/* Subroutine */ int zchkgb_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nns, integer *nsval, doublereal *thresh, logical *tsterr, doublecomplex *a, integer *la, doublecomplex *afac, integer *lafac, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 *** In ZCHKGB, LA=\002,i5,\002 is too sm" "all for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU=\002" ",i4,/\002 ==> Increase LA to at least \002,i5)"; static char fmt_9998[] = "(\002 *** In ZCHKGB, LAFAC=\002,i5,\002 is too" " small for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU" "=\002,i4,/\002 ==> Increase LAFAC to at least \002,i5)"; static char fmt_9997[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, KL=" "\002,i5,\002, KU=\002,i5,\002, NB =\002,i4,\002, type \002,i1" ",\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9996[] = "(\002 TRANS='\002,a1,\002', N=\002,i5,\002, " "KL=\002,i5,\002, KU=\002,i5,\002, NRHS=\002,i3,\002, type \002,i" "1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9995[] = "(\002 NORM ='\002,a1,\002', N=\002,i5,\002, " "KL=\002,i5,\002, KU=\002,i5,\002,\002,10x,\002 type \002,i1,\002" ", test(\002,i1,\002)=\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, m, n, i1, i2, nb, im, in, kl, ku, lda, ldb, inb, ikl, nkl, iku, nku, ioff, mode, koff, imat, info; char path[3], dist[1]; integer irhs, nrhs; char norm[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); doublereal rcond; extern /* Subroutine */ int zgbt01_(integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, doublereal *); integer nimat, klval[4]; extern /* Subroutine */ int zgbt02_(char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *), zgbt05_(char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer * , doublereal *, doublereal *, doublereal *); doublereal anorm; integer itran; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); integer kuval[4]; char trans[1]; integer izero, nerrs; logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); char xtype[1]; extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *); integer ldafac; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc; extern doublereal zlangb_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal rcondi; extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); doublereal cndnum, anormi, rcondo; extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); doublereal ainvnm; logical trfcon; doublereal anormo; extern /* Subroutine */ int xlaenv_(integer *, integer *), zerrge_(char *, integer *), zgbrfs_(char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zgbtrf_(integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer * , integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zgbtrs_(char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal result[7]; /* Fortran I/O blocks */ static cilist io___25 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___26 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9995, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKGB tests ZGBTRF, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NBVAL) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) COMPLEX*16 array, dimension (LA) */ /* LA (input) INTEGER */ /* The length of the array A. LA >= (KLMAX+KUMAX+1)*NMAX */ /* where KLMAX is the largest entry in the local array KLVAL, */ /* KUMAX is the largest entry in the local array KUVAL and */ /* NMAX is the largest entry in the input array NVAL. */ /* AFAC (workspace) COMPLEX*16 array, dimension (LAFAC) */ /* LAFAC (input) INTEGER */ /* The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX */ /* where KLMAX is the largest entry in the local array KLVAL, */ /* KUMAX is the largest entry in the local array KUVAL and */ /* NMAX is the largest entry in the input array NVAL. */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NSMAX,NMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --afac; --a; --nsval; --nbval; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrge_(path, nout); } infoc_1.infot = 0; /* Initialize the first value for the lower and upper bandwidths. */ klval[0] = 0; kuval[0] = 0; /* Do for each value of M in MVAL */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; /* Set values to use for the lower bandwidth. */ klval[1] = m + (m + 1) / 4; /* KLVAL( 2 ) = MAX( M-1, 0 ) */ klval[2] = (m * 3 - 1) / 4; klval[3] = (m + 1) / 4; /* Do for each value of N in NVAL */ i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; *(unsigned char *)xtype = 'N'; /* Set values to use for the upper bandwidth. */ kuval[1] = n + (n + 1) / 4; /* KUVAL( 2 ) = MAX( N-1, 0 ) */ kuval[2] = (n * 3 - 1) / 4; kuval[3] = (n + 1) / 4; /* Set limits on the number of loop iterations. */ /* Computing MIN */ i__3 = m + 1; nkl = min(i__3,4); if (n == 0) { nkl = 2; } /* Computing MIN */ i__3 = n + 1; nku = min(i__3,4); if (m == 0) { nku = 2; } nimat = 8; if (m <= 0 || n <= 0) { nimat = 1; } i__3 = nkl; for (ikl = 1; ikl <= i__3; ++ikl) { /* Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This */ /* order makes it easier to skip redundant values for small */ /* values of M. */ kl = klval[ikl - 1]; i__4 = nku; for (iku = 1; iku <= i__4; ++iku) { /* Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This */ /* order makes it easier to skip redundant values for */ /* small values of N. */ ku = kuval[iku - 1]; /* Check that A and AFAC are big enough to generate this */ /* matrix. */ lda = kl + ku + 1; ldafac = (kl << 1) + ku + 1; if (lda * n > *la || ldafac * n > *lafac) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } if (n * (kl + ku + 1) > *la) { io___25.ciunit = *nout; s_wsfe(&io___25); do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer) ); i__5 = n * (kl + ku + 1); do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof( integer)); e_wsfe(); ++nerrs; } if (n * ((kl << 1) + ku + 1) > *lafac) { io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, (char *)&(*lafac), (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer) ); i__5 = n * ((kl << 1) + ku + 1); do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof( integer)); e_wsfe(); ++nerrs; } goto L130; } i__5 = nimat; for (imat = 1; imat <= i__5; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L120; } /* Skip types 2, 3, or 4 if the matrix size is too */ /* small. */ zerot = imat >= 2 && imat <= 4; if (zerot && n < imat - 1) { goto L120; } if (! zerot || ! dotype[1]) { /* Set up parameters with ZLATB4 and generate a */ /* test matrix with ZLATMS. */ zlatb4_(path, &imat, &m, &n, type__, &kl, &ku, & anorm, &mode, &cndnum, dist); /* Computing MAX */ i__6 = 1, i__7 = ku + 2 - n; koff = max(i__6,i__7); i__6 = koff - 1; for (i__ = 1; i__ <= i__6; ++i__) { i__7 = i__; a[i__7].r = 0., a[i__7].i = 0.; /* L20: */ } s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, ( ftnlen)6); zlatms_(&m, &n, dist, iseed, type__, &rwork[1], & mode, &cndnum, &anorm, &kl, &ku, "Z", &a[ koff], &lda, &work[1], &info); /* Check the error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, " ", &m, &n, &kl, &ku, &c_n1, &imat, &nfail, & nerrs, nout); goto L120; } } else if (izero > 0) { /* Use the same matrix for types 3 and 4 as for */ /* type 2 by copying back the zeroed out column. */ i__6 = i2 - i1 + 1; zcopy_(&i__6, &b[1], &c__1, &a[ioff + i1], &c__1); } /* For types 2, 3, and 4, zero one or more columns of */ /* the matrix to test that INFO is returned correctly. */ izero = 0; if (zerot) { if (imat == 2) { izero = 1; } else if (imat == 3) { izero = min(m,n); } else { izero = min(m,n) / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 4) { /* Store the column to be zeroed out in B. */ /* Computing MAX */ i__6 = 1, i__7 = ku + 2 - izero; i1 = max(i__6,i__7); /* Computing MIN */ i__6 = kl + ku + 1, i__7 = ku + 1 + (m - izero); i2 = min(i__6,i__7); i__6 = i2 - i1 + 1; zcopy_(&i__6, &a[ioff + i1], &c__1, &b[1], & c__1); i__6 = i2; for (i__ = i1; i__ <= i__6; ++i__) { i__7 = ioff + i__; a[i__7].r = 0., a[i__7].i = 0.; /* L30: */ } } else { i__6 = n; for (j = izero; j <= i__6; ++j) { /* Computing MAX */ i__7 = 1, i__8 = ku + 2 - j; /* Computing MIN */ i__10 = kl + ku + 1, i__11 = ku + 1 + (m - j); i__9 = min(i__10,i__11); for (i__ = max(i__7,i__8); i__ <= i__9; ++i__) { i__7 = ioff + i__; a[i__7].r = 0., a[i__7].i = 0.; /* L40: */ } ioff += lda; /* L50: */ } } } /* These lines, if used in place of the calls in the */ /* loop over INB, cause the code to bomb on a Sun */ /* SPARCstation. */ /* ANORMO = ZLANGB( 'O', N, KL, KU, A, LDA, RWORK ) */ /* ANORMI = ZLANGB( 'I', N, KL, KU, A, LDA, RWORK ) */ /* Do for each blocksize in NBVAL */ i__6 = *nnb; for (inb = 1; inb <= i__6; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the LU factorization of the band matrix. */ if (m > 0 && n > 0) { i__9 = kl + ku + 1; zlacpy_("Full", &i__9, &n, &a[1], &lda, &afac[ kl + 1], &ldafac); } s_copy(srnamc_1.srnamt, "ZGBTRF", (ftnlen)6, ( ftnlen)6); zgbtrf_(&m, &n, &kl, &ku, &afac[1], &ldafac, & iwork[1], &info); /* Check error code from ZGBTRF. */ if (info != izero) { alaerh_(path, "ZGBTRF", &info, &izero, " ", & m, &n, &kl, &ku, &nb, &imat, &nfail, & nerrs, nout); } trfcon = FALSE_; /* + TEST 1 */ /* Reconstruct matrix from factors and compute */ /* residual. */ zgbt01_(&m, &n, &kl, &ku, &a[1], &lda, &afac[1], & ldafac, &iwork[1], &work[1], result); /* Print information about the tests so far that */ /* did not pass the threshold. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, (char *)&m, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } ++nrun; /* Skip the remaining tests if this is not the */ /* first block size or if M .ne. N. */ if (inb > 1 || m != n) { goto L110; } anormo = zlangb_("O", &n, &kl, &ku, &a[1], &lda, & rwork[1]); anormi = zlangb_("I", &n, &kl, &ku, &a[1], &lda, & rwork[1]); if (info == 0) { /* Form the inverse of A so we can get a good */ /* estimate of CNDNUM = norm(A) * norm(inv(A)). */ ldb = max(1,n); zlaset_("Full", &n, &n, &c_b61, &c_b62, &work[ 1], &ldb); s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen)6, ( ftnlen)6); zgbtrs_("No transpose", &n, &kl, &ku, &n, & afac[1], &ldafac, &iwork[1], &work[1], &ldb, &info); /* Compute the 1-norm condition number of A. */ ainvnm = zlange_("O", &n, &n, &work[1], &ldb, &rwork[1]); if (anormo <= 0. || ainvnm <= 0.) { rcondo = 1.; } else { rcondo = 1. / anormo / ainvnm; } /* Compute the infinity-norm condition number of */ /* A. */ ainvnm = zlange_("I", &n, &n, &work[1], &ldb, &rwork[1]); if (anormi <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anormi / ainvnm; } } else { /* Do only the condition estimate if INFO.NE.0. */ trfcon = TRUE_; rcondo = 0.; rcondi = 0.; } /* Skip the solve tests if the matrix is singular. */ if (trfcon) { goto L90; } i__9 = *nns; for (irhs = 1; irhs <= i__9; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; if (itran == 1) { rcondc = rcondo; *(unsigned char *)norm = 'O'; } else { rcondc = rcondi; *(unsigned char *)norm = 'I'; } /* + TEST 2: */ /* Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen) 6, (ftnlen)6); zlarhs_(path, xtype, " ", trans, &n, &n, & kl, &ku, &nrhs, &a[1], &lda, & xact[1], &ldb, &b[1], &ldb, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, &nrhs, &b[1], &ldb, & x[1], &ldb); s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen) 6, (ftnlen)6); zgbtrs_(trans, &n, &kl, &ku, &nrhs, &afac[ 1], &ldafac, &iwork[1], &x[1], & ldb, &info); /* Check error code from ZGBTRS. */ if (info != 0) { alaerh_(path, "ZGBTRS", &info, &c__0, trans, &n, &n, &kl, &ku, & c_n1, &imat, &nfail, &nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &ldb, & work[1], &ldb); zgbt02_(trans, &m, &n, &kl, &ku, &nrhs, & a[1], &lda, &x[1], &ldb, &work[1], &ldb, &result[1]); /* + TEST 3: */ /* Check solution from generated exact */ /* solution. */ zget04_(&n, &nrhs, &x[1], &ldb, &xact[1], &ldb, &rcondc, &result[2]); /* + TESTS 4, 5, 6: */ /* Use iterative refinement to improve the */ /* solution. */ s_copy(srnamc_1.srnamt, "ZGBRFS", (ftnlen) 6, (ftnlen)6); zgbrfs_(trans, &n, &kl, &ku, &nrhs, &a[1], &lda, &afac[1], &ldafac, &iwork[ 1], &b[1], &ldb, &x[1], &ldb, & rwork[1], &rwork[nrhs + 1], &work[ 1], &rwork[(nrhs << 1) + 1], & info); /* Check error code from ZGBRFS. */ if (info != 0) { alaerh_(path, "ZGBRFS", &info, &c__0, trans, &n, &n, &kl, &ku, & nrhs, &imat, &nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &ldb, &xact[1], &ldb, &rcondc, &result[3]); zgbt05_(trans, &n, &kl, &ku, &nrhs, &a[1], &lda, &b[1], &ldb, &x[1], &ldb, & xact[1], &ldb, &rwork[1], &rwork[ nrhs + 1], &result[4]); /* Print information about the tests that did */ /* not pass the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___59.ciunit = *nout; s_wsfe(&io___59); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nrhs, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += 5; /* L70: */ } /* L80: */ } /* + TEST 7: */ /* Get an estimate of RCOND = 1/CNDNUM. */ L90: for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { anorm = anormo; rcondc = rcondo; *(unsigned char *)norm = 'O'; } else { anorm = anormi; rcondc = rcondi; *(unsigned char *)norm = 'I'; } s_copy(srnamc_1.srnamt, "ZGBCON", (ftnlen)6, ( ftnlen)6); zgbcon_(norm, &n, &kl, &ku, &afac[1], &ldafac, &iwork[1], &anorm, &rcond, &work[1], &rwork[1], &info); /* Check error code from ZGBCON. */ if (info != 0) { alaerh_(path, "ZGBCON", &info, &c__0, norm, &n, &n, &kl, &ku, &c_n1, & imat, &nfail, &nerrs, nout); } result[6] = dget06_(&rcond, &rcondc); /* Print information about the tests that did */ /* not pass the threshold. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___61.ciunit = *nout; s_wsfe(&io___61); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L100: */ } L110: ; } L120: ; } L130: ; } /* L140: */ } /* L150: */ } /* L160: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKGB */ } /* zchkgb_ */
/* Subroutine */ int zgbrfsx_(char *trans, char *equed, integer *n, integer * kl, integer *ku, integer *nrhs, doublecomplex *ab, integer *ldab, doublecomplex *afb, integer *ldafb, integer *ipiv, doublereal *r__, doublereal *c__, doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *berr, integer * n_err_bnds__, doublereal *err_bnds_norm__, doublereal * err_bnds_comp__, integer *nparams, doublereal *params, doublecomplex * work, doublereal *rwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, err_bnds_comp_dim1, err_bnds_comp_offset, i__1; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal illrcond_thresh__, unstable_thresh__, err_lbnd__; integer ref_type__; extern integer ilatrans_(char *); integer j; doublereal rcond_tmp__; integer prec_type__, trans_type__; doublereal cwise_wrong__; extern /* Subroutine */ int zla_gbrfsx_extended_(integer *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, logical *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, doublecomplex *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, logical *, integer *); char norm[1]; logical ignore_cwise__; extern logical lsame_(char *, char *); doublereal anorm; extern doublereal zla_gbrcond_c_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer * , doublereal *, logical *, integer *, doublecomplex *, doublereal *), zla_gbrcond_x_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *), dlamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal zlangb_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); logical colequ, notran, rowequ; extern integer ilaprec_(char *); integer ithresh, n_norms__; doublereal rthresh; /* -- LAPACK computational routine (version 3.4.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* April 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Check the input parameters. */ /* Parameter adjustments */ err_bnds_comp_dim1 = *nrhs; err_bnds_comp_offset = 1 + err_bnds_comp_dim1; err_bnds_comp__ -= err_bnds_comp_offset; err_bnds_norm_dim1 = *nrhs; err_bnds_norm_offset = 1 + err_bnds_norm_dim1; err_bnds_norm__ -= err_bnds_norm_offset; ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; afb_dim1 = *ldafb; afb_offset = 1 + afb_dim1; afb -= afb_offset; --ipiv; --r__; --c__; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --berr; --params; --work; --rwork; /* Function Body */ *info = 0; trans_type__ = ilatrans_(trans); ref_type__ = 1; if (*nparams >= 1) { if (params[1] < 0.) { params[1] = 1.; } else { ref_type__ = (integer) params[1]; } } /* Set default parameters. */ illrcond_thresh__ = (doublereal) (*n) * dlamch_("Epsilon"); ithresh = 10; rthresh = .5; unstable_thresh__ = .25; ignore_cwise__ = FALSE_; if (*nparams >= 2) { if (params[2] < 0.) { params[2] = (doublereal) ithresh; } else { ithresh = (integer) params[2]; } } if (*nparams >= 3) { if (params[3] < 0.) { if (ignore_cwise__) { params[3] = 0.; } else { params[3] = 1.; } } else { ignore_cwise__ = params[3] == 0.; } } if (ref_type__ == 0 || *n_err_bnds__ == 0) { n_norms__ = 0; } else if (ignore_cwise__) { n_norms__ = 1; } else { n_norms__ = 2; } notran = lsame_(trans, "N"); rowequ = lsame_(equed, "R") || lsame_(equed, "B"); colequ = lsame_(equed, "C") || lsame_(equed, "B"); /* Test input parameters. */ if (trans_type__ == -1) { *info = -1; } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*kl < 0) { *info = -4; } else if (*ku < 0) { *info = -5; } else if (*nrhs < 0) { *info = -6; } else if (*ldab < *kl + *ku + 1) { *info = -8; } else if (*ldafb < (*kl << 1) + *ku + 1) { *info = -10; } else if (*ldb < max(1,*n)) { *info = -13; } else if (*ldx < max(1,*n)) { *info = -15; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGBRFSX", &i__1); return 0; } /* Quick return if possible. */ if (*n == 0 || *nrhs == 0) { *rcond = 1.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { berr[j] = 0.; if (*n_err_bnds__ >= 1) { err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; } if (*n_err_bnds__ >= 2) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.; err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.; } if (*n_err_bnds__ >= 3) { err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.; err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.; } } return 0; } /* Default to failure. */ *rcond = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { berr[j] = 1.; if (*n_err_bnds__ >= 1) { err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; } if (*n_err_bnds__ >= 2) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; } if (*n_err_bnds__ >= 3) { err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.; err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.; } } /* Compute the norm of A and the reciprocal of the condition */ /* number of A. */ if (notran) { *(unsigned char *)norm = 'I'; } else { *(unsigned char *)norm = '1'; } anorm = zlangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &rwork[1]); zgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond, &work[1], &rwork[1], info); /* Perform refinement on each right-hand side */ if (ref_type__ != 0) { prec_type__ = ilaprec_("E"); if (notran) { zla_gbrfsx_extended_(&prec_type__, &trans_type__, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, & ipiv[1], &colequ, &c__[1], &b[b_offset], ldb, &x[x_offset] , ldx, &berr[1], &n_norms__, &err_bnds_norm__[ err_bnds_norm_offset], &err_bnds_comp__[ err_bnds_comp_offset], &work[1], &rwork[1], &work[*n + 1], &rwork[1], rcond, &ithresh, &rthresh, &unstable_thresh__, &ignore_cwise__, info); } else { zla_gbrfsx_extended_(&prec_type__, &trans_type__, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, & ipiv[1], &rowequ, &r__[1], &b[b_offset], ldb, &x[x_offset] , ldx, &berr[1], &n_norms__, &err_bnds_norm__[ err_bnds_norm_offset], &err_bnds_comp__[ err_bnds_comp_offset], &work[1], &rwork[1], &work[*n + 1], &rwork[1], rcond, &ithresh, &rthresh, &unstable_thresh__, &ignore_cwise__, info); } } /* Computing MAX */ d__1 = 10.; d__2 = sqrt((doublereal) (*n)); // , expr subst err_lbnd__ = max(d__1,d__2) * dlamch_("Epsilon"); if (*n_err_bnds__ >= 1 && n_norms__ >= 1) { /* Compute scaled normwise condition number cond(A*C). */ if (colequ && notran) { rcond_tmp__ = zla_gbrcond_c_(trans, n, kl, ku, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__[1], &c_true, info, &work[1], &rwork[1]); } else if (rowequ && ! notran) { rcond_tmp__ = zla_gbrcond_c_(trans, n, kl, ku, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &ipiv[1], &r__[1], &c_true, info, &work[1], &rwork[1]); } else { rcond_tmp__ = zla_gbrcond_c_(trans, n, kl, ku, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__[1], & c_false, info, &work[1], &rwork[1]); } i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { /* Cap the error at 1.0. */ if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] > 1.) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; } /* Threshold the error (see LAWN). */ if (rcond_tmp__ < illrcond_thresh__) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; err_bnds_norm__[j + err_bnds_norm_dim1] = 0.; if (*info <= *n) { *info = *n + j; } } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] < err_lbnd__) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__; err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; } /* Save the condition number. */ if (*n_err_bnds__ >= 3) { err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__; } } } if (*n_err_bnds__ >= 1 && n_norms__ >= 2) { /* Compute componentwise condition number cond(A*diag(Y(:,J))) for */ /* each right-hand side using the current solution as an estimate of */ /* the true solution. If the componentwise error estimate is too */ /* large, then the solution is a lousy estimate of truth and the */ /* estimated RCOND may be too optimistic. To avoid misleading users, */ /* the inverse condition number is set to 0.0 when the estimated */ /* cwise error is at least CWISE_WRONG. */ cwise_wrong__ = sqrt(dlamch_("Epsilon")); i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < cwise_wrong__) { rcond_tmp__ = zla_gbrcond_x_(trans, n, kl, ku, &ab[ab_offset] , ldab, &afb[afb_offset], ldafb, &ipiv[1], &x[j * x_dim1 + 1], info, &work[1], &rwork[1]); } else { rcond_tmp__ = 0.; } /* Cap the error at 1.0. */ if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] > 1.) { err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; } /* Threshold the error (see LAWN). */ if (rcond_tmp__ < illrcond_thresh__) { err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; err_bnds_comp__[j + err_bnds_comp_dim1] = 0.; if (params[3] == 1. && *info < *n + j) { *info = *n + j; } } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < err_lbnd__) { err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__; err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; } /* Save the condition number. */ if (*n_err_bnds__ >= 3) { err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__; } } } return 0; /* End of ZGBRFSX */ }
/* Subroutine */ int zgbrfsx_(char *trans, char *equed, integer *n, integer * kl, integer *ku, integer *nrhs, doublecomplex *ab, integer *ldab, doublecomplex *afb, integer *ldafb, integer *ipiv, doublereal *r__, doublereal *c__, doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *berr, integer * n_err_bnds__, doublereal *err_bnds_norm__, doublereal * err_bnds_comp__, integer *nparams, doublereal *params, doublecomplex * work, doublereal *rwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, err_bnds_comp_dim1, err_bnds_comp_offset, i__1; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal illrcond_thresh__, unstable_thresh__, err_lbnd__; integer ref_type__; extern integer ilatrans_(char *); integer j; doublereal rcond_tmp__; integer prec_type__, trans_type__; doublereal cwise_wrong__; extern /* Subroutine */ int zla_gbrfsx_extended__(integer *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, logical *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, doublecomplex *, doublecomplex *, doublereal *, integer *, doublereal *, doublereal *, logical *, integer *); char norm[1]; logical ignore_cwise__; extern logical lsame_(char *, char *); doublereal anorm; extern doublereal zla_gbrcond_c__(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer * , doublereal *, logical *, integer *, doublecomplex *, doublereal *, ftnlen), zla_gbrcond_x__(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, ftnlen), dlamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal zlangb_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); logical colequ, notran, rowequ; extern integer ilaprec_(char *); integer ithresh, n_norms__; doublereal rthresh; /* -- LAPACK routine (version 3.2.1) -- */ /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ /* -- Jason Riedy of Univ. of California Berkeley. -- */ /* -- April 2009 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley and NAG Ltd. -- */ /* .. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGBRFSX improves the computed solution to a system of linear */ /* equations and provides error bounds and backward error estimates */ /* for the solution. In addition to normwise error bound, the code */ /* provides maximum componentwise error bound if possible. See */ /* comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */ /* error bounds. */ /* The original system of linear equations may have been equilibrated */ /* before calling this routine, as described by arguments EQUED, R */ /* and C below. In this case, the solution and error bounds returned */ /* are for the original unequilibrated system. */ /* Arguments */ /* ========= */ /* Some optional parameters are bundled in the PARAMS array. These */ /* settings determine how refinement is performed, but often the */ /* defaults are acceptable. If the defaults are acceptable, users */ /* can pass NPARAMS = 0 which prevents the source code from accessing */ /* the PARAMS argument. */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ /* EQUED (input) CHARACTER*1 */ /* Specifies the form of equilibration that was done to A */ /* before calling this routine. This is needed to compute */ /* the solution and error bounds correctly. */ /* = 'N': No equilibration */ /* = 'R': Row equilibration, i.e., A has been premultiplied by */ /* diag(R). */ /* = 'C': Column equilibration, i.e., A has been postmultiplied */ /* by diag(C). */ /* = 'B': Both row and column equilibration, i.e., A has been */ /* replaced by diag(R) * A * diag(C). */ /* The right hand side B has been changed accordingly. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KL (input) INTEGER */ /* The number of subdiagonals within the band of A. KL >= 0. */ /* KU (input) INTEGER */ /* The number of superdiagonals within the band of A. KU >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ /* The original band matrix A, stored in rows 1 to KL+KU+1. */ /* The j-th column of A is stored in the j-th column of the */ /* array AB as follows: */ /* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KL+KU+1. */ /* AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N) */ /* Details of the LU factorization of the band matrix A, as */ /* computed by DGBTRF. U is stored as an upper triangular band */ /* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */ /* the multipliers used during the factorization are stored in */ /* rows KL+KU+2 to 2*KL+KU+1. */ /* LDAFB (input) INTEGER */ /* The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from DGETRF; for 1<=i<=N, row i of the */ /* matrix was interchanged with row IPIV(i). */ /* R (input or output) DOUBLE PRECISION array, dimension (N) */ /* The row scale factors for A. If EQUED = 'R' or 'B', A is */ /* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */ /* is not accessed. R is an input argument if FACT = 'F'; */ /* otherwise, R is an output argument. If FACT = 'F' and */ /* EQUED = 'R' or 'B', each element of R must be positive. */ /* If R is output, each element of R is a power of the radix. */ /* If R is input, each element of R should be a power of the radix */ /* to ensure a reliable solution and error estimates. Scaling by */ /* powers of the radix does not cause rounding errors unless the */ /* result underflows or overflows. Rounding errors during scaling */ /* lead to refining with a matrix that is not equivalent to the */ /* input matrix, producing error estimates that may not be */ /* reliable. */ /* C (input or output) DOUBLE PRECISION array, dimension (N) */ /* The column scale factors for A. If EQUED = 'C' or 'B', A is */ /* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */ /* is not accessed. C is an input argument if FACT = 'F'; */ /* otherwise, C is an output argument. If FACT = 'F' and */ /* EQUED = 'C' or 'B', each element of C must be positive. */ /* If C is output, each element of C is a power of the radix. */ /* If C is input, each element of C should be a power of the radix */ /* to ensure a reliable solution and error estimates. Scaling by */ /* powers of the radix does not cause rounding errors unless the */ /* result underflows or overflows. Rounding errors during scaling */ /* lead to refining with a matrix that is not equivalent to the */ /* input matrix, producing error estimates that may not be */ /* reliable. */ /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* The right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* On entry, the solution matrix X, as computed by DGETRS. */ /* On exit, the improved solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* RCOND (output) DOUBLE PRECISION */ /* Reciprocal scaled condition number. This is an estimate of the */ /* reciprocal Skeel condition number of the matrix A after */ /* equilibration (if done). If this is less than the machine */ /* precision (in particular, if it is zero), the matrix is singular */ /* to working precision. Note that the error may still be small even */ /* if this number is very small and the matrix appears ill- */ /* conditioned. */ /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* Componentwise relative backward error. This is the */ /* componentwise relative backward error of each solution vector X(j) */ /* (i.e., the smallest relative change in any element of A or B that */ /* makes X(j) an exact solution). */ /* N_ERR_BNDS (input) INTEGER */ /* Number of error bounds to return for each right hand side */ /* and each type (normwise or componentwise). See ERR_BNDS_NORM and */ /* ERR_BNDS_COMP below. */ /* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ /* For each right-hand side, this array contains information about */ /* various error bounds and condition numbers corresponding to the */ /* normwise relative error, which is defined as follows: */ /* Normwise relative error in the ith solution vector: */ /* max_j (abs(XTRUE(j,i) - X(j,i))) */ /* ------------------------------ */ /* max_j abs(X(j,i)) */ /* The array is indexed by the type of error information as described */ /* below. There currently are up to three pieces of information */ /* returned. */ /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ /* right-hand side. */ /* The second index in ERR_BNDS_NORM(:,err) contains the following */ /* three fields: */ /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ /* reciprocal condition number is less than the threshold */ /* sqrt(n) * dlamch('Epsilon'). */ /* err = 2 "Guaranteed" error bound: The estimated forward error, */ /* almost certainly within a factor of 10 of the true error */ /* so long as the next entry is greater than the threshold */ /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ /* be trusted if the previous boolean is true. */ /* err = 3 Reciprocal condition number: Estimated normwise */ /* reciprocal condition number. Compared with the threshold */ /* sqrt(n) * dlamch('Epsilon') to determine if the error */ /* estimate is "guaranteed". These reciprocal condition */ /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ /* appropriately scaled matrix Z. */ /* Let Z = S*A, where S scales each row by a power of the */ /* radix so all absolute row sums of Z are approximately 1. */ /* See Lapack Working Note 165 for further details and extra */ /* cautions. */ /* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ /* For each right-hand side, this array contains information about */ /* various error bounds and condition numbers corresponding to the */ /* componentwise relative error, which is defined as follows: */ /* Componentwise relative error in the ith solution vector: */ /* abs(XTRUE(j,i) - X(j,i)) */ /* max_j ---------------------- */ /* abs(X(j,i)) */ /* The array is indexed by the right-hand side i (on which the */ /* componentwise relative error depends), and the type of error */ /* information as described below. There currently are up to three */ /* pieces of information returned for each right-hand side. If */ /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ /* the first (:,N_ERR_BNDS) entries are returned. */ /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ /* right-hand side. */ /* The second index in ERR_BNDS_COMP(:,err) contains the following */ /* three fields: */ /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ /* reciprocal condition number is less than the threshold */ /* sqrt(n) * dlamch('Epsilon'). */ /* err = 2 "Guaranteed" error bound: The estimated forward error, */ /* almost certainly within a factor of 10 of the true error */ /* so long as the next entry is greater than the threshold */ /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ /* be trusted if the previous boolean is true. */ /* err = 3 Reciprocal condition number: Estimated componentwise */ /* reciprocal condition number. Compared with the threshold */ /* sqrt(n) * dlamch('Epsilon') to determine if the error */ /* estimate is "guaranteed". These reciprocal condition */ /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ /* appropriately scaled matrix Z. */ /* Let Z = S*(A*diag(x)), where x is the solution for the */ /* current right-hand side and S scales each row of */ /* A*diag(x) by a power of the radix so all absolute row */ /* sums of Z are approximately 1. */ /* See Lapack Working Note 165 for further details and extra */ /* cautions. */ /* NPARAMS (input) INTEGER */ /* Specifies the number of parameters set in PARAMS. If .LE. 0, the */ /* PARAMS array is never referenced and default values are used. */ /* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */ /* Specifies algorithm parameters. If an entry is .LT. 0.0, then */ /* that entry will be filled with default value used for that */ /* parameter. Only positions up to NPARAMS are accessed; defaults */ /* are used for higher-numbered parameters. */ /* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */ /* refinement or not. */ /* Default: 1.0D+0 */ /* = 0.0 : No refinement is performed, and no error bounds are */ /* computed. */ /* = 1.0 : Use the double-precision refinement algorithm, */ /* possibly with doubled-single computations if the */ /* compilation environment does not support DOUBLE */ /* PRECISION. */ /* (other values are reserved for future use) */ /* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */ /* computations allowed for refinement. */ /* Default: 10 */ /* Aggressive: Set to 100 to permit convergence using approximate */ /* factorizations or factorizations other than LU. If */ /* the factorization uses a technique other than */ /* Gaussian elimination, the guarantees in */ /* err_bnds_norm and err_bnds_comp may no longer be */ /* trustworthy. */ /* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */ /* will attempt to find a solution with small componentwise */ /* relative error in the double-precision algorithm. Positive */ /* is true, 0.0 is false. */ /* Default: 1.0 (attempt componentwise convergence) */ /* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ /* INFO (output) INTEGER */ /* = 0: Successful exit. The solution to every right-hand side is */ /* guaranteed. */ /* < 0: If INFO = -i, the i-th argument had an illegal value */ /* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */ /* has been completed, but the factor U is exactly singular, so */ /* the solution and error bounds could not be computed. RCOND = 0 */ /* is returned. */ /* = N+J: The solution corresponding to the Jth right-hand side is */ /* not guaranteed. The solutions corresponding to other right- */ /* hand sides K with K > J may not be guaranteed as well, but */ /* only the first such right-hand side is reported. If a small */ /* componentwise error is not requested (PARAMS(3) = 0.0) then */ /* the Jth right-hand side is the first with a normwise error */ /* bound that is not guaranteed (the smallest J such */ /* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */ /* the Jth right-hand side is the first with either a normwise or */ /* componentwise error bound that is not guaranteed (the smallest */ /* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */ /* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */ /* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */ /* about all of the right-hand sides check ERR_BNDS_NORM or */ /* ERR_BNDS_COMP. */ /* ================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Check the input parameters. */ /* Parameter adjustments */ err_bnds_comp_dim1 = *nrhs; err_bnds_comp_offset = 1 + err_bnds_comp_dim1; err_bnds_comp__ -= err_bnds_comp_offset; err_bnds_norm_dim1 = *nrhs; err_bnds_norm_offset = 1 + err_bnds_norm_dim1; err_bnds_norm__ -= err_bnds_norm_offset; ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; afb_dim1 = *ldafb; afb_offset = 1 + afb_dim1; afb -= afb_offset; --ipiv; --r__; --c__; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --berr; --params; --work; --rwork; /* Function Body */ *info = 0; trans_type__ = ilatrans_(trans); ref_type__ = 1; if (*nparams >= 1) { if (params[1] < 0.) { params[1] = 1.; } else { ref_type__ = (integer) params[1]; } } /* Set default parameters. */ illrcond_thresh__ = (doublereal) (*n) * dlamch_("Epsilon"); ithresh = 10; rthresh = .5; unstable_thresh__ = .25; ignore_cwise__ = FALSE_; if (*nparams >= 2) { if (params[2] < 0.) { params[2] = (doublereal) ithresh; } else { ithresh = (integer) params[2]; } } if (*nparams >= 3) { if (params[3] < 0.) { if (ignore_cwise__) { params[3] = 0.; } else { params[3] = 1.; } } else { ignore_cwise__ = params[3] == 0.; } } if (ref_type__ == 0 || *n_err_bnds__ == 0) { n_norms__ = 0; } else if (ignore_cwise__) { n_norms__ = 1; } else { n_norms__ = 2; } notran = lsame_(trans, "N"); rowequ = lsame_(equed, "R") || lsame_(equed, "B"); colequ = lsame_(equed, "C") || lsame_(equed, "B"); /* Test input parameters. */ if (trans_type__ == -1) { *info = -1; } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*kl < 0) { *info = -4; } else if (*ku < 0) { *info = -5; } else if (*nrhs < 0) { *info = -6; } else if (*ldab < *kl + *ku + 1) { *info = -8; } else if (*ldafb < (*kl << 1) + *ku + 1) { *info = -10; } else if (*ldb < max(1,*n)) { *info = -13; } else if (*ldx < max(1,*n)) { *info = -15; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGBRFSX", &i__1); return 0; } /* Quick return if possible. */ if (*n == 0 || *nrhs == 0) { *rcond = 1.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { berr[j] = 0.; if (*n_err_bnds__ >= 1) { err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; } else if (*n_err_bnds__ >= 2) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.; err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.; } else if (*n_err_bnds__ >= 3) { err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.; err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.; } } return 0; } /* Default to failure. */ *rcond = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { berr[j] = 1.; if (*n_err_bnds__ >= 1) { err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; } else if (*n_err_bnds__ >= 2) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; } else if (*n_err_bnds__ >= 3) { err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.; err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.; } } /* Compute the norm of A and the reciprocal of the condition */ /* number of A. */ if (notran) { *(unsigned char *)norm = 'I'; } else { *(unsigned char *)norm = '1'; } anorm = zlangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &rwork[1]); zgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond, &work[1], &rwork[1], info); /* Perform refinement on each right-hand side */ if (ref_type__ != 0) { prec_type__ = ilaprec_("E"); if (notran) { zla_gbrfsx_extended__(&prec_type__, &trans_type__, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, & ipiv[1], &colequ, &c__[1], &b[b_offset], ldb, &x[x_offset] , ldx, &berr[1], &n_norms__, &err_bnds_norm__[ err_bnds_norm_offset], &err_bnds_comp__[ err_bnds_comp_offset], &work[1], &rwork[1], &work[*n + 1], (doublecomplex *)(&rwork[1]), rcond, &ithresh, &rthresh, &unstable_thresh__, & ignore_cwise__, info); } else { zla_gbrfsx_extended__(&prec_type__, &trans_type__, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, & ipiv[1], &rowequ, &r__[1], &b[b_offset], ldb, &x[x_offset] , ldx, &berr[1], &n_norms__, &err_bnds_norm__[ err_bnds_norm_offset], &err_bnds_comp__[ err_bnds_comp_offset], &work[1], &rwork[1], &work[*n + 1], (doublecomplex *)(&rwork[1]), rcond, &ithresh, &rthresh, &unstable_thresh__, & ignore_cwise__, info); } } /* Computing MAX */ d__1 = 10., d__2 = sqrt((doublereal) (*n)); err_lbnd__ = max(d__1,d__2) * dlamch_("Epsilon"); if (*n_err_bnds__ >= 1 && n_norms__ >= 1) { /* Compute scaled normwise condition number cond(A*C). */ if (colequ && notran) { rcond_tmp__ = zla_gbrcond_c__(trans, n, kl, ku, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__[1], &c_true, info, &work[1], &rwork[1], (ftnlen)1); } else if (rowequ && ! notran) { rcond_tmp__ = zla_gbrcond_c__(trans, n, kl, ku, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &ipiv[1], &r__[1], &c_true, info, &work[1], &rwork[1], (ftnlen)1); } else { rcond_tmp__ = zla_gbrcond_c__(trans, n, kl, ku, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__[1], & c_false, info, &work[1], &rwork[1], (ftnlen)1); } i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { /* Cap the error at 1.0. */ if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] > 1.) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; } /* Threshold the error (see LAWN). */ if (rcond_tmp__ < illrcond_thresh__) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; err_bnds_norm__[j + err_bnds_norm_dim1] = 0.; if (*info <= *n) { *info = *n + j; } } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] < err_lbnd__) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__; err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; } /* Save the condition number. */ if (*n_err_bnds__ >= 3) { err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__; } } } if (*n_err_bnds__ >= 1 && n_norms__ >= 2) { /* Compute componentwise condition number cond(A*diag(Y(:,J))) for */ /* each right-hand side using the current solution as an estimate of */ /* the true solution. If the componentwise error estimate is too */ /* large, then the solution is a lousy estimate of truth and the */ /* estimated RCOND may be too optimistic. To avoid misleading users, */ /* the inverse condition number is set to 0.0 when the estimated */ /* cwise error is at least CWISE_WRONG. */ cwise_wrong__ = sqrt(dlamch_("Epsilon")); i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < cwise_wrong__) { rcond_tmp__ = zla_gbrcond_x__(trans, n, kl, ku, &ab[ab_offset] , ldab, &afb[afb_offset], ldafb, &ipiv[1], &x[j * x_dim1 + 1], info, &work[1], &rwork[1], (ftnlen)1); } else { rcond_tmp__ = 0.; } /* Cap the error at 1.0. */ if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] > 1.) { err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; } /* Threshold the error (see LAWN). */ if (rcond_tmp__ < illrcond_thresh__) { err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; err_bnds_comp__[j + err_bnds_comp_dim1] = 0.; if (params[3] == 1. && *info < *n + j) { *info = *n + j; } } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < err_lbnd__) { err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__; err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; } /* Save the condition number. */ if (*n_err_bnds__ >= 3) { err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__; } } } return 0; /* End of ZGBRFSX */ } /* zgbrfsx_ */