_addr_add(iface, &in4addr_my, NET_ADDR_MANUAL, 0);
	if (!ifaddr) {
		printk("Cannot add %s to interface %p\n",
		       net_sprint_ipv4_addr(&in4addr_my), iface);
		zassert_true(0, "exiting");
	}

#define REGISTER(family, raddr, laddr, rport, lport)			\
	({								\
		static struct ud user_data;				\
									\
		user_data.remote_addr = (struct sockaddr *)raddr;	\
		user_data.local_addr =  (struct sockaddr *)laddr;	\
		user_data.remote_port = rport;				\
		user_data.local_port = lport;				\
		user_data.test = "DST="#raddr"-SRC="#laddr"-RP="#rport	\
			"-LP="#lport;					\
									\
		set_port(family, (struct sockaddr *)raddr,		\
			 (struct sockaddr *)laddr, rport, lport);	\
									\
		ret = net_udp_register((struct sockaddr *)raddr,	\
				       (struct sockaddr *)laddr,	\
				       rport, lport,			\
				       test_ok, &user_data,		\
				       &handlers[i]);			\
		if (ret) {						\
			printk("UDP register %s failed (%d)\n",		\
			       user_data.test, ret);			\
			zassert_true(0, "exiting");			\
		}							\
		user_data.handle = handlers[i++];			\
		&user_data;						\
	})

#define REGISTER_FAIL(raddr, laddr, rport, lport)			\
	ret = net_udp_register((struct sockaddr *)raddr,		\
			       (struct sockaddr *)laddr,		\
			       rport, lport,				\
			       test_fail, INT_TO_POINTER(0), NULL);	\
	if (!ret) {							\
		printk("UDP register invalid match %s failed\n",	\
		       "DST="#raddr"-SRC="#laddr"-RP="#rport"-LP="#lport); \
		zassert_true(0, "exiting");				\
	}

#define UNREGISTER(ud)							\
	ret = net_udp_unregister(ud->handle);				\
	if (ret) {							\
		printk("UDP unregister %p failed (%d)\n", ud->handle,	\
		       ret);						\
		zassert_true(0, "exiting");				\
	}

#define TEST_IPV6_OK(ud, raddr, laddr, rport, lport)			\
	st = send_ipv6_udp_msg(iface, raddr, laddr, rport, lport, ud,	\
			       false);					\
	if (!st) {							\
		printk("%d: UDP test \"%s\" fail\n", __LINE__,		\
		       ud->test);					\
		zassert_true(0, "exiting");				\
	}

#define TEST_IPV6_LONG_OK(ud, raddr, laddr, rport, lport)		\
	st = send_ipv6_udp_long_msg(iface, raddr, laddr, rport, lport, ud, \
			       false);					\
	if (!st) {							\
		printk("%d: UDP long test \"%s\" fail\n", __LINE__,	\
		       ud->test);					\
		zassert_true(0, "exiting");				\
	}

#define TEST_IPV4_OK(ud, raddr, laddr, rport, lport)			\
	st = send_ipv4_udp_msg(iface, raddr, laddr, rport, lport, ud,	\
			       false);					\
	if (!st) {							\
		printk("%d: UDP test \"%s\" fail\n", __LINE__,		\
		       ud->test);					\
		zassert_true(0, "exiting");				\
	}

#define TEST_IPV6_FAIL(ud, raddr, laddr, rport, lport)			\
	st = send_ipv6_udp_msg(iface, raddr, laddr, rport, lport, ud,	\
			       true);					\
	if (!st) {							\
		printk("%d: UDP neg test \"%s\" fail\n", __LINE__,	\
		       ud->test);					\
		zassert_true(0, "exiting");				\
	}

#define TEST_IPV4_FAIL(ud, raddr, laddr, rport, lport)			\
	st = send_ipv4_udp_msg(iface, raddr, laddr, rport, lport, ud,	\
			       true);					\
	if (!st) {							\
		printk("%d: UDP neg test \"%s\" fail\n", __LINE__,	\
		       ud->test);					\
		zassert_true(0, "exiting");				\
	}

	ud = REGISTER(AF_INET6, &any_addr6, &any_addr6, 1234, 4242);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_LONG_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_LONG_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_FAIL(ud, &in6addr_peer, &in6addr_my, 1234, 61400);
	TEST_IPV6_FAIL(ud, &in6addr_peer, &in6addr_my, 1234, 61400);
	UNREGISTER(ud);

	ud = REGISTER(AF_INET, &any_addr4, &any_addr4, 1234, 4242);
	TEST_IPV4_OK(ud, &in4addr_peer, &in4addr_my, 1234, 4242);
	TEST_IPV4_OK(ud, &in4addr_peer, &in4addr_my, 1234, 4242);
	TEST_IPV4_FAIL(ud, &in4addr_peer, &in4addr_my, 1234, 4325);
	TEST_IPV4_FAIL(ud, &in4addr_peer, &in4addr_my, 1234, 4325);
	UNREGISTER(ud);

	ud = REGISTER(AF_INET6, &any_addr6, NULL, 1234, 4242);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_FAIL(ud, &in6addr_peer, &in6addr_my, 1234, 61400);
	TEST_IPV6_FAIL(ud, &in6addr_peer, &in6addr_my, 1234, 61400);
	UNREGISTER(ud);

	ud = REGISTER(AF_INET6, NULL, &any_addr6, 1234, 4242);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_LONG_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_LONG_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_FAIL(ud, &in6addr_peer, &in6addr_my, 1234, 61400);
	TEST_IPV6_FAIL(ud, &in6addr_peer, &in6addr_my, 1234, 61400);
	UNREGISTER(ud);

	ud = REGISTER(AF_INET6, &peer_addr6, &my_addr6, 1234, 4242);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 4242);
	TEST_IPV6_FAIL(ud, &in6addr_peer, &in6addr_my, 1234, 4243);

	ud = REGISTER(AF_INET, &peer_addr4, &my_addr4, 1234, 4242);
	TEST_IPV4_OK(ud, &in4addr_peer, &in4addr_my, 1234, 4242);
	TEST_IPV4_FAIL(ud, &in4addr_peer, &in4addr_my, 1234, 4243);

	ud = REGISTER(AF_UNSPEC, NULL, NULL, 1234, 42423);
	TEST_IPV4_OK(ud, &in4addr_peer, &in4addr_my, 1234, 42423);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 42423);

	ud = REGISTER(AF_UNSPEC, NULL, NULL, 1234, 0);
	TEST_IPV4_OK(ud, &in4addr_peer, &in4addr_my, 1234, 42422);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 42422);
	TEST_IPV4_OK(ud, &in4addr_peer, &in4addr_my, 1234, 42422);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 1234, 42422);

	TEST_IPV4_FAIL(ud, &in4addr_peer, &in4addr_my, 12345, 42421);
	TEST_IPV6_FAIL(ud, &in6addr_peer, &in6addr_my, 12345, 42421);

	ud = REGISTER(AF_UNSPEC, NULL, NULL, 0, 0);
	TEST_IPV4_OK(ud, &in4addr_peer, &in4addr_my, 12345, 42421);
	TEST_IPV6_OK(ud, &in6addr_peer, &in6addr_my, 12345, 42421);
	TEST_IPV6_LONG_OK(ud, &in6addr_peer, &in6addr_my, 12345, 42421);

	/* Remote addr same as local addr, these two will never match */
	REGISTER(AF_INET6, &my_addr6, NULL, 1234, 4242);
	REGISTER(AF_INET, &my_addr4, NULL, 1234, 4242);

	/* IPv4 remote addr and IPv6 remote addr, impossible combination */
	REGISTER_FAIL(&my_addr4, &my_addr6, 1234, 4242);

	/**TESTPOINT: Check if tests passed*/
	zassert_false(fail, "Tests failed");

	i--;
	while (i) {
		ret = net_udp_unregister(handlers[i]);
		if (ret < 0 && ret != -ENOENT) {
			printk("Cannot unregister udp %d\n", i);
			zassert_true(0, "exiting");
		}

		i--;
	}

	zassert_true((net_udp_unregister(NULL) < 0), "Unregister udp failed");
	zassert_false(test_failed, "udp tests failed");
}
Пример #24
0
static void test_pkt_read_append(void)
{
	int remaining = strlen(sample_data);
	u8_t verify_rw_short[sizeof(test_rw_short)];
	u8_t verify_rw_long[sizeof(test_rw_long)];
	struct net_pkt *pkt;
	struct net_buf *frag;
	struct net_buf *tfrag;
	struct ipv6_hdr *ipv6;
	struct udp_hdr *udp;
	u8_t data[10];
	int pos = 0;
	int bytes;
	u16_t off;
	u16_t tpos;
	u16_t fail_pos;

	/* Example of multi fragment read, append and skip APS's */
	pkt = net_pkt_get_reserve_rx(0, K_FOREVER);
	frag = net_pkt_get_reserve_rx_data(LL_RESERVE, K_FOREVER);

	/* Place the IP + UDP header in the first fragment */
	if (!net_buf_tailroom(frag)) {
		ipv6 = (struct ipv6_hdr *)(frag->data);
		udp = (struct udp_hdr *)((void *)ipv6 + sizeof(*ipv6));
		if (net_buf_tailroom(frag) < sizeof(ipv6)) {
			printk("Not enough space for IPv6 header, "
			       "needed %zd bytes, has %zd bytes\n",
			       sizeof(ipv6), net_buf_tailroom(frag));
			zassert_true(false, "No space for IPv6 header");
		}
		net_buf_add(frag, sizeof(ipv6));

		if (net_buf_tailroom(frag) < sizeof(udp)) {
			printk("Not enough space for UDP header, "
			       "needed %zd bytes, has %zd bytes\n",
			       sizeof(udp), net_buf_tailroom(frag));
			zassert_true(false, "No space for UDP header");
		}

		net_pkt_set_appdata(pkt, (void *)udp + sizeof(*udp));
		net_pkt_set_appdatalen(pkt, 0);
	}

	net_pkt_frag_add(pkt, frag);

	/* Put some data to rest of the fragments */
	frag = net_pkt_get_reserve_rx_data(LL_RESERVE, K_FOREVER);
	if (net_buf_tailroom(frag) -
	      (CONFIG_NET_BUF_DATA_SIZE - LL_RESERVE)) {
		printk("Invalid number of bytes available in the buf, "
		       "should be 0 but was %zd - %d\n",
		       net_buf_tailroom(frag),
		       CONFIG_NET_BUF_DATA_SIZE - LL_RESERVE);
		zassert_true(false, "Invalid number of bytes avail");
	}

	if (((int)net_buf_tailroom(frag) - remaining) > 0) {
		printk("We should have been out of space now, "
		       "tailroom %zd user data len %zd\n",
		       net_buf_tailroom(frag),
		       strlen(sample_data));
		zassert_true(false, "Not out of space");
	}

	while (remaining > 0) {
		int copy;

		bytes = net_buf_tailroom(frag);
		copy = remaining > bytes ? bytes : remaining;
		memcpy(net_buf_add(frag, copy), &sample_data[pos], copy);

		DBG("Remaining %d left %d copy %d\n", remaining, bytes, copy);

		pos += bytes;
		remaining -= bytes;
		if (net_buf_tailroom(frag) - (bytes - copy)) {
			printk("There should have not been any tailroom left, "
			       "tailroom %zd\n",
			       net_buf_tailroom(frag) - (bytes - copy));
			zassert_true(false, "Still tailroom left");
		}

		net_pkt_frag_add(pkt, frag);
		if (remaining > 0) {
			frag = net_pkt_get_reserve_rx_data(LL_RESERVE,
							   K_FOREVER);
		}
	}

	bytes = net_pkt_get_len(pkt);
	if (bytes != strlen(sample_data)) {
		printk("Invalid number of bytes in message, %zd vs %d\n",
		       strlen(sample_data), bytes);
		zassert_true(false, "Message size wrong");
	}

	/* Failure cases */
	/* Invalid buffer */
	tfrag = net_frag_skip(NULL, 10, &fail_pos, 10);
	zassert_true(!tfrag && fail_pos == 0xffff, "Invalid case NULL buffer");

	/* Invalid: Skip more than a buffer length.*/
	tfrag = net_buf_frag_last(pkt->frags);
	tfrag = net_frag_skip(tfrag, tfrag->len - 1, &fail_pos, tfrag->len + 2);
	if (!(!tfrag && fail_pos == 0xffff)) {
		printk("Invalid case offset %d length to skip %d,"
		       "frag length %d\n",
		       tfrag->len - 1, tfrag->len + 2, tfrag->len);
		zassert_true(false, "Invalid offset");
	}

	/* Invalid offset */
	tfrag = net_buf_frag_last(pkt->frags);
	tfrag = net_frag_skip(tfrag, tfrag->len + 10, &fail_pos, 10);
	if (!(!tfrag && fail_pos == 0xffff)) {
		printk("Invalid case offset %d length to skip %d,"
		       "frag length %d\n",
		       tfrag->len + 10, 10, tfrag->len);
		zassert_true(false, "Invalid offset");
	}

	/* Valid cases */

	/* Offset is more than single fragment length */
	/* Get the first data fragment */
	tfrag = pkt->frags;
	tfrag = tfrag->frags;
	off = tfrag->len;
	tfrag = net_frag_read(tfrag, off + 10, &tpos, 10, data);
	if (!tfrag ||
	    memcmp(sample_data + off + 10, data, 10)) {
		printk("Failed to read from offset %d, frag length %d "
		       "read length %d\n",
		       tfrag->len + 10, tfrag->len, 10);
		zassert_true(false, "Fail offset read");
	}

	/* Skip till end of all fragments */
	/* Get the first data fragment */
	tfrag = pkt->frags;
	tfrag = tfrag->frags;
	tfrag = net_frag_skip(tfrag, 0, &tpos, strlen(sample_data));
	zassert_true(!tfrag && tpos == 0,
		     "Invalid skip till end of all fragments");

	/* Short data test case */
	/* Test case scenario:
	 * 1) Cache the current fragment and offset
	 * 2) Append short data
	 * 3) Append short data again
	 * 4) Skip first short data from cached frag or offset
	 * 5) Read short data and compare
	 */
	tfrag = net_buf_frag_last(pkt->frags);
	off = tfrag->len;

	zassert_true(net_pkt_append_all(pkt, (u16_t)sizeof(test_rw_short),
					test_rw_short, K_FOREVER),
		     "net_pkt_append failed");

	zassert_true(net_pkt_append_all(pkt, (u16_t)sizeof(test_rw_short),
					test_rw_short, K_FOREVER),
		     "net_pkt_append failed");

	tfrag = net_frag_skip(tfrag, off, &tpos,
			     (u16_t)sizeof(test_rw_short));
	zassert_not_null(tfrag, "net_frag_skip failed");

	tfrag = net_frag_read(tfrag, tpos, &tpos,
			     (u16_t)sizeof(test_rw_short),
			     verify_rw_short);
	zassert_true(!tfrag && tpos == 0, "net_frag_read failed");
	zassert_false(memcmp(test_rw_short, verify_rw_short,
			     sizeof(test_rw_short)),
		      "net_frag_read failed with mismatch data");

	/* Long data test case */
	/* Test case scenario:
	 * 1) Cache the current fragment and offset
	 * 2) Append long data
	 * 3) Append long data again
	 * 4) Skip first long data from cached frag or offset
	 * 5) Read long data and compare
	 */
	tfrag = net_buf_frag_last(pkt->frags);
	off = tfrag->len;

	zassert_true(net_pkt_append_all(pkt, (u16_t)sizeof(test_rw_long),
					test_rw_long, K_FOREVER),
		     "net_pkt_append failed");

	zassert_true(net_pkt_append_all(pkt, (u16_t)sizeof(test_rw_long),
					test_rw_long, K_FOREVER),
		     "net_pkt_append failed");

	tfrag = net_frag_skip(tfrag, off, &tpos,
			      (u16_t)sizeof(test_rw_long));
	zassert_not_null(tfrag, "net_frag_skip failed");

	tfrag = net_frag_read(tfrag, tpos, &tpos,
			     (u16_t)sizeof(test_rw_long),
			     verify_rw_long);
	zassert_true(!tfrag && tpos == 0, "net_frag_read failed");
	zassert_false(memcmp(test_rw_long, verify_rw_long,
			     sizeof(test_rw_long)),
		      "net_frag_read failed with mismatch data");

	net_pkt_unref(pkt);

	DBG("test_pkt_read_append passed\n");
}
Пример #25
0
static void tThread_entry_lock_forever(void *p1, void *p2, void *p3)
{
	zassert_false(k_mutex_lock((struct k_mutex *)p1, K_FOREVER) == 0,
		     "access locked resource from spawn thread");
	/* should not hit here */
}
Пример #26
0
static void tsema_thread_isr(struct k_sem *psem)
{
	/**TESTPOINT: thread-isr sync via sema*/
	irq_offload(tIsr_entry, psem);
	zassert_false(k_sem_take(psem, K_FOREVER), NULL);
}
Пример #27
0
static void test_pkt_read_write_insert(void)
{
	struct net_buf *read_frag;
	struct net_buf *temp_frag;
	struct net_pkt *pkt;
	struct net_buf *frag;
	u8_t read_data[100];
	u16_t read_pos;
	u16_t len;
	u16_t pos;

	/* Example of multi fragment read, append and skip APS's */
	pkt = net_pkt_get_reserve_rx(0, K_FOREVER);
	net_pkt_set_ll_reserve(pkt, LL_RESERVE);

	frag = net_pkt_get_reserve_rx_data(net_pkt_ll_reserve(pkt),
					   K_FOREVER);
	net_pkt_frag_add(pkt, frag);

	/* 1) Offset is with in input fragment.
	 * Write app data after IPv6 and UDP header. (If the offset is after
	 * IPv6 + UDP header size, api will create empty space till offset
	 * and write data).
	 */
	frag = net_pkt_write(pkt, frag, NET_IPV6UDPH_LEN, &pos, 10,
			     (u8_t *)sample_data, K_FOREVER);
	zassert_false(!frag || pos != 58, "Usecase 1: Write failed");

	read_frag = net_frag_read(frag, NET_IPV6UDPH_LEN, &read_pos, 10,
				 read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		      "Usecase 1: Read failed");

	zassert_false(memcmp(read_data, sample_data, 10),
		      "Usecase 1: Read data mismatch");

	/* 2) Write IPv6 and UDP header at offset 0. (Empty space is created
	 * already in Usecase 1, just need to fill the header, at this point
	 * there shouldn't be any length change).
	 */
	frag = net_pkt_write(pkt, frag, 0, &pos, NET_IPV6UDPH_LEN,
			     (u8_t *)sample_data, K_FOREVER);
	zassert_false(!frag || pos != 48, "Usecase 2: Write failed");

	read_frag = net_frag_read(frag, 0, &read_pos, NET_IPV6UDPH_LEN,
				 read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		     "Usecase 2: Read failed");

	zassert_false(memcmp(read_data, sample_data, NET_IPV6UDPH_LEN),
		      "Usecase 2: Read data mismatch");

	net_pkt_unref(pkt);

	pkt = net_pkt_get_reserve_rx(0, K_FOREVER);
	net_pkt_set_ll_reserve(pkt, LL_RESERVE);

	/* 3) Offset is in next to next fragment.
	 * Write app data after 2 fragments. (If the offset far away, api will
	 * create empty fragments(space) till offset and write data).
	 */
	frag = net_pkt_write(pkt, pkt->frags, 200, &pos, 10,
			     (u8_t *)sample_data + 10, K_FOREVER);
	zassert_not_null(frag, "Usecase 3: Write failed");

	read_frag = net_frag_read(frag, pos - 10, &read_pos, 10,
				 read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		     "Usecase 3: Read failed");

	zassert_false(memcmp(read_data, sample_data + 10, 10),
		      "Usecase 3: Read data mismatch");

	/* 4) Offset is in next to next fragment (overwrite).
	 * Write app data after 2 fragments. (Space is already available from
	 * Usecase 3, this scenatio doesn't create any space, it just overwrites
	 * the existing data.
	 */
	frag = net_pkt_write(pkt, pkt->frags, 190, &pos, 10,
			     (u8_t *)sample_data, K_FOREVER);
	zassert_not_null(frag, "Usecase 4: Write failed");

	read_frag = net_frag_read(frag, pos - 10, &read_pos, 20,
				 read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		      "Usecase 4: Read failed");

	zassert_false(memcmp(read_data, sample_data, 20),
		      "Usecase 4: Read data mismatch");

	net_pkt_unref(pkt);

	/* 5) Write 20 bytes in fragment which has only 10 bytes space.
	 *    API should overwrite on first 10 bytes and create extra 10 bytes
	 *    and write there.
	 */
	pkt = net_pkt_get_reserve_rx(0, K_FOREVER);
	net_pkt_set_ll_reserve(pkt, LL_RESERVE);

	frag = net_pkt_get_reserve_rx_data(net_pkt_ll_reserve(pkt),
					   K_FOREVER);
	net_pkt_frag_add(pkt, frag);

	/* Create 10 bytes space. */
	net_buf_add(frag, 10);

	frag = net_pkt_write(pkt, frag, 0, &pos, 20, (u8_t *)sample_data,
			     K_FOREVER);
	zassert_false(!frag && pos != 20, "Usecase 5: Write failed");

	read_frag = net_frag_read(frag, 0, &read_pos, 20, read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		     "Usecase 5: Read failed");

	zassert_false(memcmp(read_data, sample_data, 20),
		      "USecase 5: Read data mismatch");

	net_pkt_unref(pkt);

	/* 6) First fragment is full, second fragment has 10 bytes tail room,
	 *    third fragment has 5 bytes.
	 *    Write data (30 bytes) in second fragment where offset is 10 bytes
	 *    before the tailroom.
	 *    So it should overwrite 10 bytes and create space for another 10
	 *    bytes and write data. Third fragment 5 bytes overwritten and space
	 *    for 5 bytes created.
	 */
	pkt = net_pkt_get_reserve_rx(0, K_FOREVER);
	net_pkt_set_ll_reserve(pkt, LL_RESERVE);

	/* First fragment make it fully occupied. */
	frag = net_pkt_get_reserve_rx_data(net_pkt_ll_reserve(pkt),
					   K_FOREVER);
	net_pkt_frag_add(pkt, frag);

	len = net_buf_tailroom(frag);
	net_buf_add(frag, len);

	/* 2nd fragment last 10 bytes tailroom, rest occupied */
	frag = net_pkt_get_reserve_rx_data(net_pkt_ll_reserve(pkt),
					   K_FOREVER);
	net_pkt_frag_add(pkt, frag);

	len = net_buf_tailroom(frag);
	net_buf_add(frag, len - 10);

	read_frag = temp_frag = frag;
	read_pos = frag->len - 10;

	/* 3rd fragment, only 5 bytes occupied */
	frag = net_pkt_get_reserve_rx_data(net_pkt_ll_reserve(pkt),
					   K_FOREVER);
	net_pkt_frag_add(pkt, frag);
	net_buf_add(frag, 5);

	temp_frag = net_pkt_write(pkt, temp_frag, temp_frag->len - 10, &pos,
				  30, (u8_t *) sample_data, K_FOREVER);
	zassert_not_null(temp_frag, "Use case 6: Write failed");

	read_frag = net_frag_read(read_frag, read_pos, &read_pos, 30,
				 read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		      "Usecase 6: Read failed");

	zassert_false(memcmp(read_data, sample_data, 30),
		      "Usecase 6: Read data mismatch");

	net_pkt_unref(pkt);

	/* 7) Offset is with in input fragment.
	 * Write app data after IPv6 and UDP header. (If the offset is after
	 * IPv6 + UDP header size, api will create empty space till offset
	 * and write data). Insert some app data after IPv6 + UDP header
	 * before first set of app data.
	 */

	pkt = net_pkt_get_reserve_rx(0, K_FOREVER);
	net_pkt_set_ll_reserve(pkt, LL_RESERVE);

	/* First fragment make it fully occupied. */
	frag = net_pkt_get_reserve_rx_data(net_pkt_ll_reserve(pkt),
					   K_FOREVER);
	net_pkt_frag_add(pkt, frag);

	frag = net_pkt_write(pkt, frag, NET_IPV6UDPH_LEN, &pos, 10,
			     (u8_t *)sample_data + 10, K_FOREVER);
	zassert_false(!frag || pos != 58, "Usecase 7: Write failed");

	read_frag = net_frag_read(frag, NET_IPV6UDPH_LEN, &read_pos, 10,
				 read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		      "Usecase 7: Read failed");

	zassert_false(memcmp(read_data, sample_data + 10, 10),
		     "Usecase 7: Read data mismatch");

	zassert_true(net_pkt_insert(pkt, frag, NET_IPV6UDPH_LEN, 10,
				    (u8_t *)sample_data, K_FOREVER),
		     "Usecase 7: Insert failed");

	read_frag = net_frag_read(frag, NET_IPV6UDPH_LEN, &read_pos, 20,
				 read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		      "Usecase 7: Read after failed");

	zassert_false(memcmp(read_data, sample_data, 20),
		      "Usecase 7: Read data mismatch after insertion");

	/* Insert data outside input fragment length, error case. */
	zassert_false(net_pkt_insert(pkt, frag, 70, 10, (u8_t *)sample_data,
				     K_FOREVER),
		      "Usecase 7: False insert failed");

	net_pkt_unref(pkt);

	/* 8) Offset is with in input fragment.
	 * Write app data after IPv6 and UDP header. (If the offset is after
	 * IPv6 + UDP header size, api will create empty space till offset
	 * and write data). Insert some app data after IPv6 + UDP header
	 * before first set of app data. Insertion data is long which will
	 * take two fragments.
	 */
	pkt = net_pkt_get_reserve_rx(0, K_FOREVER);
	net_pkt_set_ll_reserve(pkt, LL_RESERVE);

	/* First fragment make it fully occupied. */
	frag = net_pkt_get_reserve_rx_data(net_pkt_ll_reserve(pkt),
					   K_FOREVER);
	net_pkt_frag_add(pkt, frag);

	frag = net_pkt_write(pkt, frag, NET_IPV6UDPH_LEN, &pos, 10,
			     (u8_t *)sample_data + 60, K_FOREVER);
	zassert_false(!frag || pos != 58, "Usecase 8: Write failed");

	read_frag = net_frag_read(frag, NET_IPV6UDPH_LEN, &read_pos, 10,
				 read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		      "Usecase 8: Read failed");

	zassert_false(memcmp(read_data, sample_data + 60, 10),
		      "Usecase 8: Read data mismatch");

	zassert_true(net_pkt_insert(pkt, frag, NET_IPV6UDPH_LEN, 60,
				    (u8_t *)sample_data, K_FOREVER),
		     "Usecase 8: Insert failed");

	read_frag = net_frag_read(frag, NET_IPV6UDPH_LEN, &read_pos, 70,
				 read_data);
	zassert_false(!read_frag && read_pos == 0xffff,
		      "Usecase 8: Read after failed");

	zassert_false(memcmp(read_data, sample_data, 70),
		      "Usecase 8: Read data mismatch after insertion");

	net_pkt_unref(pkt);

	DBG("test_pkt_read_write_insert passed\n");
}
Пример #28
0
static void test_fragment_compact(void)
{
	struct net_pkt *pkt;
	struct net_buf *frags[FRAG_COUNT], *frag;
	int i, bytes, total, count;

	pkt = net_pkt_get_reserve_rx(0, K_FOREVER);
	frag = NULL;

	for (i = 0, total = 0; i < FRAG_COUNT; i++) {
		frags[i] = net_pkt_get_reserve_rx_data(12, K_FOREVER);

		if (frag) {
			net_buf_frag_add(frag, frags[i]);
		}

		frag = frags[i];

		/* Copy character test data in front of the fragment */
		memcpy(net_buf_add(frags[i], sizeof(test_data)),
		       test_data, sizeof(test_data));

		/* Followed by bytes of zeroes */
		memset(net_buf_add(frags[i], sizeof(test_data)), 0,
		       sizeof(test_data));

		total++;
	}

	if (total != FRAG_COUNT) {
		printk("There should be %d fragments but was %d\n",
		       FRAG_COUNT, total);
		zassert_true(false, "Invalid fragment count");
	}

	DBG("step 1\n");

	pkt->frags = net_buf_frag_add(pkt->frags, frags[0]);

	bytes = net_pkt_get_len(pkt);
	if (bytes != FRAG_COUNT * sizeof(test_data) * 2) {
		printk("Compact test failed, fragments had %d bytes but "
		       "should have had %zd\n", bytes,
		       FRAG_COUNT * sizeof(test_data) * 2);
		zassert_true(false, "Invalid fragment bytes");
	}

	zassert_false(net_pkt_is_compact(pkt),
		      "The pkt is definitely not compact");

	DBG("step 2\n");

	net_pkt_compact(pkt);

	zassert_true(net_pkt_is_compact(pkt),
		     "The pkt should be in compact form");

	DBG("step 3\n");

	/* Try compacting again, nothing should happen */
	net_pkt_compact(pkt);

	zassert_true(net_pkt_is_compact(pkt),
		     "The pkt should be compacted now");

	total = calc_fragments(pkt);

	/* Add empty fragment at the end and compact, the last fragment
	 * should be removed.
	 */
	frag = net_pkt_get_reserve_rx_data(0, K_FOREVER);

	net_pkt_frag_add(pkt, frag);

	count = calc_fragments(pkt);

	DBG("step 4\n");

	net_pkt_compact(pkt);

	i = calc_fragments(pkt);

	if (count != (i + 1)) {
		printk("Last fragment removal failed, chain should have %d "
		       "fragments but had %d\n", i-1, i);
		zassert_true(false, "Last frag rm fails");
	}

	if (i != total) {
		printk("Fragments missing, expecting %d but got %d\n",
		       total, i);
		zassert_true(false, "Frags missing");
	}

	/* Add two empty fragments at the end and compact, the last two
	 * fragment should be removed.
	 */
	frag = net_pkt_get_reserve_rx_data(0, K_FOREVER);

	net_pkt_frag_add(pkt, frag);

	frag = net_pkt_get_reserve_rx_data(0, K_FOREVER);

	net_pkt_frag_add(pkt, frag);

	count = calc_fragments(pkt);

	DBG("step 5\n");

	net_pkt_compact(pkt);

	i = calc_fragments(pkt);

	if (count != (i + 2)) {
		printk("Last two fragment removal failed, chain should have "
		       "%d fragments but had %d\n", i-2, i);
		zassert_true(false, "Last two frag rm fails");
	}

	if (i != total) {
		printk("Fragments missing, expecting %d but got %d\n",
		       total, i);
		zassert_true(false, "Frags missing");
	}

	/* Add empty fragment at the beginning and at the end, and then
	 * compact, the two fragment should be removed.
	 */
	frag = net_pkt_get_reserve_rx_data(0, K_FOREVER);

	net_pkt_frag_insert(pkt, frag);

	frag = net_pkt_get_reserve_rx_data(0, K_FOREVER);

	net_pkt_frag_add(pkt, frag);

	count = calc_fragments(pkt);

	DBG("step 6\n");

	net_pkt_compact(pkt);

	i = calc_fragments(pkt);

	if (count != (i + 2)) {
		printk("Two fragment removal failed, chain should have "
		       "%d fragments but had %d\n", i-2, i);
		zassert_true(false, "Two frag rm fails");
	}

	if (i != total) {
		printk("Fragments missing, expecting %d but got %d\n",
		       total, i);
		zassert_true(false, "Frags missing");
	}

	DBG("test_fragment_compact passed\n");
}
Пример #29
0
static void test_fragment_split(void)
{
#define TEST_FRAG_COUNT (FRAG_COUNT - 2)
#define FRAGA (FRAG_COUNT - 2)
#define FRAGB (FRAG_COUNT - 1)
	struct net_pkt *pkt;
	struct net_buf *frags[FRAG_COUNT], *frag, *frag_a, *frag_b;
	int i, total, split_a, split_b;
	int ret, frag_size;

	memset(frags, 0, FRAG_COUNT * sizeof(void *));

	pkt = net_pkt_get_reserve_rx(0, K_FOREVER);
	frag = NULL;

	for (i = 0, total = 0; i < TEST_FRAG_COUNT; i++) {
		frags[i] = net_pkt_get_reserve_rx_data(12, K_FOREVER);

		if (frag) {
			net_buf_frag_add(frag, frags[i]);
		}

		frag = frags[i];

		/* Copy some test data in front of the fragment */
		memcpy(net_buf_add(frags[i], sizeof(frag_data)),
		       frag_data, sizeof(frag_data));

		total++;
	}

	if (total != TEST_FRAG_COUNT) {
		printk("There should be %d fragments but was %d\n",
		       TEST_FRAG_COUNT, total);
		zassert_true(false, "Frags missing");
	}

	frag_size = frags[0]->size;
	zassert_true(frag_size > 0, "Invalid frag size");

	net_pkt_frag_add(pkt, frags[0]);

	frag_a = frags[FRAGA];
	frag_b = frags[FRAGB];

	zassert_is_null(frag_a, "frag_a is not NULL");
	zassert_is_null(frag_b, "frag_b is not NULL");

	split_a = frag_size * 2 / 3;
	split_b = frag_size - split_a;

	zassert_true(split_a > 0, "A size is 0");
	zassert_true(split_a > split_b, "A is smaller than B");

	/* Test some error cases first */
	ret = net_pkt_split(NULL, NULL, 1024, &frag_a, &frag_b, K_NO_WAIT);
	zassert_equal(ret, -EINVAL, "Invalid buf pointers");

	ret = net_pkt_split(pkt, pkt->frags, CONFIG_NET_BUF_DATA_SIZE + 1,
			    &frag_a, &frag_b, K_NO_WAIT);
	zassert_equal(ret, 0, "Split failed");

	ret = net_pkt_split(pkt, pkt->frags, split_a,
			     &frag_a, &frag_b, K_NO_WAIT);
	zassert_equal(ret, 0, "Cannot split frag");

	if (frag_a->len != split_a) {
		printk("Frag_a len %d not %d\n", frag_a->len, split_a);
		zassert_equal(frag_a->len, split_a, "Frag_a len wrong");
	}

	if (frag_b->len != split_b) {
		printk("Frag_b len %d not %d\n", frag_b->len, split_b);
		zassert_true(false, "Frag_b len wrong");
	}

	zassert_false(memcmp(pkt->frags->data, frag_a->data, split_a),
		      "Frag_a data mismatch");

	zassert_false(memcmp(pkt->frags->data + split_a, frag_b->data, split_b),
		      "Frag_b data mismatch");
}
Пример #30
0
static void tIsr(void *data)
{
	/** TESTPOINT: The code is running at ISR.*/
	zassert_false(k_is_preempt_thread(), NULL);
}