Пример #1
0
static int
zfs_sort_snaps(zfs_handle_t *zhp, void *data)
{
	avl_tree_t *avl = data;
	zfs_node_t *node;
	zfs_node_t search;

	search.zn_handle = zhp;
	node = avl_find(avl, &search, NULL);
	if (node) {
		/*
		 * If this snapshot was renamed while we were creating the
		 * AVL tree, it's possible that we already inserted it under
		 * its old name. Remove the old handle before adding the new
		 * one.
		 */
		zfs_close(node->zn_handle);
		avl_remove(avl, node);
		free(node);
	}

	node = zfs_alloc(zhp->zfs_hdl, sizeof (zfs_node_t));
	node->zn_handle = zhp;
	avl_add(avl, node);

	return (0);
}
Пример #2
0
/*
 * Like the above, but silent on error.  Used when iterating over pools (because
 * the configuration cache may be out of date).
 */
int
zpool_open_silent(libzfs_handle_t *hdl, const char *pool, zpool_handle_t **ret)
{
	zpool_handle_t *zhp;
	boolean_t missing;

	if ((zhp = zfs_alloc(hdl, sizeof (zpool_handle_t))) == NULL)
		return (-1);

	zhp->zpool_hdl = hdl;
	(void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name));

	if (zpool_refresh_stats(zhp, &missing) != 0) {
		zpool_close(zhp);
		return (-1);
	}

	if (missing) {
		zpool_close(zhp);
		*ret = NULL;
		return (0);
	}

	*ret = zhp;
	return (0);
}
Пример #3
0
int
zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
{
    get_all_cb_t cb = { 0 };
    libzfs_handle_t *hdl = zhp->zpool_hdl;
    zfs_handle_t *zfsp;
    int i, ret = -1;
    int *good;

    /*
     * Gather all non-snap datasets within the pool.
     */
    if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL)
        goto out;

    libzfs_add_handle(&cb, zfsp);
    if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0)
        goto out;
    /*
     * Sort the datasets by mountpoint.
     */
    qsort(cb.cb_handles, cb.cb_used, sizeof (void *),
          libzfs_dataset_cmp);

    /*
     * And mount all the datasets, keeping track of which ones
     * succeeded or failed.
     */
    if ((good = zfs_alloc(zhp->zpool_hdl,
                          cb.cb_used * sizeof (int))) == NULL)
        goto out;

    ret = 0;
    for (i = 0; i < cb.cb_used; i++) {
        if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0)
            ret = -1;
        else
            good[i] = 1;
    }

    /*
     * Then share all the ones that need to be shared. This needs
     * to be a separate pass in order to avoid excessive reloading
     * of the configuration. Good should never be NULL since
     * zfs_alloc is supposed to exit if memory isn't available.
     */
    for (i = 0; i < cb.cb_used; i++) {
        if (good[i] && zfs_share(cb.cb_handles[i]) != 0)
            ret = -1;
    }

    free(good);

out:
    for (i = 0; i < cb.cb_used; i++)
        zfs_close(cb.cb_handles[i]);
    free(cb.cb_handles);

    return (ret);
}
Пример #4
0
/*
 * Construct a new graph object.  We allow the size to be specified as a
 * parameter so in the future we can size the hash according to the number of
 * datasets in the pool.
 */
static zfs_graph_t *
zfs_graph_create(libzfs_handle_t *hdl, size_t size)
{
	zfs_graph_t *zgp = zfs_alloc(hdl, sizeof (zfs_graph_t));

	if (zgp == NULL)
		return (NULL);

	zgp->zg_size = size;
	if ((zgp->zg_hash = zfs_alloc(hdl,
	    size * sizeof (zfs_vertex_t *))) == NULL) {
		free(zgp);
		return (NULL);
	}

	return (zgp);
}
Пример #5
0
/*
 * Construct a new graph object.  We allow the size to be specified as a
 * parameter so in the future we can size the hash according to the number of
 * datasets in the pool.
 */
static zfs_graph_t *
zfs_graph_create(libzfs_handle_t *hdl, const char *dataset, size_t size)
{
	zfs_graph_t *zgp = zfs_alloc(hdl, sizeof (zfs_graph_t));

	if (zgp == NULL)
		return (NULL);

	zgp->zg_size = size;
	if ((zgp->zg_hash = zfs_alloc(hdl,
	    size * sizeof (zfs_vertex_t *))) == NULL) {
		free(zgp);
		return (NULL);
	}

	zgp->zg_root = dataset;
	zgp->zg_clone_count = 0;

	return (zgp);
}
Пример #6
0
/*
 * Allocate a new edge pointing to the target vertex.
 */
static zfs_edge_t *
zfs_edge_create(libzfs_handle_t *hdl, zfs_vertex_t *dest)
{
	zfs_edge_t *zep = zfs_alloc(hdl, sizeof (zfs_edge_t));

	if (zep == NULL)
		return (NULL);

	zep->ze_dest = dest;

	return (zep);
}
Пример #7
0
static int
derive_key(libzfs_handle_t *hdl, zfs_keyformat_t format, uint64_t iters,
    uint8_t *key_material, size_t key_material_len, uint64_t salt,
    uint8_t **key_out)
{
	int ret;
	uint8_t *key;

	*key_out = NULL;

	key = zfs_alloc(hdl, WRAPPING_KEY_LEN);
	if (!key)
		return (ENOMEM);

	switch (format) {
	case ZFS_KEYFORMAT_RAW:
		bcopy(key_material, key, WRAPPING_KEY_LEN);
		break;
	case ZFS_KEYFORMAT_HEX:
		ret = hex_key_to_raw((char *)key_material,
		    WRAPPING_KEY_LEN * 2, key);
		if (ret != 0) {
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
			    "Invalid hex key provided."));
			goto error;
		}
		break;
	case ZFS_KEYFORMAT_PASSPHRASE:
		salt = LE_64(salt);
		ret = pbkdf2(key_material, strlen((char *)key_material),
		    ((uint8_t *)&salt), sizeof (uint64_t), iters,
		    key, WRAPPING_KEY_LEN);
		if (ret != 0) {
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
			    "Failed to generate key from passphrase."));
			goto error;
		}
		break;
	default:
		ret = EINVAL;
		goto error;
	}

	*key_out = key;
	return (0);

error:
	free(key);

	*key_out = NULL;
	return (ret);
}
Пример #8
0
/*
 * Construct a complete graph of all necessary vertices.  First, we iterate over
 * only our object's children.  If we don't find any cloned snapshots, then we
 * simple return that.  Otherwise, we have to start at the pool root and iterate
 * over all datasets.
 */
static zfs_graph_t *
construct_graph(libzfs_handle_t *hdl, const char *dataset)
{
	zfs_graph_t *zgp = zfs_graph_create(hdl, ZFS_GRAPH_SIZE);
	zfs_cmd_t zc = { 0 };
	int ret = 0;

	if (zgp == NULL)
		return (zgp);

	/*
	 * We need to explicitly check whether this dataset has clones or not,
	 * since iterate_children() only checks the children.
	 */
	(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
	(void) ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc);

	if (zc.zc_objset_stats.dds_num_clones != 0 ||
	    (ret = iterate_children(hdl, zgp, dataset)) != 0) {
		/*
		 * Determine pool name and try again.
		 */
		char *pool, *slash;

		if ((slash = strchr(dataset, '/')) != NULL ||
		    (slash = strchr(dataset, '@')) != NULL) {
			pool = zfs_alloc(hdl, slash - dataset + 1);
			if (pool == NULL) {
				zfs_graph_destroy(zgp);
				return (NULL);
			}
			(void) strncpy(pool, dataset, slash - dataset);
			pool[slash - dataset] = '\0';

			if (iterate_children(hdl, zgp, pool) == -1 ||
			    zfs_graph_add(hdl, zgp, pool, NULL, 0) != 0) {
				free(pool);
				zfs_graph_destroy(zgp);
				return (NULL);
			}

			free(pool);
		}
	}

	if (ret == -1 || zfs_graph_add(hdl, zgp, dataset, NULL, 0) != 0) {
		zfs_graph_destroy(zgp);
		return (NULL);
	}

	return (zgp);
}
Пример #9
0
/*
 * Allocate a new vertex with the given name.
 */
static zfs_vertex_t *
zfs_vertex_create(libzfs_handle_t *hdl, const char *dataset)
{
	zfs_vertex_t *zvp = zfs_alloc(hdl, sizeof (zfs_vertex_t));

	if (zvp == NULL)
		return (NULL);

	assert(strlen(dataset) < ZFS_MAXNAMELEN);

	(void) strlcpy(zvp->zv_dataset, dataset, sizeof (zvp->zv_dataset));

	if ((zvp->zv_edges = zfs_alloc(hdl,
	    MIN_EDGECOUNT * sizeof (void *))) == NULL) {
		free(zvp);
		return (NULL);
	}

	zvp->zv_edgealloc = MIN_EDGECOUNT;

	return (zvp);
}
Пример #10
0
/*
 * Given a graph, do a recursive topological sort into the given array.  This is
 * really just a depth first search, so that the deepest nodes appear first.
 * hijack the 'zv_visited' marker to avoid visiting the same vertex twice.
 */
static int
topo_sort(libzfs_handle_t *hdl, boolean_t allowrecursion, char **result,
    size_t *idx, zfs_vertex_t *zgv)
{
	int i;

	if (zgv->zv_visited == VISIT_SORT_PRE && !allowrecursion) {
		/*
		 * If we've already seen this vertex as part of our depth-first
		 * search, then we have a cyclic dependency, and we must return
		 * an error.
		 */
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
		    "recursive dependency at '%s'"),
		    zgv->zv_dataset);
		return (zfs_error(hdl, EZFS_RECURSIVE,
		    dgettext(TEXT_DOMAIN,
		    "cannot determine dependent datasets")));
	} else if (zgv->zv_visited >= VISIT_SORT_PRE) {
		/*
		 * If we've already processed this as part of the topological
		 * sort, then don't bother doing so again.
		 */
		return (0);
	}

	zgv->zv_visited = VISIT_SORT_PRE;

	/* avoid doing a search if we don't have to */
	zfs_vertex_sort_edges(zgv);
	for (i = 0; i < zgv->zv_edgecount; i++) {
		if (topo_sort(hdl, allowrecursion, result, idx,
		    zgv->zv_edges[i]->ze_dest) != 0)
			return (-1);
	}

	/* we may have visited this in the course of the above */
	if (zgv->zv_visited == VISIT_SORT_POST)
		return (0);

	if ((result[*idx] = zfs_alloc(hdl,
	    strlen(zgv->zv_dataset) + 1)) == NULL)
		return (-1);

	(void) strcpy(result[*idx], zgv->zv_dataset);
	*idx += 1;
	zgv->zv_visited = VISIT_SORT_POST;
	return (0);
}
Пример #11
0
/*ARGSUSED*/
static size_t
get_keydata_curl(void *ptr, size_t size, size_t nmemb, void *arg)
{
	struct cb_arg_curl *cb = arg;
	size_t datalen = size * nmemb;

	if (ptr == NULL || datalen == 0)
		return (0);

	cb->cb_keydatalen = datalen;
	cb->cb_keydata = zfs_alloc(cb->cb_hdl, datalen);
	bcopy(ptr, cb->cb_keydata, datalen);

	return (datalen);
}
Пример #12
0
/*
 * Returns a handle to the pool that contains the provided dataset.
 * If a handle to that pool already exists then that handle is returned.
 * Otherwise, a new handle is created and added to the list of handles.
 */
static zpool_handle_t *
zpool_handle(zfs_handle_t *zhp)
{
	char *pool_name;
	int len;
	zpool_handle_t *zph;

	len = strcspn(zhp->zfs_name, "/@") + 1;
	pool_name = zfs_alloc(zhp->zfs_hdl, len);
	(void) strlcpy(pool_name, zhp->zfs_name, len);

	zph = zpool_find_handle(zhp, pool_name, len);
	if (zph == NULL)
		zph = zpool_add_handle(zhp, pool_name);

	free(pool_name);
	return (zph);
}
Пример #13
0
/*
 * The only public interface for this file.  Do the dirty work of constructing a
 * child list for the given object.  Construct the graph, do the toplogical
 * sort, and then return the array of strings to the caller.
 *
 * The 'allowrecursion' parameter controls behavior when cycles are found.  If
 * it is set, the the cycle is ignored and the results returned as if the cycle
 * did not exist.  If it is not set, then the routine will generate an error if
 * a cycle is found.
 */
int
get_dependents(libzfs_handle_t *hdl, boolean_t allowrecursion,
    const char *dataset, char ***result, size_t *count)
{
	zfs_graph_t *zgp;
	zfs_vertex_t *zvp;

	if ((zgp = construct_graph(hdl, dataset)) == NULL)
		return (-1);

	if ((*result = zfs_alloc(hdl,
	    zgp->zg_nvertex * sizeof (char *))) == NULL) {
		zfs_graph_destroy(zgp);
		return (-1);
	}

	if ((zvp = zfs_graph_lookup(hdl, zgp, dataset, 0)) == NULL) {
		free(*result);
		zfs_graph_destroy(zgp);
		return (-1);
	}

	*count = 0;
	if (topo_sort(hdl, allowrecursion, *result, count, zvp) != 0) {
		free(*result);
		zfs_graph_destroy(zgp);
		return (-1);
	}

	/*
	 * Get rid of the last entry, which is our starting vertex and not
	 * strictly a dependent.
	 */
	assert(*count > 0);
	free((*result)[*count - 1]);
	(*count)--;

	zfs_graph_destroy(zgp);

	return (0);
}
Пример #14
0
int
zcmd_write_src_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl,
    size_t *size)
{
	char *packed;
	size_t len;

	verify(nvlist_size(nvl, &len, NV_ENCODE_NATIVE) == 0);

	if ((packed = zfs_alloc(hdl, len)) == NULL)
		return (-1);

	verify(nvlist_pack(nvl, &packed, &len, NV_ENCODE_NATIVE, 0) == 0);

	zc->zc_nvlist_src = (uint64_t)(uintptr_t)packed;
	zc->zc_nvlist_src_size = len;

	if (size)
		*size = len;
	return (0);
}
Пример #15
0
/*
 * Open a handle to the given pool, even if the pool is currently in the FAULTED
 * state.
 */
zpool_handle_t *
zpool_open_canfail(libzfs_handle_t *hdl, const char *pool)
{
	zpool_handle_t *zhp;
	boolean_t missing;

	/*
	 * Make sure the pool name is valid.
	 */
	if (!zpool_name_valid(hdl, B_TRUE, pool)) {
		(void) zfs_error(hdl, EZFS_INVALIDNAME,
		    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
		    pool);
		return (NULL);
	}

	if ((zhp = zfs_alloc(hdl, sizeof (zpool_handle_t))) == NULL)
		return (NULL);

	zhp->zpool_hdl = hdl;
	(void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name));

	if (zpool_refresh_stats(zhp, &missing) != 0) {
		zpool_close(zhp);
		return (NULL);
	}

	if (missing) {
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
		    "no such pool"));
		(void) zfs_error(hdl, EZFS_NOENT,
		    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
		    pool);
		zpool_close(zhp);
		return (NULL);
	}

	return (zhp);
}
Пример #16
0
/*
 * Construct a complete graph of all necessary vertices.  First, iterate over
 * only our object's children.  If no cloned snapshots are found, or all of
 * the cloned snapshots are in this subtree then return a graph of the subtree.
 * Otherwise, start at the root of the pool and iterate over all datasets.
 */
static zfs_graph_t *
construct_graph(libzfs_handle_t *hdl, const char *dataset)
{
	zfs_graph_t *zgp = zfs_graph_create(hdl, dataset, ZFS_GRAPH_SIZE);
	int ret = 0;

	if (zgp == NULL)
		return (zgp);

	if ((strchr(dataset, '/') == NULL) ||
	    (external_dependents(hdl, zgp, dataset))) {
		/*
		 * Determine pool name and try again.
		 */
		int len = strcspn(dataset, "/@") + 1;
		char *pool = zfs_alloc(hdl, len);

		if (pool == NULL) {
			zfs_graph_destroy(zgp);
			return (NULL);
		}
		(void) strlcpy(pool, dataset, len);

		if (iterate_children(hdl, zgp, pool) == -1 ||
		    zfs_graph_add(hdl, zgp, pool, NULL, 0) != 0) {
			free(pool);
			zfs_graph_destroy(zgp);
			return (NULL);
		}
		free(pool);
	}

	if (ret == -1 || zfs_graph_add(hdl, zgp, dataset, NULL, 0) != 0) {
		zfs_graph_destroy(zgp);
		return (NULL);
	}

	return (zgp);
}
Пример #17
0
/*
 * Given a cache file, return the contents as a list of importable pools.
 * poolname or guid (but not both) are provided by the caller when trying
 * to import a specific pool.
 */
nvlist_t *
zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
    char *poolname, uint64_t guid)
{
	char *buf;
	int fd;
	struct stat statbuf;
	nvlist_t *raw, *src, *dst;
	nvlist_t *pools;
	nvpair_t *elem;
	char *name;
	uint64_t this_guid;
	boolean_t active;

	verify(poolname == NULL || guid == 0);

	if ((fd = open(cachefile, O_RDONLY)) < 0) {
		zfs_error_aux(hdl, "%s", strerror(errno));
		(void) zfs_error(hdl, EZFS_BADCACHE,
		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
		return (NULL);
	}

	if (fstat(fd, &statbuf) != 0) {
		zfs_error_aux(hdl, "%s", strerror(errno));
		(void) close(fd);
		(void) zfs_error(hdl, EZFS_BADCACHE,
		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
		return (NULL);
	}

	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
		(void) close(fd);
		return (NULL);
	}

	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
		(void) close(fd);
		free(buf);
		(void) zfs_error(hdl, EZFS_BADCACHE,
		    dgettext(TEXT_DOMAIN,
		    "failed to read cache file contents"));
		return (NULL);
	}

	(void) close(fd);

	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
		free(buf);
		(void) zfs_error(hdl, EZFS_BADCACHE,
		    dgettext(TEXT_DOMAIN,
		    "invalid or corrupt cache file contents"));
		return (NULL);
	}

	free(buf);

	/*
	 * Go through and get the current state of the pools and refresh their
	 * state.
	 */
	if (nvlist_alloc(&pools, 0, 0) != 0) {
		(void) no_memory(hdl);
		nvlist_free(raw);
		return (NULL);
	}

	elem = NULL;
	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
		src = fnvpair_value_nvlist(elem);

		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
		if (poolname != NULL && strcmp(poolname, name) != 0)
			continue;

		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
		if (guid != 0 && guid != this_guid)
			continue;

		if (pool_active(hdl, name, this_guid, &active) != 0) {
			nvlist_free(raw);
			nvlist_free(pools);
			return (NULL);
		}

		if (active)
			continue;

		if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
		    cachefile) != 0) {
			(void) no_memory(hdl);
			nvlist_free(raw);
			nvlist_free(pools);
			return (NULL);
		}

		if ((dst = refresh_config(hdl, src)) == NULL) {
			nvlist_free(raw);
			nvlist_free(pools);
			return (NULL);
		}

		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
			(void) no_memory(hdl);
			nvlist_free(dst);
			nvlist_free(raw);
			nvlist_free(pools);
			return (NULL);
		}
		nvlist_free(dst);
	}

	nvlist_free(raw);
	return (pools);
}
Пример #18
0
/*
 * Given a list of directories to search, find all pools stored on disk.  This
 * includes partial pools which are not available to import.  If no args are
 * given (argc is 0), then the default directory (/dev/dsk) is searched.
 * poolname or guid (but not both) are provided by the caller when trying
 * to import a specific pool.
 */
static nvlist_t *
zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
{
	int i, dirs = iarg->paths;
	struct dirent *dp;
	char path[MAXPATHLEN];
	char *end, **dir = iarg->path;
	size_t pathleft;
	nvlist_t *ret = NULL;
	pool_list_t pools = { 0 };
	pool_entry_t *pe, *penext;
	vdev_entry_t *ve, *venext;
	config_entry_t *ce, *cenext;
	name_entry_t *ne, *nenext;
	avl_tree_t slice_cache;
	rdsk_node_t *slice;
	void *cookie;

	verify(iarg->poolname == NULL || iarg->guid == 0);

	if (dirs == 0) {
#ifdef HAVE_LIBBLKID
		/* Use libblkid to scan all device for their type */
		if (zpool_find_import_blkid(hdl, &pools) == 0)
			goto skip_scanning;

		(void) zfs_error_fmt(hdl, EZFS_BADCACHE,
		    dgettext(TEXT_DOMAIN, "blkid failure falling back "
		    "to manual probing"));
#endif /* HAVE_LIBBLKID */

		dir = zpool_default_import_path;
		dirs = DEFAULT_IMPORT_PATH_SIZE;
	}

	/*
	 * Go through and read the label configuration information from every
	 * possible device, organizing the information according to pool GUID
	 * and toplevel GUID.
	 */
	for (i = 0; i < dirs; i++) {
		taskq_t *t;
		char rdsk[MAXPATHLEN];
		int dfd;
		boolean_t config_failed = B_FALSE;
		DIR *dirp;

		/* use realpath to normalize the path */
		if (realpath(dir[i], path) == 0) {

			/* it is safe to skip missing search paths */
			if (errno == ENOENT)
				continue;

			zfs_error_aux(hdl, strerror(errno));
			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
			goto error;
		}
		end = &path[strlen(path)];
		*end++ = '/';
		*end = 0;
		pathleft = &path[sizeof (path)] - end;

		/*
		 * Using raw devices instead of block devices when we're
		 * reading the labels skips a bunch of slow operations during
		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
		 */
		if (strcmp(path, ZFS_DISK_ROOTD) == 0)
			(void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
		else
			(void) strlcpy(rdsk, path, sizeof (rdsk));

		if ((dfd = open(rdsk, O_RDONLY)) < 0 ||
		    (dirp = fdopendir(dfd)) == NULL) {
			if (dfd >= 0)
				(void) close(dfd);
			zfs_error_aux(hdl, strerror(errno));
			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
			    rdsk);
			goto error;
		}

		avl_create(&slice_cache, slice_cache_compare,
		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));

		/*
		 * This is not MT-safe, but we have no MT consumers of libzfs
		 */
		while ((dp = readdir(dirp)) != NULL) {
			const char *name = dp->d_name;
			if (name[0] == '.' &&
			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
				continue;

			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
			slice->rn_name = zfs_strdup(hdl, name);
			slice->rn_avl = &slice_cache;
			slice->rn_dfd = dfd;
			slice->rn_hdl = hdl;
			slice->rn_nozpool = B_FALSE;
			avl_add(&slice_cache, slice);
		}

		/*
		 * create a thread pool to do all of this in parallel;
		 * rn_nozpool is not protected, so this is racy in that
		 * multiple tasks could decide that the same slice can
		 * not hold a zpool, which is benign.  Also choose
		 * double the number of processors; we hold a lot of
		 * locks in the kernel, so going beyond this doesn't
		 * buy us much.
		 */
		t = taskq_create("z_import", 2 * max_ncpus, defclsyspri,
		    2 * max_ncpus, INT_MAX, TASKQ_PREPOPULATE);
		for (slice = avl_first(&slice_cache); slice;
		    (slice = avl_walk(&slice_cache, slice,
		    AVL_AFTER)))
			(void) taskq_dispatch(t, zpool_open_func, slice,
			    TQ_SLEEP);
		taskq_wait(t);
		taskq_destroy(t);

		cookie = NULL;
		while ((slice = avl_destroy_nodes(&slice_cache,
		    &cookie)) != NULL) {
			if (slice->rn_config != NULL && !config_failed) {
				nvlist_t *config = slice->rn_config;
				boolean_t matched = B_TRUE;

				if (iarg->poolname != NULL) {
					char *pname;

					matched = nvlist_lookup_string(config,
					    ZPOOL_CONFIG_POOL_NAME,
					    &pname) == 0 &&
					    strcmp(iarg->poolname, pname) == 0;
				} else if (iarg->guid != 0) {
					uint64_t this_guid;

					matched = nvlist_lookup_uint64(config,
					    ZPOOL_CONFIG_POOL_GUID,
					    &this_guid) == 0 &&
					    iarg->guid == this_guid;
				}
				if (!matched) {
					nvlist_free(config);
				} else {
					/*
					 * use the non-raw path for the config
					 */
					(void) strlcpy(end, slice->rn_name,
					    pathleft);
					if (add_config(hdl, &pools, path, i+1,
					    slice->rn_num_labels, config) != 0)
						config_failed = B_TRUE;
				}
			}
			free(slice->rn_name);
			free(slice);
		}
		avl_destroy(&slice_cache);

		(void) closedir(dirp);

		if (config_failed)
			goto error;
	}

#ifdef HAVE_LIBBLKID
skip_scanning:
#endif
	ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);

error:
	for (pe = pools.pools; pe != NULL; pe = penext) {
		penext = pe->pe_next;
		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
			venext = ve->ve_next;
			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
				cenext = ce->ce_next;
				if (ce->ce_config)
					nvlist_free(ce->ce_config);
				free(ce);
			}
			free(ve);
		}
		free(pe);
	}

	for (ne = pools.names; ne != NULL; ne = nenext) {
		nenext = ne->ne_next;
		free(ne->ne_name);
		free(ne);
	}

	return (ret);
}
Пример #19
0
/*
 * Attach new_disk (fully described by nvroot) to old_disk.
 * If 'replacing' is specified, tne new disk will replace the old one.
 */
int
zpool_vdev_attach(zpool_handle_t *zhp,
    const char *old_disk, const char *new_disk, nvlist_t *nvroot, int replacing)
{
	zfs_cmd_t zc = { 0 };
	char msg[1024];
	char *packed;
	int ret;
	size_t len;
	nvlist_t *tgt;
	boolean_t avail_spare;
	uint64_t val;
	char *path;
	nvlist_t **child;
	uint_t children;
	nvlist_t *config_root;
	libzfs_handle_t *hdl = zhp->zpool_hdl;

	if (replacing)
		(void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN,
		    "cannot replace %s with %s"), old_disk, new_disk);
	else
		(void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN,
		    "cannot attach %s to %s"), new_disk, old_disk);

	(void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name));
	if ((tgt = zpool_find_vdev(zhp, old_disk, &avail_spare)) == 0)
		return (zfs_error(hdl, EZFS_NODEVICE, msg));

	if (avail_spare)
		return (zfs_error(hdl, EZFS_ISSPARE, msg));

	verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0);
	zc.zc_cookie = replacing;

	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
	    &child, &children) != 0 || children != 1) {
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
		    "new device must be a single disk"));
		return (zfs_error(hdl, EZFS_INVALCONFIG, msg));
	}

	verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
	    ZPOOL_CONFIG_VDEV_TREE, &config_root) == 0);

	/*
	 * If the target is a hot spare that has been swapped in, we can only
	 * replace it with another hot spare.
	 */
	if (replacing &&
	    nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_IS_SPARE, &val) == 0 &&
	    nvlist_lookup_string(child[0], ZPOOL_CONFIG_PATH, &path) == 0 &&
	    (zpool_find_vdev(zhp, path, &avail_spare) == NULL ||
	    !avail_spare) && is_replacing_spare(config_root, tgt, 1)) {
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
		    "can only be replaced by another hot spare"));
		return (zfs_error(hdl, EZFS_BADTARGET, msg));
	}

	/*
	 * If we are attempting to replace a spare, it canot be applied to an
	 * already spared device.
	 */
	if (replacing &&
	    nvlist_lookup_string(child[0], ZPOOL_CONFIG_PATH, &path) == 0 &&
	    zpool_find_vdev(zhp, path, &avail_spare) != NULL && avail_spare &&
	    is_replacing_spare(config_root, tgt, 0)) {
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
		    "device has already been replaced with a spare"));
		return (zfs_error(hdl, EZFS_BADTARGET, msg));
	}

	verify(nvlist_size(nvroot, &len, NV_ENCODE_NATIVE) == 0);

	if ((packed = zfs_alloc(zhp->zpool_hdl, len)) == NULL)
		return (-1);

	verify(nvlist_pack(nvroot, &packed, &len, NV_ENCODE_NATIVE, 0) == 0);

	zc.zc_config_src = (uint64_t)(uintptr_t)packed;
	zc.zc_config_src_size = len;

	ret = ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_VDEV_ATTACH, &zc);

	free(packed);

	if (ret == 0)
		return (0);

	switch (errno) {
	case ENOTSUP:
		/*
		 * Can't attach to or replace this type of vdev.
		 */
		if (replacing)
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
			    "cannot replace a replacing device"));
		else
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
			    "can only attach to mirrors and top-level "
			    "disks"));
		(void) zfs_error(hdl, EZFS_BADTARGET, msg);
		break;

	case EINVAL:
		/*
		 * The new device must be a single disk.
		 */
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
		    "new device must be a single disk"));
		(void) zfs_error(hdl, EZFS_INVALCONFIG, msg);
		break;

	case EBUSY:
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "%s is busy"),
		    new_disk);
		(void) zfs_error(hdl, EZFS_BADDEV, msg);
		break;

	case EOVERFLOW:
		/*
		 * The new device is too small.
		 */
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
		    "device is too small"));
		(void) zfs_error(hdl, EZFS_BADDEV, msg);
		break;

	case EDOM:
		/*
		 * The new device has a different alignment requirement.
		 */
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
		    "devices have different sector alignment"));
		(void) zfs_error(hdl, EZFS_BADDEV, msg);
		break;

	case ENAMETOOLONG:
		/*
		 * The resulting top-level vdev spec won't fit in the label.
		 */
		(void) zfs_error(hdl, EZFS_DEVOVERFLOW, msg);
		break;

	default:
		(void) zpool_standard_error(hdl, errno, msg);
	}

	return (-1);
}
Пример #20
0
/*
 * Import the given pool using the known configuration.  The configuration
 * should have come from zpool_find_import().  The 'newname' and 'altroot'
 * parameters control whether the pool is imported with a different name or with
 * an alternate root, respectively.
 */
int
zpool_import(libzfs_handle_t *hdl, nvlist_t *config, const char *newname,
    const char *altroot)
{
	zfs_cmd_t zc;
	char *packed;
	size_t len;
	char *thename;
	char *origname;
	int ret;

	verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
	    &origname) == 0);

	if (newname != NULL) {
		if (!zpool_name_valid(hdl, B_FALSE, newname))
			return (zfs_error(hdl, EZFS_INVALIDNAME,
			    dgettext(TEXT_DOMAIN, "cannot import '%s'"),
			    newname));
		thename = (char *)newname;
	} else {
		thename = origname;
	}

	if (altroot != NULL && altroot[0] != '/')
		return (zfs_error(hdl, EZFS_BADPATH,
		    dgettext(TEXT_DOMAIN, "bad alternate root '%s'"),
		    altroot));

	(void) strlcpy(zc.zc_name, thename, sizeof (zc.zc_name));

	if (altroot != NULL)
		(void) strlcpy(zc.zc_root, altroot, sizeof (zc.zc_root));
	else
		zc.zc_root[0] = '\0';

	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
	    &zc.zc_guid) == 0);

	verify(nvlist_size(config, &len, NV_ENCODE_NATIVE) == 0);

	if ((packed = zfs_alloc(hdl, len)) == NULL)
		return (-1);

	verify(nvlist_pack(config, &packed, &len, NV_ENCODE_NATIVE, 0) == 0);

	zc.zc_config_src = (uint64_t)(uintptr_t)packed;
	zc.zc_config_src_size = len;

	ret = 0;
	if (ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_IMPORT, &zc) != 0) {
		char desc[1024];
		if (newname == NULL)
			(void) snprintf(desc, sizeof (desc),
			    dgettext(TEXT_DOMAIN, "cannot import '%s'"),
			    thename);
		else
			(void) snprintf(desc, sizeof (desc),
			    dgettext(TEXT_DOMAIN, "cannot import '%s' as '%s'"),
			    origname, thename);

		switch (errno) {
		case ENOTSUP:
			/*
			 * Unsupported version.
			 */
			(void) zfs_error(hdl, EZFS_BADVERSION, desc);
			break;

		case EINVAL:
			(void) zfs_error(hdl, EZFS_INVALCONFIG, desc);
			break;

		default:
			(void) zpool_standard_error(hdl, errno, desc);
		}

		ret = -1;
	} else {
		zpool_handle_t *zhp;
		/*
		 * This should never fail, but play it safe anyway.
		 */
		if (zpool_open_silent(hdl, thename, &zhp) != 0) {
			ret = -1;
		} else if (zhp != NULL) {
			ret = zpool_create_zvol_links(zhp);
			zpool_close(zhp);
		}
	}

	free(packed);
	return (ret);
}
Пример #21
0
/*
 * Add the given vdevs to the pool.  The caller must have already performed the
 * necessary verification to ensure that the vdev specification is well-formed.
 */
int
zpool_add(zpool_handle_t *zhp, nvlist_t *nvroot)
{
	char *packed;
	size_t len;
	zfs_cmd_t zc;
	int ret;
	libzfs_handle_t *hdl = zhp->zpool_hdl;
	char msg[1024];
	nvlist_t **spares;
	uint_t nspares;

	(void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN,
	    "cannot add to '%s'"), zhp->zpool_name);

	if (zpool_get_version(zhp) < ZFS_VERSION_SPARES &&
	    nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
	    &spares, &nspares) == 0) {
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be "
		    "upgraded to add hot spares"));
		return (zfs_error(hdl, EZFS_BADVERSION, msg));
	}

	verify(nvlist_size(nvroot, &len, NV_ENCODE_NATIVE) == 0);

	if ((packed = zfs_alloc(zhp->zpool_hdl, len)) == NULL)
		return (-1);

	verify(nvlist_pack(nvroot, &packed, &len, NV_ENCODE_NATIVE, 0) == 0);

	(void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name));
	zc.zc_config_src = (uint64_t)(uintptr_t)packed;
	zc.zc_config_src_size = len;

	if (ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_VDEV_ADD, &zc) != 0) {
		switch (errno) {
		case EBUSY:
			/*
			 * This can happen if the user has specified the same
			 * device multiple times.  We can't reliably detect this
			 * until we try to add it and see we already have a
			 * label.
			 */
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
			    "one or more vdevs refer to the same device"));
			(void) zfs_error(hdl, EZFS_BADDEV, msg);
			break;

		case EOVERFLOW:
			/*
			 * This occurrs when one of the devices is below
			 * SPA_MINDEVSIZE.  Unfortunately, we can't detect which
			 * device was the problem device since there's no
			 * reliable way to determine device size from userland.
			 */
			{
				char buf[64];

				zfs_nicenum(SPA_MINDEVSIZE, buf, sizeof (buf));

				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
				    "device is less than the minimum "
				    "size (%s)"), buf);
			}
			(void) zfs_error(hdl, EZFS_BADDEV, msg);
			break;

		case ENOTSUP:
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
			    "pool must be upgraded to add raidz2 vdevs"));
			(void) zfs_error(hdl, EZFS_BADVERSION, msg);
			break;

		default:
			(void) zpool_standard_error(hdl, errno, msg);
		}

		ret = -1;
	} else {
		ret = 0;
	}

	free(packed);

	return (ret);
}
Пример #22
0
/*
 * Create the named pool, using the provided vdev list.  It is assumed
 * that the consumer has already validated the contents of the nvlist, so we
 * don't have to worry about error semantics.
 */
int
zpool_create(libzfs_handle_t *hdl, const char *pool, nvlist_t *nvroot,
    const char *altroot)
{
	zfs_cmd_t zc = { 0 };
	char *packed;
	size_t len;
	char msg[1024];

	(void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN,
	    "cannot create '%s'"), pool);

	if (!zpool_name_valid(hdl, B_FALSE, pool))
		return (zfs_error(hdl, EZFS_INVALIDNAME, msg));

	if (altroot != NULL && altroot[0] != '/')
		return (zfs_error(hdl, EZFS_BADPATH,
		    dgettext(TEXT_DOMAIN, "bad alternate root '%s'"), altroot));

	if (nvlist_size(nvroot, &len, NV_ENCODE_NATIVE) != 0)
		return (no_memory(hdl));

	if ((packed = zfs_alloc(hdl, len)) == NULL)
		return (-1);

	if (nvlist_pack(nvroot, &packed, &len,
	    NV_ENCODE_NATIVE, 0) != 0) {
		free(packed);
		return (no_memory(hdl));
	}

	(void) strlcpy(zc.zc_name, pool, sizeof (zc.zc_name));
	zc.zc_config_src = (uint64_t)(uintptr_t)packed;
	zc.zc_config_src_size = len;

	if (altroot != NULL)
		(void) strlcpy(zc.zc_root, altroot, sizeof (zc.zc_root));

	if (ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_CREATE, &zc) != 0) {
		free(packed);

		switch (errno) {
		case EBUSY:
			/*
			 * This can happen if the user has specified the same
			 * device multiple times.  We can't reliably detect this
			 * until we try to add it and see we already have a
			 * label.
			 */
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
			    "one or more vdevs refer to the same device"));
			return (zfs_error(hdl, EZFS_BADDEV, msg));

		case EOVERFLOW:
			/*
			 * This occurs when one of the devices is below
			 * SPA_MINDEVSIZE.  Unfortunately, we can't detect which
			 * device was the problem device since there's no
			 * reliable way to determine device size from userland.
			 */
			{
				char buf[64];

				zfs_nicenum(SPA_MINDEVSIZE, buf, sizeof (buf));

				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
				    "one or more devices is less than the "
				    "minimum size (%s)"), buf);
			}
			return (zfs_error(hdl, EZFS_BADDEV, msg));

		case ENOSPC:
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
			    "one or more devices is out of space"));
			return (zfs_error(hdl, EZFS_BADDEV, msg));

		default:
			return (zpool_standard_error(hdl, errno, msg));
		}
	}

	free(packed);

	/*
	 * If this is an alternate root pool, then we automatically set the
	 * moutnpoint of the root dataset to be '/'.
	 */
	if (altroot != NULL) {
		zfs_handle_t *zhp;

		verify((zhp = zfs_open(hdl, pool, ZFS_TYPE_ANY)) != NULL);
		verify(zfs_prop_set(zhp, ZFS_PROP_MOUNTPOINT, "/") == 0);

		zfs_close(zhp);
	}

	return (0);
}
Пример #23
0
/*
 * Given a ZFS handle and a property, construct a complete list of datasets
 * that need to be modified as part of this process.  For anything but the
 * 'mountpoint' and 'sharenfs' properties, this just returns an empty list.
 * Otherwise, we iterate over all children and look for any datasets that
 * inherit the property.  For each such dataset, we add it to the list and
 * mark whether it was shared beforehand.
 */
prop_changelist_t *
changelist_gather(zfs_handle_t *zhp, zfs_prop_t prop, int gather_flags,
    int mnt_flags)
{
	prop_changelist_t *clp;
	prop_changenode_t *cn;
	zfs_handle_t *temp;
	char property[ZFS_MAXPROPLEN];
	uu_compare_fn_t *compare = NULL;
	boolean_t legacy = B_FALSE;

	if ((clp = zfs_alloc(zhp->zfs_hdl, sizeof (prop_changelist_t))) == NULL)
		return (NULL);

	/*
	 * For mountpoint-related tasks, we want to sort everything by
	 * mountpoint, so that we mount and unmount them in the appropriate
	 * order, regardless of their position in the hierarchy.
	 */
	if (prop == ZFS_PROP_NAME || prop == ZFS_PROP_ZONED ||
	    prop == ZFS_PROP_MOUNTPOINT || prop == ZFS_PROP_SHARENFS ||
	    prop == ZFS_PROP_SHARESMB) {

		if (zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT,
		    property, sizeof (property),
		    NULL, NULL, 0, B_FALSE) == 0 &&
		    (strcmp(property, "legacy") == 0 ||
		    strcmp(property, "none") == 0)) {

			legacy = B_TRUE;
		}
		if (!legacy) {
			compare = compare_mountpoints;
			clp->cl_sorted = B_TRUE;
		}
	}

	clp->cl_pool = uu_list_pool_create("changelist_pool",
	    sizeof (prop_changenode_t),
	    offsetof(prop_changenode_t, cn_listnode),
	    compare, 0);
	if (clp->cl_pool == NULL) {
		assert(uu_error() == UU_ERROR_NO_MEMORY);
		(void) zfs_error(zhp->zfs_hdl, EZFS_NOMEM, "internal error");
		changelist_free(clp);
		return (NULL);
	}

	clp->cl_list = uu_list_create(clp->cl_pool, NULL,
	    clp->cl_sorted ? UU_LIST_SORTED : 0);
	clp->cl_gflags = gather_flags;
	clp->cl_mflags = mnt_flags;

	if (clp->cl_list == NULL) {
		assert(uu_error() == UU_ERROR_NO_MEMORY);
		(void) zfs_error(zhp->zfs_hdl, EZFS_NOMEM, "internal error");
		changelist_free(clp);
		return (NULL);
	}

	/*
	 * If this is a rename or the 'zoned' property, we pretend we're
	 * changing the mountpoint and flag it so we can catch all children in
	 * change_one().
	 *
	 * Flag cl_alldependents to catch all children plus the dependents
	 * (clones) that are not in the hierarchy.
	 */
	if (prop == ZFS_PROP_NAME) {
		clp->cl_prop = ZFS_PROP_MOUNTPOINT;
		clp->cl_alldependents = B_TRUE;
	} else if (prop == ZFS_PROP_ZONED) {
		clp->cl_prop = ZFS_PROP_MOUNTPOINT;
		clp->cl_allchildren = B_TRUE;
	} else if (prop == ZFS_PROP_CANMOUNT) {
		clp->cl_prop = ZFS_PROP_MOUNTPOINT;
	} else if (prop == ZFS_PROP_VOLSIZE) {
		clp->cl_prop = ZFS_PROP_MOUNTPOINT;
	} else {
		clp->cl_prop = prop;
	}
	clp->cl_realprop = prop;

	if (clp->cl_prop != ZFS_PROP_MOUNTPOINT &&
	    clp->cl_prop != ZFS_PROP_SHARENFS &&
	    clp->cl_prop != ZFS_PROP_SHARESMB)
		return (clp);

	/*
	 * If watching SHARENFS or SHARESMB then
	 * also watch its companion property.
	 */
	if (clp->cl_prop == ZFS_PROP_SHARENFS)
		clp->cl_shareprop = ZFS_PROP_SHARESMB;
	else if (clp->cl_prop == ZFS_PROP_SHARESMB)
		clp->cl_shareprop = ZFS_PROP_SHARENFS;

	if (clp->cl_alldependents) {
		if (zfs_iter_dependents(zhp, B_TRUE, change_one, clp) != 0) {
			changelist_free(clp);
			return (NULL);
		}
	} else if (zfs_iter_children(zhp, change_one, clp) != 0) {
		changelist_free(clp);
		return (NULL);
	}

	/*
	 * We have to re-open ourselves because we auto-close all the handles
	 * and can't tell the difference.
	 */
	if ((temp = zfs_open(zhp->zfs_hdl, zfs_get_name(zhp),
	    ZFS_TYPE_DATASET)) == NULL) {
		changelist_free(clp);
		return (NULL);
	}

	/*
	 * Always add ourself to the list.  We add ourselves to the end so that
	 * we're the last to be unmounted.
	 */
	if ((cn = zfs_alloc(zhp->zfs_hdl,
	    sizeof (prop_changenode_t))) == NULL) {
		zfs_close(temp);
		changelist_free(clp);
		return (NULL);
	}

	cn->cn_handle = temp;
	cn->cn_mounted = (clp->cl_gflags & CL_GATHER_MOUNT_ALWAYS) ||
	    zfs_is_mounted(temp, NULL);
	cn->cn_shared = zfs_is_shared(temp);
	cn->cn_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
	cn->cn_needpost = B_TRUE;

	uu_list_node_init(cn, &cn->cn_listnode, clp->cl_pool);
	if (clp->cl_sorted) {
		uu_list_index_t idx;
		(void) uu_list_find(clp->cl_list, cn, NULL, &idx);
		uu_list_insert(clp->cl_list, cn, idx);
	} else {
		/*
		 * Add the target dataset to the end of the list.
		 * The list is not really unsorted. The list will be
		 * in reverse dataset name order. This is necessary
		 * when the original mountpoint is legacy or none.
		 */
		verify(uu_list_insert_after(clp->cl_list,
		    uu_list_last(clp->cl_list), cn) == 0);
	}

	/*
	 * If the mountpoint property was previously 'legacy', or 'none',
	 * record it as the behavior of changelist_postfix() will be different.
	 */
	if ((clp->cl_prop == ZFS_PROP_MOUNTPOINT) && legacy) {
		/*
		 * do not automatically mount ex-legacy datasets if
		 * we specifically set canmount to noauto
		 */
		if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) !=
		    ZFS_CANMOUNT_NOAUTO)
			clp->cl_waslegacy = B_TRUE;
	}

	return (clp);
}
Пример #24
0
/*
 * Retrieve the persistent error log, uniquify the members, and return to the
 * caller.
 */
int
zpool_get_errlog(zpool_handle_t *zhp, nvlist_t ***list, size_t *nelem)
{
	zfs_cmd_t zc = { 0 };
	uint64_t count;
	zbookmark_t *zb;
	int i, j;

	if (zhp->zpool_error_log != NULL) {
		*list = zhp->zpool_error_log;
		*nelem = zhp->zpool_error_count;
		return (0);
	}

	/*
	 * Retrieve the raw error list from the kernel.  If the number of errors
	 * has increased, allocate more space and continue until we get the
	 * entire list.
	 */
	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_ERRCOUNT,
	    &count) == 0);
	if ((zc.zc_config_dst = (uintptr_t)zfs_alloc(zhp->zpool_hdl,
	    count * sizeof (zbookmark_t))) == NULL)
		return (-1);
	zc.zc_config_dst_size = count;
	(void) strcpy(zc.zc_name, zhp->zpool_name);
	for (;;) {
		if (ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_ERROR_LOG,
		    &zc) != 0) {
			free((void *)(uintptr_t)zc.zc_config_dst);
			if (errno == ENOMEM) {
				if ((zc.zc_config_dst = (uintptr_t)
				    zfs_alloc(zhp->zpool_hdl,
				    zc.zc_config_dst_size)) == NULL)
					return (-1);
			} else {
				return (-1);
			}
		} else {
			break;
		}
	}

	/*
	 * Sort the resulting bookmarks.  This is a little confusing due to the
	 * implementation of ZFS_IOC_ERROR_LOG.  The bookmarks are copied last
	 * to first, and 'zc_config_dst_size' indicates the number of boomarks
	 * _not_ copied as part of the process.  So we point the start of our
	 * array appropriate and decrement the total number of elements.
	 */
	zb = ((zbookmark_t *)(uintptr_t)zc.zc_config_dst) +
	    zc.zc_config_dst_size;
	count -= zc.zc_config_dst_size;

	qsort(zb, count, sizeof (zbookmark_t), zbookmark_compare);

	/*
	 * Count the number of unique elements
	 */
	j = 0;
	for (i = 0; i < count; i++) {
		if (i > 0 && memcmp(&zb[i - 1], &zb[i],
		    sizeof (zbookmark_t)) == 0)
			continue;
		j++;
	}

	/*
	 * If the user has only requested the number of items, return it now
	 * without bothering with the extra work.
	 */
	if (list == NULL) {
		*nelem = j;
		free((void *)(uintptr_t)zc.zc_config_dst);
		return (0);
	}

	zhp->zpool_error_count = j;

	/*
	 * Allocate an array of nvlists to hold the results
	 */
	if ((zhp->zpool_error_log = zfs_alloc(zhp->zpool_hdl,
	    j * sizeof (nvlist_t *))) == NULL) {
		free((void *)(uintptr_t)zc.zc_config_dst);
		return (-1);
	}

	/*
	 * Fill in the results with names from the kernel.
	 */
	j = 0;
	for (i = 0; i < count; i++) {
		char buf[64];
		nvlist_t *nv;

		if (i > 0 && memcmp(&zb[i - 1], &zb[i],
		    sizeof (zbookmark_t)) == 0)
			continue;

		if (nvlist_alloc(&nv, NV_UNIQUE_NAME,
		    0) != 0)
			goto nomem;
		zhp->zpool_error_log[j] = nv;

		zc.zc_bookmark = zb[i];
		if (ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_BOOKMARK_NAME,
		    &zc) == 0) {
			if (nvlist_add_string(nv, ZPOOL_ERR_DATASET,
			    zc.zc_prop_name) != 0 ||
			    nvlist_add_string(nv, ZPOOL_ERR_OBJECT,
			    zc.zc_prop_value) != 0 ||
			    nvlist_add_string(nv, ZPOOL_ERR_RANGE,
			    zc.zc_filename) != 0)
				goto nomem;
		} else {
			(void) snprintf(buf, sizeof (buf), "%llx",
			    zb[i].zb_objset);
			if (nvlist_add_string(nv,
			    ZPOOL_ERR_DATASET, buf) != 0)
				goto nomem;
			(void) snprintf(buf, sizeof (buf), "%llx",
			    zb[i].zb_object);
			if (nvlist_add_string(nv, ZPOOL_ERR_OBJECT,
			    buf) != 0)
				goto nomem;
			(void) snprintf(buf, sizeof (buf), "lvl=%u blkid=%llu",
			    (int)zb[i].zb_level, (long long)zb[i].zb_blkid);
			if (nvlist_add_string(nv, ZPOOL_ERR_RANGE,
			    buf) != 0)
				goto nomem;
		}

		j++;
	}

	*list = zhp->zpool_error_log;
	*nelem = zhp->zpool_error_count;

	free((void *)(uintptr_t)zc.zc_config_dst);

	return (0);

nomem:
	free((void *)(uintptr_t)zc.zc_config_dst);
	for (i = 0; i < zhp->zpool_error_count; i++) {
		if (zhp->zpool_error_log[i])
			free(zhp->zpool_error_log[i]);
	}
	free(zhp->zpool_error_log);
	zhp->zpool_error_log = NULL;
	return (no_memory(zhp->zpool_hdl));
}
Пример #25
0
/*
 * Unshare and unmount all datasets within the given pool.  We don't want to
 * rely on traversing the DSL to discover the filesystems within the pool,
 * because this may be expensive (if not all of them are mounted), and can fail
 * arbitrarily (on I/O error, for example).  Instead, we walk /etc/mtab and
 * gather all the filesystems that are currently mounted.
 */
int
zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
{
	int used, alloc;
	struct mnttab entry;
	size_t namelen;
	char **mountpoints = NULL;
	zfs_handle_t **datasets = NULL;
	libzfs_handle_t *hdl = zhp->zpool_hdl;
	int i;
	int ret = -1;
	int flags = (force ? MS_FORCE : 0);

	namelen = strlen(zhp->zpool_name);

	rewind(hdl->libzfs_mnttab);
	used = alloc = 0;
	while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
		/*
		 * Ignore non-ZFS entries.
		 */
		if (entry.mnt_fstype == NULL ||
		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
			continue;

		/*
		 * Ignore filesystems not within this pool.
		 */
		if (entry.mnt_mountp == NULL ||
		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
		    (entry.mnt_special[namelen] != '/' &&
		    entry.mnt_special[namelen] != '\0'))
			continue;

		/*
		 * At this point we've found a filesystem within our pool.  Add
		 * it to our growing list.
		 */
		if (used == alloc) {
			if (alloc == 0) {
				if ((mountpoints = zfs_alloc(hdl,
				    8 * sizeof (void *))) == NULL)
					goto out;

				if ((datasets = zfs_alloc(hdl,
				    8 * sizeof (void *))) == NULL)
					goto out;

				alloc = 8;
			} else {
				void *ptr;

				if ((ptr = zfs_realloc(hdl, mountpoints,
				    alloc * sizeof (void *),
				    alloc * 2 * sizeof (void *))) == NULL)
					goto out;
				mountpoints = ptr;

				if ((ptr = zfs_realloc(hdl, datasets,
				    alloc * sizeof (void *),
				    alloc * 2 * sizeof (void *))) == NULL)
					goto out;
				datasets = ptr;

				alloc *= 2;
			}
		}

		if ((mountpoints[used] = zfs_strdup(hdl,
		    entry.mnt_mountp)) == NULL)
			goto out;

		/*
		 * This is allowed to fail, in case there is some I/O error.  It
		 * is only used to determine if we need to remove the underlying
		 * mountpoint, so failure is not fatal.
		 */
		datasets[used] = make_dataset_handle(hdl, entry.mnt_special);

		used++;
	}

	/*
	 * At this point, we have the entire list of filesystems, so sort it by
	 * mountpoint.
	 */
	qsort(mountpoints, used, sizeof (char *), mountpoint_compare);

	/*
	 * Walk through and first unshare everything.
	 */
	for (i = 0; i < used; i++) {
		zfs_share_proto_t *curr_proto;
		for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
		    curr_proto++) {
			if (is_shared(hdl, mountpoints[i], *curr_proto) &&
			    unshare_one(hdl, mountpoints[i],
			    mountpoints[i], *curr_proto) != 0)
				goto out;
		}
	}

	/*
	 * Now unmount everything, removing the underlying directories as
	 * appropriate.
	 */
	for (i = 0; i < used; i++) {
		if (unmount_one(hdl, mountpoints[i], flags) != 0)
			goto out;
	}

	for (i = 0; i < used; i++) {
		if (datasets[i])
			remove_mountpoint(datasets[i]);
	}

	ret = 0;
out:
	for (i = 0; i < used; i++) {
		if (datasets[i])
			zfs_close(datasets[i]);
		free(mountpoints[i]);
	}
	free(datasets);
	free(mountpoints);

	return (ret);
}
Пример #26
0
/*
 * Given a ZFS handle and a property, construct a complete list of datasets
 * that need to be modified as part of this process.  For anything but the
 * 'mountpoint' and 'sharenfs' properties, this just returns an empty list.
 * Otherwise, we iterate over all children and look for any datasets that
 * inherit the property.  For each such dataset, we add it to the list and
 * mark whether it was shared beforehand.
 */
prop_changelist_t *
changelist_gather(zfs_handle_t *zhp, zfs_prop_t prop, int flags)
{
	prop_changelist_t *clp;
	prop_changenode_t *cn;
	zfs_handle_t *temp;
	char property[ZFS_MAXPROPLEN];
	uu_compare_fn_t *compare = NULL;

	if ((clp = zfs_alloc(zhp->zfs_hdl, sizeof (prop_changelist_t))) == NULL)
		return (NULL);

	/*
	 * For mountpoint-related tasks, we want to sort everything by
	 * mountpoint, so that we mount and unmount them in the appropriate
	 * order, regardless of their position in the hierarchy.
	 */
	if (prop == ZFS_PROP_NAME || prop == ZFS_PROP_ZONED ||
	    prop == ZFS_PROP_MOUNTPOINT || prop == ZFS_PROP_SHARENFS) {
		compare = compare_mountpoints;
		clp->cl_sorted = B_TRUE;
	}

	clp->cl_pool = uu_list_pool_create("changelist_pool",
	    sizeof (prop_changenode_t),
	    offsetof(prop_changenode_t, cn_listnode),
	    compare, 0);
	if (clp->cl_pool == NULL) {
		assert(uu_error() == UU_ERROR_NO_MEMORY);
		(void) zfs_error(zhp->zfs_hdl, EZFS_NOMEM, "internal error");
		changelist_free(clp);
		return (NULL);
	}

	clp->cl_list = uu_list_create(clp->cl_pool, NULL,
	    clp->cl_sorted ? UU_LIST_SORTED : 0);
	clp->cl_flags = flags;

	if (clp->cl_list == NULL) {
		assert(uu_error() == UU_ERROR_NO_MEMORY);
		(void) zfs_error(zhp->zfs_hdl, EZFS_NOMEM, "internal error");
		changelist_free(clp);
		return (NULL);
	}

	/*
	 * If this is a rename or the 'zoned' property, we pretend we're
	 * changing the mountpoint and flag it so we can catch all children in
	 * change_one().
	 *
	 * Flag cl_alldependents to catch all children plus the dependents
	 * (clones) that are not in the hierarchy.
	 */
	if (prop == ZFS_PROP_NAME) {
		clp->cl_prop = ZFS_PROP_MOUNTPOINT;
		clp->cl_alldependents = B_TRUE;
	} else if (prop == ZFS_PROP_ZONED) {
		clp->cl_prop = ZFS_PROP_MOUNTPOINT;
		clp->cl_allchildren = B_TRUE;
	} else if (prop == ZFS_PROP_CANMOUNT) {
		clp->cl_prop = ZFS_PROP_MOUNTPOINT;
	} else if (prop == ZFS_PROP_VOLSIZE) {
		clp->cl_prop = ZFS_PROP_MOUNTPOINT;
	} else if (prop == ZFS_PROP_VERSION) {
		clp->cl_prop = ZFS_PROP_MOUNTPOINT;
	} else {
		clp->cl_prop = prop;
	}
	clp->cl_realprop = prop;

	if (clp->cl_prop != ZFS_PROP_MOUNTPOINT &&
	    clp->cl_prop != ZFS_PROP_SHARENFS &&
	    clp->cl_prop != ZFS_PROP_SHAREISCSI)
		return (clp);

	if (clp->cl_alldependents) {
		if (zfs_iter_dependents(zhp, B_TRUE, change_one, clp) != 0) {
			changelist_free(clp);
			return (NULL);
		}
	} else if (zfs_iter_children(zhp, change_one, clp) != 0) {
		changelist_free(clp);
		return (NULL);
	}

	/*
	 * We have to re-open ourselves because we auto-close all the handles
	 * and can't tell the difference.
	 */
	if ((temp = zfs_open(zhp->zfs_hdl, zfs_get_name(zhp),
	    ZFS_TYPE_ANY)) == NULL) {
		changelist_free(clp);
		return (NULL);
	}

	/*
	 * Always add ourself to the list.  We add ourselves to the end so that
	 * we're the last to be unmounted.
	 */
	if ((cn = zfs_alloc(zhp->zfs_hdl,
	    sizeof (prop_changenode_t))) == NULL) {
		zfs_close(temp);
		changelist_free(clp);
		return (NULL);
	}

	cn->cn_handle = temp;
	cn->cn_mounted = zfs_is_mounted(temp, NULL);
	cn->cn_shared = zfs_is_shared(temp);

#ifndef	__APPLE__
	cn->cn_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
#endif	/*!__APPLE__*/

	uu_list_node_init(cn, &cn->cn_listnode, clp->cl_pool);
	if (clp->cl_sorted) {
		uu_list_index_t idx;
		(void) uu_list_find(clp->cl_list, cn, NULL, &idx);
		uu_list_insert(clp->cl_list, cn, idx);
	} else {
		verify(uu_list_insert_after(clp->cl_list,
		    uu_list_last(clp->cl_list), cn) == 0);
	}

	/*
	 * If the mountpoint property was previously 'legacy', or 'none',
	 * record it as the behavior of changelist_postfix() will be different.
	 */
	if ((clp->cl_prop == ZFS_PROP_MOUNTPOINT) &&
	    (zfs_prop_get(zhp, prop, property, sizeof (property),
	    NULL, NULL, 0, B_FALSE) == 0 &&
	    (strcmp(property, "legacy") == 0 || strcmp(property, "none") == 0)))
		clp->cl_waslegacy = B_TRUE;

	return (clp);
}
Пример #27
0
static int
change_one(zfs_handle_t *zhp, void *data)
{
	prop_changelist_t *clp = data;
	char property[ZFS_MAXPROPLEN];
	char where[64];
	prop_changenode_t *cn;
	zprop_source_t sourcetype;
	zprop_source_t share_sourcetype;

	/*
	 * We only want to unmount/unshare those filesystems that may inherit
	 * from the target filesystem.  If we find any filesystem with a
	 * locally set mountpoint, we ignore any children since changing the
	 * property will not affect them.  If this is a rename, we iterate
	 * over all children regardless, since we need them unmounted in
	 * order to do the rename.  Also, if this is a volume and we're doing
	 * a rename, then always add it to the changelist.
	 */

	if (!(ZFS_IS_VOLUME(zhp) && clp->cl_realprop == ZFS_PROP_NAME) &&
	    zfs_prop_get(zhp, clp->cl_prop, property,
	    sizeof (property), &sourcetype, where, sizeof (where),
	    B_FALSE) != 0) {
		zfs_close(zhp);
		return (0);
	}

	/*
	 * If we are "watching" sharenfs or sharesmb
	 * then check out the companion property which is tracked
	 * in cl_shareprop
	 */
	if (clp->cl_shareprop != ZPROP_INVAL &&
	    zfs_prop_get(zhp, clp->cl_shareprop, property,
	    sizeof (property), &share_sourcetype, where, sizeof (where),
	    B_FALSE) != 0) {
		zfs_close(zhp);
		return (0);
	}

	if (clp->cl_alldependents || clp->cl_allchildren ||
	    sourcetype == ZPROP_SRC_DEFAULT ||
	    sourcetype == ZPROP_SRC_INHERITED ||
	    (clp->cl_shareprop != ZPROP_INVAL &&
	    (share_sourcetype == ZPROP_SRC_DEFAULT ||
	    share_sourcetype == ZPROP_SRC_INHERITED))) {
		if ((cn = zfs_alloc(zfs_get_handle(zhp),
		    sizeof (prop_changenode_t))) == NULL) {
			zfs_close(zhp);
			return (-1);
		}

		cn->cn_handle = zhp;
		cn->cn_mounted = (clp->cl_gflags & CL_GATHER_MOUNT_ALWAYS) ||
		    zfs_is_mounted(zhp, NULL);
		cn->cn_shared = zfs_is_shared(zhp);
		cn->cn_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
		cn->cn_needpost = B_TRUE;

		/* Indicate if any child is exported to a local zone. */
		if (getzoneid() == GLOBAL_ZONEID && cn->cn_zoned)
			clp->cl_haszonedchild = B_TRUE;

		uu_list_node_init(cn, &cn->cn_listnode, clp->cl_pool);

		if (clp->cl_sorted) {
			uu_list_index_t idx;

			(void) uu_list_find(clp->cl_list, cn, NULL,
			    &idx);
			uu_list_insert(clp->cl_list, cn, idx);
		} else {
			/*
			 * Add this child to beginning of the list. Children
			 * below this one in the hierarchy will get added above
			 * this one in the list. This produces a list in
			 * reverse dataset name order.
			 * This is necessary when the original mountpoint
			 * is legacy or none.
			 */
			verify(uu_list_insert_before(clp->cl_list,
			    uu_list_first(clp->cl_list), cn) == 0);
		}

		if (!clp->cl_alldependents)
			return (zfs_iter_children(zhp, change_one, data));
	} else {
		zfs_close(zhp);
	}

	return (0);
}
Пример #28
0
/*
 * Add the given configuration to the list of known devices.
 */
static int
add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
    int order, int num_labels, nvlist_t *config)
{
	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
	pool_entry_t *pe;
	vdev_entry_t *ve;
	config_entry_t *ce;
	name_entry_t *ne;

	/*
	 * If this is a hot spare not currently in use or level 2 cache
	 * device, add it to the list of names to translate, but don't do
	 * anything else.
	 */
	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
	    &state) == 0 &&
	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
			return (-1);

		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
			free(ne);
			return (-1);
		}
		ne->ne_guid = vdev_guid;
		ne->ne_order = order;
		ne->ne_num_labels = num_labels;
		ne->ne_next = pl->names;
		pl->names = ne;
		return (0);
	}

	/*
	 * If we have a valid config but cannot read any of these fields, then
	 * it means we have a half-initialized label.  In vdev_label_init()
	 * we write a label with txg == 0 so that we can identify the device
	 * in case the user refers to the same disk later on.  If we fail to
	 * create the pool, we'll be left with a label in this state
	 * which should not be considered part of a valid pool.
	 */
	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
	    &pool_guid) != 0 ||
	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
	    &vdev_guid) != 0 ||
	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
	    &top_guid) != 0 ||
	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
	    &txg) != 0 || txg == 0) {
		nvlist_free(config);
		return (0);
	}

	/*
	 * First, see if we know about this pool.  If not, then add it to the
	 * list of known pools.
	 */
	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
		if (pe->pe_guid == pool_guid)
			break;
	}

	if (pe == NULL) {
		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
			nvlist_free(config);
			return (-1);
		}
		pe->pe_guid = pool_guid;
		pe->pe_next = pl->pools;
		pl->pools = pe;
	}

	/*
	 * Second, see if we know about this toplevel vdev.  Add it if its
	 * missing.
	 */
	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
		if (ve->ve_guid == top_guid)
			break;
	}

	if (ve == NULL) {
		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
			nvlist_free(config);
			return (-1);
		}
		ve->ve_guid = top_guid;
		ve->ve_next = pe->pe_vdevs;
		pe->pe_vdevs = ve;
	}

	/*
	 * Third, see if we have a config with a matching transaction group.  If
	 * so, then we do nothing.  Otherwise, add it to the list of known
	 * configs.
	 */
	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
		if (ce->ce_txg == txg)
			break;
	}

	if (ce == NULL) {
		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
			nvlist_free(config);
			return (-1);
		}
		ce->ce_txg = txg;
		ce->ce_config = config;
		ce->ce_next = ve->ve_configs;
		ve->ve_configs = ce;
	} else {
		nvlist_free(config);
	}

	/*
	 * At this point we've successfully added our config to the list of
	 * known configs.  The last thing to do is add the vdev guid -> path
	 * mappings so that we can fix up the configuration as necessary before
	 * doing the import.
	 */
	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
		return (-1);

	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
		free(ne);
		return (-1);
	}

	ne->ne_guid = vdev_guid;
	ne->ne_order = order;
	ne->ne_num_labels = num_labels;
	ne->ne_next = pl->names;
	pl->names = ne;

	return (0);
}
Пример #29
0
/*
 * Convert our list of pools into the definitive set of configurations.  We
 * start by picking the best config for each toplevel vdev.  Once that's done,
 * we assemble the toplevel vdevs into a full config for the pool.  We make a
 * pass to fix up any incorrect paths, and then add it to the main list to
 * return to the user.
 */
static nvlist_t *
get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
    nvlist_t *policy)
{
	pool_entry_t *pe;
	vdev_entry_t *ve;
	config_entry_t *ce;
	nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
	nvlist_t **spares, **l2cache;
	uint_t i, nspares, nl2cache;
	boolean_t config_seen;
	uint64_t best_txg;
	char *name, *hostname = NULL;
	uint64_t guid;
	uint_t children = 0;
	nvlist_t **child = NULL;
	uint_t holes;
	uint64_t *hole_array, max_id;
	uint_t c;
	boolean_t isactive;
	uint64_t hostid;
	nvlist_t *nvl;
	boolean_t valid_top_config = B_FALSE;

	if (nvlist_alloc(&ret, 0, 0) != 0)
		goto nomem;

	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
		uint64_t id, max_txg = 0;

		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
			goto nomem;
		config_seen = B_FALSE;

		/*
		 * Iterate over all toplevel vdevs.  Grab the pool configuration
		 * from the first one we find, and then go through the rest and
		 * add them as necessary to the 'vdevs' member of the config.
		 */
		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {

			/*
			 * Determine the best configuration for this vdev by
			 * selecting the config with the latest transaction
			 * group.
			 */
			best_txg = 0;
			for (ce = ve->ve_configs; ce != NULL;
			    ce = ce->ce_next) {

				if (ce->ce_txg > best_txg) {
					tmp = ce->ce_config;
					best_txg = ce->ce_txg;
				}
			}

			/*
			 * We rely on the fact that the max txg for the
			 * pool will contain the most up-to-date information
			 * about the valid top-levels in the vdev namespace.
			 */
			if (best_txg > max_txg) {
				(void) nvlist_remove(config,
				    ZPOOL_CONFIG_VDEV_CHILDREN,
				    DATA_TYPE_UINT64);
				(void) nvlist_remove(config,
				    ZPOOL_CONFIG_HOLE_ARRAY,
				    DATA_TYPE_UINT64_ARRAY);

				max_txg = best_txg;
				hole_array = NULL;
				holes = 0;
				max_id = 0;
				valid_top_config = B_FALSE;

				if (nvlist_lookup_uint64(tmp,
				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
					verify(nvlist_add_uint64(config,
					    ZPOOL_CONFIG_VDEV_CHILDREN,
					    max_id) == 0);
					valid_top_config = B_TRUE;
				}

				if (nvlist_lookup_uint64_array(tmp,
				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
				    &holes) == 0) {
					verify(nvlist_add_uint64_array(config,
					    ZPOOL_CONFIG_HOLE_ARRAY,
					    hole_array, holes) == 0);
				}
			}

			if (!config_seen) {
				/*
				 * Copy the relevant pieces of data to the pool
				 * configuration:
				 *
				 *	version
				 *	pool guid
				 *	name
				 *	pool txg (if available)
				 *	comment (if available)
				 *	pool state
				 *	hostid (if available)
				 *	hostname (if available)
				 */
				uint64_t state, version, pool_txg;
				char *comment = NULL;

				version = fnvlist_lookup_uint64(tmp,
				    ZPOOL_CONFIG_VERSION);
				fnvlist_add_uint64(config,
				    ZPOOL_CONFIG_VERSION, version);
				guid = fnvlist_lookup_uint64(tmp,
				    ZPOOL_CONFIG_POOL_GUID);
				fnvlist_add_uint64(config,
				    ZPOOL_CONFIG_POOL_GUID, guid);
				name = fnvlist_lookup_string(tmp,
				    ZPOOL_CONFIG_POOL_NAME);
				fnvlist_add_string(config,
				    ZPOOL_CONFIG_POOL_NAME, name);
				if (nvlist_lookup_uint64(tmp,
				    ZPOOL_CONFIG_POOL_TXG, &pool_txg) == 0)
					fnvlist_add_uint64(config,
					    ZPOOL_CONFIG_POOL_TXG, pool_txg);

				if (nvlist_lookup_string(tmp,
				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
					fnvlist_add_string(config,
					    ZPOOL_CONFIG_COMMENT, comment);

				state = fnvlist_lookup_uint64(tmp,
				    ZPOOL_CONFIG_POOL_STATE);
				fnvlist_add_uint64(config,
				    ZPOOL_CONFIG_POOL_STATE, state);

				hostid = 0;
				if (nvlist_lookup_uint64(tmp,
				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
					fnvlist_add_uint64(config,
					    ZPOOL_CONFIG_HOSTID, hostid);
					hostname = fnvlist_lookup_string(tmp,
					    ZPOOL_CONFIG_HOSTNAME);
					fnvlist_add_string(config,
					    ZPOOL_CONFIG_HOSTNAME, hostname);
				}

				config_seen = B_TRUE;
			}

			/*
			 * Add this top-level vdev to the child array.
			 */
			verify(nvlist_lookup_nvlist(tmp,
			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
			    &id) == 0);

			if (id >= children) {
				nvlist_t **newchild;

				newchild = zfs_alloc(hdl, (id + 1) *
				    sizeof (nvlist_t *));
				if (newchild == NULL)
					goto nomem;

				for (c = 0; c < children; c++)
					newchild[c] = child[c];

				free(child);
				child = newchild;
				children = id + 1;
			}
			if (nvlist_dup(nvtop, &child[id], 0) != 0)
				goto nomem;

		}

		/*
		 * If we have information about all the top-levels then
		 * clean up the nvlist which we've constructed. This
		 * means removing any extraneous devices that are
		 * beyond the valid range or adding devices to the end
		 * of our array which appear to be missing.
		 */
		if (valid_top_config) {
			if (max_id < children) {
				for (c = max_id; c < children; c++)
					nvlist_free(child[c]);
				children = max_id;
			} else if (max_id > children) {
				nvlist_t **newchild;

				newchild = zfs_alloc(hdl, (max_id) *
				    sizeof (nvlist_t *));
				if (newchild == NULL)
					goto nomem;

				for (c = 0; c < children; c++)
					newchild[c] = child[c];

				free(child);
				child = newchild;
				children = max_id;
			}
		}

		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
		    &guid) == 0);

		/*
		 * The vdev namespace may contain holes as a result of
		 * device removal. We must add them back into the vdev
		 * tree before we process any missing devices.
		 */
		if (holes > 0) {
			ASSERT(valid_top_config);

			for (c = 0; c < children; c++) {
				nvlist_t *holey;

				if (child[c] != NULL ||
				    !vdev_is_hole(hole_array, holes, c))
					continue;

				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
				    0) != 0)
					goto nomem;

				/*
				 * Holes in the namespace are treated as
				 * "hole" top-level vdevs and have a
				 * special flag set on them.
				 */
				if (nvlist_add_string(holey,
				    ZPOOL_CONFIG_TYPE,
				    VDEV_TYPE_HOLE) != 0 ||
				    nvlist_add_uint64(holey,
				    ZPOOL_CONFIG_ID, c) != 0 ||
				    nvlist_add_uint64(holey,
				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
					nvlist_free(holey);
					goto nomem;
				}
				child[c] = holey;
			}
		}

		/*
		 * Look for any missing top-level vdevs.  If this is the case,
		 * create a faked up 'missing' vdev as a placeholder.  We cannot
		 * simply compress the child array, because the kernel performs
		 * certain checks to make sure the vdev IDs match their location
		 * in the configuration.
		 */
		for (c = 0; c < children; c++) {
			if (child[c] == NULL) {
				nvlist_t *missing;
				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
				    0) != 0)
					goto nomem;
				if (nvlist_add_string(missing,
				    ZPOOL_CONFIG_TYPE,
				    VDEV_TYPE_MISSING) != 0 ||
				    nvlist_add_uint64(missing,
				    ZPOOL_CONFIG_ID, c) != 0 ||
				    nvlist_add_uint64(missing,
				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
					nvlist_free(missing);
					goto nomem;
				}
				child[c] = missing;
			}
		}

		/*
		 * Put all of this pool's top-level vdevs into a root vdev.
		 */
		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
			goto nomem;
		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
		    VDEV_TYPE_ROOT) != 0 ||
		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
		    child, children) != 0) {
			nvlist_free(nvroot);
			goto nomem;
		}

		for (c = 0; c < children; c++)
			nvlist_free(child[c]);
		free(child);
		children = 0;
		child = NULL;

		/*
		 * Go through and fix up any paths and/or devids based on our
		 * known list of vdev GUID -> path mappings.
		 */
		if (fix_paths(nvroot, pl->names) != 0) {
			nvlist_free(nvroot);
			goto nomem;
		}

		/*
		 * Add the root vdev to this pool's configuration.
		 */
		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
		    nvroot) != 0) {
			nvlist_free(nvroot);
			goto nomem;
		}
		nvlist_free(nvroot);

		/*
		 * zdb uses this path to report on active pools that were
		 * imported or created using -R.
		 */
		if (active_ok)
			goto add_pool;

		/*
		 * Determine if this pool is currently active, in which case we
		 * can't actually import it.
		 */
		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
		    &name) == 0);
		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
		    &guid) == 0);

		if (pool_active(hdl, name, guid, &isactive) != 0)
			goto error;

		if (isactive) {
			nvlist_free(config);
			config = NULL;
			continue;
		}

		if (policy != NULL) {
			if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
			    policy) != 0)
				goto nomem;
		}

		if ((nvl = refresh_config(hdl, config)) == NULL) {
			nvlist_free(config);
			config = NULL;
			continue;
		}

		nvlist_free(config);
		config = nvl;

		/*
		 * Go through and update the paths for spares, now that we have
		 * them.
		 */
		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
		    &nvroot) == 0);
		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
		    &spares, &nspares) == 0) {
			for (i = 0; i < nspares; i++) {
				if (fix_paths(spares[i], pl->names) != 0)
					goto nomem;
			}
		}

		/*
		 * Update the paths for l2cache devices.
		 */
		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
		    &l2cache, &nl2cache) == 0) {
			for (i = 0; i < nl2cache; i++) {
				if (fix_paths(l2cache[i], pl->names) != 0)
					goto nomem;
			}
		}

		/*
		 * Restore the original information read from the actual label.
		 */
		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
		    DATA_TYPE_UINT64);
		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
		    DATA_TYPE_STRING);
		if (hostid != 0) {
			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
			    hostid) == 0);
			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
			    hostname) == 0);
		}

add_pool:
		/*
		 * Add this pool to the list of configs.
		 */
		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
		    &name) == 0);
		if (nvlist_add_nvlist(ret, name, config) != 0)
			goto nomem;

		nvlist_free(config);
		config = NULL;
	}

	return (ret);

nomem:
	(void) no_memory(hdl);
error:
	nvlist_free(config);
	nvlist_free(ret);
	for (c = 0; c < children; c++)
		nvlist_free(child[c]);
	free(child);

	return (NULL);
}
Пример #30
0
/*
 * Loads the pool namespace, or re-loads it if the cache has changed.
 */
static int
namespace_reload(libzfs_handle_t *hdl)
{
	nvlist_t *config;
	config_node_t *cn;
	nvpair_t *elem;
	zfs_cmd_t zc = { "\0", "\0", "\0", "\0", 0 };
	void *cookie;

	if (hdl->libzfs_ns_gen == 0) {
		/*
		 * This is the first time we've accessed the configuration
		 * cache.  Initialize the AVL tree and then fall through to the
		 * common code.
		 */
		if ((hdl->libzfs_ns_avlpool = uu_avl_pool_create("config_pool",
		    sizeof (config_node_t),
		    offsetof(config_node_t, cn_avl),
		    config_node_compare, UU_DEFAULT)) == NULL)
			return (no_memory(hdl));

		if ((hdl->libzfs_ns_avl = uu_avl_create(hdl->libzfs_ns_avlpool,
		    NULL, UU_DEFAULT)) == NULL)
			return (no_memory(hdl));
	}

	if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0)
		return (-1);

	for (;;) {
		zc.zc_cookie = hdl->libzfs_ns_gen;
		//if (ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_CONFIGS, &zc) != 0) {
		if (zfs_ioctl(hdl, ZFS_IOC_POOL_CONFIGS, &zc) != 0) {
			switch (errno) {
			case EEXIST:
				/*
				 * The namespace hasn't changed.
				 */
				zcmd_free_nvlists(&zc);
				return (0);

			case ENOMEM:
				if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
					zcmd_free_nvlists(&zc);
					return (-1);
				}
				break;

			default:
				zcmd_free_nvlists(&zc);
				return (zfs_standard_error(hdl, errno,
				    dgettext(TEXT_DOMAIN, "failed to read "
				    "pool configuration")));
			}
		} else {
			hdl->libzfs_ns_gen = zc.zc_cookie;
			break;
		}
	}

	if (zcmd_read_dst_nvlist(hdl, &zc, &config) != 0) {
		zcmd_free_nvlists(&zc);
		return (-1);
	}

	zcmd_free_nvlists(&zc);

	/*
	 * Clear out any existing configuration information.
	 */
	cookie = NULL;
	while ((cn = uu_avl_teardown(hdl->libzfs_ns_avl, &cookie)) != NULL) {
		nvlist_free(cn->cn_config);
		free(cn->cn_name);
		free(cn);
	}

	elem = NULL;
	while ((elem = nvlist_next_nvpair(config, elem)) != NULL) {
		nvlist_t *child;
		uu_avl_index_t where;

		if ((cn = zfs_alloc(hdl, sizeof (config_node_t))) == NULL) {
			nvlist_free(config);
			return (-1);
		}

		if ((cn->cn_name = zfs_strdup(hdl,
		    nvpair_name(elem))) == NULL) {
			free(cn);
			nvlist_free(config);
			return (-1);
		}

		verify(nvpair_value_nvlist(elem, &child) == 0);
		if (nvlist_dup(child, &cn->cn_config, 0) != 0) {
			free(cn->cn_name);
			free(cn);
			nvlist_free(config);
			return (no_memory(hdl));
		}
		verify(uu_avl_find(hdl->libzfs_ns_avl, cn, NULL, &where)
		    == NULL);

		uu_avl_insert(hdl->libzfs_ns_avl, cn, where);
	}

	nvlist_free(config);
	return (0);
}