Пример #1
0
 int zpotrf_(char *uplo, int *n, doublecomplex *a, 
	int *lda, int *info)
{
    /* System generated locals */
    int a_dim1, a_offset, i__1, i__2, i__3, i__4;
    doublecomplex z__1;

    /* Local variables */
    int j, jb, nb;
    extern int lsame_(char *, char *);
    extern  int zgemm_(char *, char *, int *, int *, 
	    int *, doublecomplex *, doublecomplex *, int *, 
	    doublecomplex *, int *, doublecomplex *, doublecomplex *, 
	    int *), zherk_(char *, char *, int *, 
	    int *, double *, doublecomplex *, int *, double *, 
	     doublecomplex *, int *);
    int upper;
    extern  int ztrsm_(char *, char *, char *, char *, 
	    int *, int *, doublecomplex *, doublecomplex *, int *, 
	     doublecomplex *, int *), 
	    zpotf2_(char *, int *, doublecomplex *, int *, int *), xerbla_(char *, int *);
    extern int ilaenv_(int *, char *, char *, int *, int *, 
	    int *, int *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPOTRF computes the Cholesky factorization of a complex Hermitian */
/*  positive definite matrix A. */

/*  The factorization has the form */
/*     A = U**H * U,  if UPLO = 'U', or */
/*     A = L  * L**H,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is lower triangular. */

/*  This is the block version of the algorithm, calling Level 3 BLAS. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading */
/*          N-by-N upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */

/*          On exit, if INFO = 0, the factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= MAX(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i is not */
/*                positive definite, and the factorization could not be */
/*                completed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < MAX(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPOTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment. */

    nb = ilaenv_(&c__1, "ZPOTRF", uplo, n, &c_n1, &c_n1, &c_n1);
    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code. */

	zpotf2_(uplo, n, &a[a_offset], lda, info);
    } else {

/*        Use blocked code. */

	if (upper) {

/*           Compute the Cholesky factorization A = U'*U. */

	    i__1 = *n;
	    i__2 = nb;
	    for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {

/*              Update and factorize the current diagonal block and test */
/*              for non-positive-definiteness. */

/* Computing MIN */
		i__3 = nb, i__4 = *n - j + 1;
		jb = MIN(i__3,i__4);
		i__3 = j - 1;
		zherk_("Upper", "Conjugate transpose", &jb, &i__3, &c_b14, &a[
			j * a_dim1 + 1], lda, &c_b15, &a[j + j * a_dim1], lda);
		zpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
		if (*info != 0) {
		    goto L30;
		}
		if (j + jb <= *n) {

/*                 Compute the current block row. */

		    i__3 = *n - j - jb + 1;
		    i__4 = j - 1;
		    z__1.r = -1., z__1.i = -0.;
		    zgemm_("Conjugate transpose", "No transpose", &jb, &i__3, 
			    &i__4, &z__1, &a[j * a_dim1 + 1], lda, &a[(j + jb)
			     * a_dim1 + 1], lda, &c_b1, &a[j + (j + jb) * 
			    a_dim1], lda);
		    i__3 = *n - j - jb + 1;
		    ztrsm_("Left", "Upper", "Conjugate transpose", "Non-unit", 
			     &jb, &i__3, &c_b1, &a[j + j * a_dim1], lda, &a[j 
			    + (j + jb) * a_dim1], lda);
		}
/* L10: */
	    }

	} else {

/*           Compute the Cholesky factorization A = L*L'. */

	    i__2 = *n;
	    i__1 = nb;
	    for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {

/*              Update and factorize the current diagonal block and test */
/*              for non-positive-definiteness. */

/* Computing MIN */
		i__3 = nb, i__4 = *n - j + 1;
		jb = MIN(i__3,i__4);
		i__3 = j - 1;
		zherk_("Lower", "No transpose", &jb, &i__3, &c_b14, &a[j + 
			a_dim1], lda, &c_b15, &a[j + j * a_dim1], lda);
		zpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
		if (*info != 0) {
		    goto L30;
		}
		if (j + jb <= *n) {

/*                 Compute the current block column. */

		    i__3 = *n - j - jb + 1;
		    i__4 = j - 1;
		    z__1.r = -1., z__1.i = -0.;
		    zgemm_("No transpose", "Conjugate transpose", &i__3, &jb, 
			    &i__4, &z__1, &a[j + jb + a_dim1], lda, &a[j + 
			    a_dim1], lda, &c_b1, &a[j + jb + j * a_dim1], lda);
		    i__3 = *n - j - jb + 1;
		    ztrsm_("Right", "Lower", "Conjugate transpose", "Non-unit"
, &i__3, &jb, &c_b1, &a[j + j * a_dim1], lda, &a[
			    j + jb + j * a_dim1], lda);
		}
/* L20: */
	    }
	}
    }
    goto L40;

L30:
    *info = *info + j - 1;

L40:
    return 0;

/*     End of ZPOTRF */

} /* zpotrf_ */
Пример #2
0
/* Subroutine */ int zpbtrf_(char *uplo, integer *n, integer *kd, 
	doublecomplex *ab, integer *ldab, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZPBTRF computes the Cholesky factorization of a complex Hermitian   
    positive definite band matrix A.   

    The factorization has the form   
       A = U**H * U,  if UPLO = 'U', or   
       A = L  * L**H,  if UPLO = 'L',   
    where U is an upper triangular matrix and L is lower triangular.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'.  KD >= 0.   

    AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)   
            On entry, the upper or lower triangle of the Hermitian band   
            matrix A, stored in the first KD+1 rows of the array.  The   
            j-th column of A is stored in the j-th column of the array AB   
            as follows:   
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;   
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).   

            On exit, if INFO = 0, the triangular factor U or L from the   
            Cholesky factorization A = U**H*U or A = L*L**H of the band   
            matrix A, in the same storage format as A.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD+1.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, the leading minor of order i is not   
                  positive definite, and the factorization could not be   
                  completed.   

    Further Details   
    ===============   

    The band storage scheme is illustrated by the following example, when   
    N = 6, KD = 2, and UPLO = 'U':   

    On entry:                       On exit:   

        *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46   
        *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56   
       a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66   

    Similarly, if UPLO = 'L' the format of A is as follows:   

    On entry:                       On exit:   

       a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66   
       a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *   
       a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *   

    Array elements marked * are not used by the routine.   

    Contributed by   
    Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static doublecomplex c_b1 = {1.,0.};
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static doublereal c_b21 = -1.;
    static doublereal c_b22 = 1.;
    static integer c__33 = 33;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublecomplex z__1;
    /* Local variables */
    static doublecomplex work[1056]	/* was [33][32] */;
    static integer i__, j;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *), zherk_(char *, char *, integer *, 
	    integer *, doublereal *, doublecomplex *, integer *, doublereal *,
	     doublecomplex *, integer *);
    static integer i2, i3;
    extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *), 
	    zpbtf2_(char *, integer *, integer *, doublecomplex *, integer *, 
	    integer *);
    static integer ib, nb, ii, jj;
    extern /* Subroutine */ int zpotf2_(char *, integer *, doublecomplex *, 
	    integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
#define work_subscr(a_1,a_2) (a_2)*33 + a_1 - 34
#define work_ref(a_1,a_2) work[work_subscr(a_1,a_2)]
#define ab_subscr(a_1,a_2) (a_2)*ab_dim1 + a_1
#define ab_ref(a_1,a_2) ab[ab_subscr(a_1,a_2)]


    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*ldab < *kd + 1) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPBTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment */

    nb = ilaenv_(&c__1, "ZPBTRF", uplo, n, kd, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);

/*     The block size must not exceed the semi-bandwidth KD, and must not   
       exceed the limit set by the size of the local array WORK. */

    nb = min(nb,32);

    if (nb <= 1 || nb > *kd) {

/*        Use unblocked code */

	zpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
    } else {

/*        Use blocked code */

	if (lsame_(uplo, "U")) {

/*           Compute the Cholesky factorization of a Hermitian band   
             matrix, given the upper triangle of the matrix in band   
             storage.   

             Zero the upper triangle of the work array. */

	    i__1 = nb;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = work_subscr(i__, j);
		    work[i__3].r = 0., work[i__3].i = 0.;
/* L10: */
		}
/* L20: */
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__1 = *n;
	    i__2 = nb;
	    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		zpotf2_(uplo, &ib, &ab_ref(*kd + 1, i__), &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix.   
                   If A11 denotes the diagonal block which has just been   
                   factorized, then we need to update the remaining   
                   blocks in the diagram:   

                      A11   A12   A13   
                            A22   A23   
                                  A33   

                   The numbers of rows and columns in the partitioning   
                   are IB, I2, I3 respectively. The blocks A12, A22 and   
                   A23 are empty if IB = KD. The upper triangle of A13   
                   lies outside the band.   

   Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A12 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			ztrsm_("Left", "Upper", "Conjugate transpose", "Non-"
				"unit", &ib, &i2, &c_b1, &ab_ref(*kd + 1, i__),
				 &i__3, &ab_ref(*kd + 1 - ib, i__ + ib), &
				i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			zherk_("Upper", "Conjugate transpose", &i2, &ib, &
				c_b21, &ab_ref(*kd + 1 - ib, i__ + ib), &i__3,
				 &c_b22, &ab_ref(*kd + 1, i__ + ib), &i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the lower triangle of A13 into the work array. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				i__5 = work_subscr(ii, jj);
				i__6 = ab_subscr(ii - jj + 1, jj + i__ + *kd 
					- 1);
				work[i__5].r = ab[i__6].r, work[i__5].i = ab[
					i__6].i;
/* L30: */
			    }
/* L40: */
			}

/*                    Update A13 (in the work array). */

			i__3 = *ldab - 1;
			ztrsm_("Left", "Upper", "Conjugate transpose", "Non-"
				"unit", &ib, &i3, &c_b1, &ab_ref(*kd + 1, i__),
				 &i__3, work, &c__33);

/*                    Update A23 */

			if (i2 > 0) {
			    z__1.r = -1., z__1.i = 0.;
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    zgemm_("Conjugate transpose", "No transpose", &i2,
				     &i3, &ib, &z__1, &ab_ref(*kd + 1 - ib, 
				    i__ + ib), &i__3, work, &c__33, &c_b1, &
				    ab_ref(ib + 1, i__ + *kd), &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			zherk_("Upper", "Conjugate transpose", &i3, &ib, &
				c_b21, work, &c__33, &c_b22, &ab_ref(*kd + 1, 
				i__ + *kd), &i__3);

/*                    Copy the lower triangle of A13 back into place. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				i__5 = ab_subscr(ii - jj + 1, jj + i__ + *kd 
					- 1);
				i__6 = work_subscr(ii, jj);
				ab[i__5].r = work[i__6].r, ab[i__5].i = work[
					i__6].i;
/* L50: */
			    }
/* L60: */
			}
		    }
		}
/* L70: */
	    }
	} else {

/*           Compute the Cholesky factorization of a Hermitian band   
             matrix, given the lower triangle of the matrix in band   
             storage.   

             Zero the lower triangle of the work array. */

	    i__2 = nb;
	    for (j = 1; j <= i__2; ++j) {
		i__1 = nb;
		for (i__ = j + 1; i__ <= i__1; ++i__) {
		    i__3 = work_subscr(i__, j);
		    work[i__3].r = 0., work[i__3].i = 0.;
/* L80: */
		}
/* L90: */
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__2 = *n;
	    i__1 = nb;
	    for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		zpotf2_(uplo, &ib, &ab_ref(1, i__), &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix.   
                   If A11 denotes the diagonal block which has just been   
                   factorized, then we need to update the remaining   
                   blocks in the diagram:   

                      A11   
                      A21   A22   
                      A31   A32   A33   

                   The numbers of rows and columns in the partitioning   
                   are IB, I2, I3 respectively. The blocks A21, A22 and   
                   A32 are empty if IB = KD. The lower triangle of A31   
                   lies outside the band.   

   Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A21 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			ztrsm_("Right", "Lower", "Conjugate transpose", "Non"
				"-unit", &i2, &ib, &c_b1, &ab_ref(1, i__), &
				i__3, &ab_ref(ib + 1, i__), &i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			zherk_("Lower", "No transpose", &i2, &ib, &c_b21, &
				ab_ref(ib + 1, i__), &i__3, &c_b22, &ab_ref(1,
				 i__ + ib), &i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the upper triangle of A31 into the work array. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				i__5 = work_subscr(ii, jj);
				i__6 = ab_subscr(*kd + 1 - jj + ii, jj + i__ 
					- 1);
				work[i__5].r = ab[i__6].r, work[i__5].i = ab[
					i__6].i;
/* L100: */
			    }
/* L110: */
			}

/*                    Update A31 (in the work array). */

			i__3 = *ldab - 1;
			ztrsm_("Right", "Lower", "Conjugate transpose", "Non"
				"-unit", &i3, &ib, &c_b1, &ab_ref(1, i__), &
				i__3, work, &c__33);

/*                    Update A32 */

			if (i2 > 0) {
			    z__1.r = -1., z__1.i = 0.;
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    zgemm_("No transpose", "Conjugate transpose", &i3,
				     &i2, &ib, &z__1, work, &c__33, &ab_ref(
				    ib + 1, i__), &i__3, &c_b1, &ab_ref(*kd + 
				    1 - ib, i__ + ib), &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			zherk_("Lower", "No transpose", &i3, &ib, &c_b21, 
				work, &c__33, &c_b22, &ab_ref(1, i__ + *kd), &
				i__3);

/*                    Copy the upper triangle of A31 back into place. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				i__5 = ab_subscr(*kd + 1 - jj + ii, jj + i__ 
					- 1);
				i__6 = work_subscr(ii, jj);
				ab[i__5].r = work[i__6].r, ab[i__5].i = work[
					i__6].i;
/* L120: */
			    }
/* L130: */
			}
		    }
		}
/* L140: */
	    }
	}
    }
    return 0;

L150:
    return 0;

/*     End of ZPBTRF */

} /* zpbtrf_ */
Пример #3
0
/* Subroutine */ int zerrpo_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublecomplex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    doublereal r__[4];
    doublecomplex w[8], x[4];
    char c2[2];
    doublereal r1[4], r2[4];
    doublecomplex af[16]	/* was [4][4] */;
    integer info;
    doublereal anrm, rcond;
    extern /* Subroutine */ int zpbtf2_(char *, integer *, integer *, 
	    doublecomplex *, integer *, integer *), zpotf2_(char *, 
	    integer *, doublecomplex *, integer *, integer *), 
	    alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zpbcon_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbequ_(char *, 
	     integer *, integer *, doublecomplex *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), zpbrfs_(char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbtrf_(char *, 
	     integer *, integer *, doublecomplex *, integer *, integer *), zpocon_(char *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zppcon_(char *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpoequ_(integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *, doublereal *, integer *), zpbtrs_(
	    char *, integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, integer *), zporfs_(char *, 
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
, integer *, doublecomplex *, integer *, doublecomplex *, integer 
	    *, doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpotrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zpotri_(char *, integer *, 
	    doublecomplex *, integer *, integer *), zppequ_(char *, 
	    integer *, doublecomplex *, doublereal *, doublereal *, 
	    doublereal *, integer *), zpprfs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *, 
	     doublecomplex *, doublereal *, integer *), zpptrf_(char *
, integer *, doublecomplex *, integer *), zpptri_(char *, 
	    integer *, doublecomplex *, integer *), zpotrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, integer *), zpptrs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRPO tests the error exits for the COMPLEX*16 routines */
/*  for Hermitian positive definite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
/* L20: */
    }
    anrm = 1.;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite matrix. */

    if (lsamen_(&c__2, c2, "PO")) {

/*        ZPOTRF */

	s_copy(srnamc_1.srnamt, "ZPOTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTF2 */

	s_copy(srnamc_1.srnamt, "ZPOTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRI */

	s_copy(srnamc_1.srnamt, "ZPOTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRS */

	s_copy(srnamc_1.srnamt, "ZPOTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPORFS */

	s_copy(srnamc_1.srnamt, "ZPORFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOCON */

	s_copy(srnamc_1.srnamt, "ZPOCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	d__1 = -anrm;
	zpocon_("U", &c__1, a, &c__1, &d__1, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOEQU */

	s_copy(srnamc_1.srnamt, "ZPOEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite packed matrix. */

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        ZPPTRF */

	s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrf_("/", &c__0, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrf_("U", &c_n1, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRI */

	s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptri_("/", &c__0, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptri_("U", &c_n1, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRS */

	s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPRFS */

	s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPCON */

	s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	d__1 = -anrm;
	zppcon_("U", &c__1, a, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPEQU */

	s_copy(srnamc_1.srnamt, "ZPPEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite band matrix. */

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        ZPBTRF */

	s_copy(srnamc_1.srnamt, "ZPBTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTF2 */

	s_copy(srnamc_1.srnamt, "ZPBTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTRS */

	s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBRFS */

	s_copy(srnamc_1.srnamt, "ZPBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBCON */

	s_copy(srnamc_1.srnamt, "ZPBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	d__1 = -anrm;
	zpbcon_("U", &c__1, &c__0, a, &c__1, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBEQU */

	s_copy(srnamc_1.srnamt, "ZPBEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRPO */

} /* zerrpo_ */
Пример #4
0
/* Subroutine */ int zpbtrf_(char *uplo, integer *n, integer *kd, 
	doublecomplex *ab, integer *ldab, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublecomplex z__1;

    /* Local variables */
    integer i__, j, i2, i3, ib, nb, ii, jj;
    doublecomplex work[1056]	/* was [33][32] */;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *), zherk_(char *, char *, integer *, 
	    integer *, doublereal *, doublecomplex *, integer *, doublereal *, 
	     doublecomplex *, integer *), ztrsm_(char *, char 
	    *, char *, char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), zpbtf2_(char *, integer *, integer *, 
	    doublecomplex *, integer *, integer *), zpotf2_(char *, 
	    integer *, doublecomplex *, integer *, integer *), 
	    xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPBTRF computes the Cholesky factorization of a complex Hermitian */
/*  positive definite band matrix A. */

/*  The factorization has the form */
/*     A = U**H * U,  if UPLO = 'U', or */
/*     A = L  * L**H,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is lower triangular. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, if INFO = 0, the triangular factor U or L from the */
/*          Cholesky factorization A = U**H*U or A = L*L**H of the band */
/*          matrix A, in the same storage format as A. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i is not */
/*                positive definite, and the factorization could not be */
/*                completed. */

/*  Further Details */
/*  =============== */

/*  The band storage scheme is illustrated by the following example, when */
/*  N = 6, KD = 2, and UPLO = 'U': */

/*  On entry:                       On exit: */

/*      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46 */
/*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
/*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */

/*  Similarly, if UPLO = 'L' the format of A is as follows: */

/*  On entry:                       On exit: */

/*     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66 */
/*     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   * */
/*     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    * */

/*  Array elements marked * are not used by the routine. */

/*  Contributed by */
/*  Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*ldab < *kd + 1) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPBTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment */

    nb = ilaenv_(&c__1, "ZPBTRF", uplo, n, kd, &c_n1, &c_n1);

/*     The block size must not exceed the semi-bandwidth KD, and must not */
/*     exceed the limit set by the size of the local array WORK. */

    nb = min(nb,32);

    if (nb <= 1 || nb > *kd) {

/*        Use unblocked code */

	zpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
    } else {

/*        Use blocked code */

	if (lsame_(uplo, "U")) {

/*           Compute the Cholesky factorization of a Hermitian band */
/*           matrix, given the upper triangle of the matrix in band */
/*           storage. */

/*           Zero the upper triangle of the work array. */

	    i__1 = nb;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__ + j * 33 - 34;
		    work[i__3].r = 0., work[i__3].i = 0.;
/* L10: */
		}
/* L20: */
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__1 = *n;
	    i__2 = nb;
	    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		zpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix. */
/*                 If A11 denotes the diagonal block which has just been */
/*                 factorized, then we need to update the remaining */
/*                 blocks in the diagram: */

/*                    A11   A12   A13 */
/*                          A22   A23 */
/*                                A33 */

/*                 The numbers of rows and columns in the partitioning */
/*                 are IB, I2, I3 respectively. The blocks A12, A22 and */
/*                 A23 are empty if IB = KD. The upper triangle of A13 */
/*                 lies outside the band. */

/* Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A12 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			ztrsm_("Left", "Upper", "Conjugate transpose", "Non-"
				"unit", &ib, &i2, &c_b1, &ab[*kd + 1 + i__ * 
				ab_dim1], &i__3, &ab[*kd + 1 - ib + (i__ + ib)
				 * ab_dim1], &i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			zherk_("Upper", "Conjugate transpose", &i2, &ib, &
				c_b21, &ab[*kd + 1 - ib + (i__ + ib) * 
				ab_dim1], &i__3, &c_b22, &ab[*kd + 1 + (i__ + 
				ib) * ab_dim1], &i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the lower triangle of A13 into the work array. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				i__5 = ii + jj * 33 - 34;
				i__6 = ii - jj + 1 + (jj + i__ + *kd - 1) * 
					ab_dim1;
				work[i__5].r = ab[i__6].r, work[i__5].i = ab[
					i__6].i;
/* L30: */
			    }
/* L40: */
			}

/*                    Update A13 (in the work array). */

			i__3 = *ldab - 1;
			ztrsm_("Left", "Upper", "Conjugate transpose", "Non-"
				"unit", &ib, &i3, &c_b1, &ab[*kd + 1 + i__ * 
				ab_dim1], &i__3, work, &c__33);

/*                    Update A23 */

			if (i2 > 0) {
			    z__1.r = -1., z__1.i = -0.;
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    zgemm_("Conjugate transpose", "No transpose", &i2, 
				     &i3, &ib, &z__1, &ab[*kd + 1 - ib + (i__ 
				    + ib) * ab_dim1], &i__3, work, &c__33, &
				    c_b1, &ab[ib + 1 + (i__ + *kd) * ab_dim1], 
				     &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			zherk_("Upper", "Conjugate transpose", &i3, &ib, &
				c_b21, work, &c__33, &c_b22, &ab[*kd + 1 + (
				i__ + *kd) * ab_dim1], &i__3);

/*                    Copy the lower triangle of A13 back into place. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				i__5 = ii - jj + 1 + (jj + i__ + *kd - 1) * 
					ab_dim1;
				i__6 = ii + jj * 33 - 34;
				ab[i__5].r = work[i__6].r, ab[i__5].i = work[
					i__6].i;
/* L50: */
			    }
/* L60: */
			}
		    }
		}
/* L70: */
	    }
	} else {

/*           Compute the Cholesky factorization of a Hermitian band */
/*           matrix, given the lower triangle of the matrix in band */
/*           storage. */

/*           Zero the lower triangle of the work array. */

	    i__2 = nb;
	    for (j = 1; j <= i__2; ++j) {
		i__1 = nb;
		for (i__ = j + 1; i__ <= i__1; ++i__) {
		    i__3 = i__ + j * 33 - 34;
		    work[i__3].r = 0., work[i__3].i = 0.;
/* L80: */
		}
/* L90: */
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__2 = *n;
	    i__1 = nb;
	    for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		zpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix. */
/*                 If A11 denotes the diagonal block which has just been */
/*                 factorized, then we need to update the remaining */
/*                 blocks in the diagram: */

/*                    A11 */
/*                    A21   A22 */
/*                    A31   A32   A33 */

/*                 The numbers of rows and columns in the partitioning */
/*                 are IB, I2, I3 respectively. The blocks A21, A22 and */
/*                 A32 are empty if IB = KD. The lower triangle of A31 */
/*                 lies outside the band. */

/* Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A21 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			ztrsm_("Right", "Lower", "Conjugate transpose", "Non"
				"-unit", &i2, &ib, &c_b1, &ab[i__ * ab_dim1 + 
				1], &i__3, &ab[ib + 1 + i__ * ab_dim1], &i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			zherk_("Lower", "No transpose", &i2, &ib, &c_b21, &ab[
				ib + 1 + i__ * ab_dim1], &i__3, &c_b22, &ab[(
				i__ + ib) * ab_dim1 + 1], &i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the upper triangle of A31 into the work array. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				i__5 = ii + jj * 33 - 34;
				i__6 = *kd + 1 - jj + ii + (jj + i__ - 1) * 
					ab_dim1;
				work[i__5].r = ab[i__6].r, work[i__5].i = ab[
					i__6].i;
/* L100: */
			    }
/* L110: */
			}

/*                    Update A31 (in the work array). */

			i__3 = *ldab - 1;
			ztrsm_("Right", "Lower", "Conjugate transpose", "Non"
				"-unit", &i3, &ib, &c_b1, &ab[i__ * ab_dim1 + 
				1], &i__3, work, &c__33);

/*                    Update A32 */

			if (i2 > 0) {
			    z__1.r = -1., z__1.i = -0.;
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    zgemm_("No transpose", "Conjugate transpose", &i3, 
				     &i2, &ib, &z__1, work, &c__33, &ab[ib + 
				    1 + i__ * ab_dim1], &i__3, &c_b1, &ab[*kd 
				    + 1 - ib + (i__ + ib) * ab_dim1], &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			zherk_("Lower", "No transpose", &i3, &ib, &c_b21, 
				work, &c__33, &c_b22, &ab[(i__ + *kd) * 
				ab_dim1 + 1], &i__3);

/*                    Copy the upper triangle of A31 back into place. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				i__5 = *kd + 1 - jj + ii + (jj + i__ - 1) * 
					ab_dim1;
				i__6 = ii + jj * 33 - 34;
				ab[i__5].r = work[i__6].r, ab[i__5].i = work[
					i__6].i;
/* L120: */
			    }
/* L130: */
			}
		    }
		}
/* L140: */
	    }
	}
    }
    return 0;

L150:
    return 0;

/*     End of ZPBTRF */

} /* zpbtrf_ */
Пример #5
0
/* Subroutine */ int zerrpo_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static integer info;
    static doublereal anrm;
    static doublecomplex a[16]	/* was [4][4] */, b[4];
    static integer i__, j;
    static doublereal r__[4];
    static doublecomplex w[8], x[4];
    static doublereal rcond;
    static char c2[2];
    static doublereal r1[4], r2[4];
    static doublecomplex af[16]	/* was [4][4] */;
    extern /* Subroutine */ int zpbtf2_(char *, integer *, integer *, 
	    doublecomplex *, integer *, integer *), zpotf2_(char *, 
	    integer *, doublecomplex *, integer *, integer *), 
	    alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zpbcon_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbequ_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), zpbrfs_(char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zpbtrf_(char *,
	     integer *, integer *, doublecomplex *, integer *, integer *), zpocon_(char *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zppcon_(char *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpoequ_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *, doublereal *, integer *), zpbtrs_(
	    char *, integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, integer *), zporfs_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *, doublecomplex *, integer *, doublecomplex *, integer 
	    *, doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zpotrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zpotri_(char *, integer *, 
	    doublecomplex *, integer *, integer *), zppequ_(char *, 
	    integer *, doublecomplex *, doublereal *, doublereal *, 
	    doublereal *, integer *), zpprfs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *,
	     doublecomplex *, doublereal *, integer *), zpptrf_(char *
	    , integer *, doublecomplex *, integer *), zpptri_(char *, 
	    integer *, doublecomplex *, integer *), zpotrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     integer *, integer *), zpptrs_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



#define a_subscr(a_1,a_2) (a_2)*4 + a_1 - 5
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define af_subscr(a_1,a_2) (a_2)*4 + a_1 - 5
#define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    ZERRPO tests the error exits for the COMPLEX*16 routines   
    for Hermitian positive definite matrices.   

    Arguments   
    =========   

    PATH    (input) CHARACTER*3   
            The LAPACK path name for the routines to be tested.   

    NUNIT   (input) INTEGER   
            The unit number for output.   

    ===================================================================== */


    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = a_subscr(i__, j);
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = af_subscr(i__, j);
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
/* L20: */
    }
    anrm = 1.;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the Cholesky   
       decomposition of a Hermitian positive definite matrix. */

    if (lsamen_(&c__2, c2, "PO")) {

/*        ZPOTRF */

	s_copy(srnamc_1.srnamt, "ZPOTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTF2 */

	s_copy(srnamc_1.srnamt, "ZPOTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRI */

	s_copy(srnamc_1.srnamt, "ZPOTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOTRS */

	s_copy(srnamc_1.srnamt, "ZPOTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPORFS */

	s_copy(srnamc_1.srnamt, "ZPORFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOCON */

	s_copy(srnamc_1.srnamt, "ZPOCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	d__1 = -anrm;
	zpocon_("U", &c__1, a, &c__1, &d__1, &rcond, w, r__, &info)
		;
	chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPOEQU */

	s_copy(srnamc_1.srnamt, "ZPOEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky   
       decomposition of a Hermitian positive definite packed matrix. */

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        ZPPTRF */

	s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrf_("/", &c__0, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrf_("U", &c_n1, a, &info);
	chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRI */

	s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptri_("/", &c__0, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptri_("U", &c_n1, a, &info);
	chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPTRS */

	s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPRFS */

	s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPCON */

	s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	d__1 = -anrm;
	zppcon_("U", &c__1, a, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPPEQU */

	s_copy(srnamc_1.srnamt, "ZPPEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky   
       decomposition of a Hermitian positive definite band matrix. */

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        ZPBTRF */

	s_copy(srnamc_1.srnamt, "ZPBTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTF2 */

	s_copy(srnamc_1.srnamt, "ZPBTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBTRS */

	s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBRFS */

	s_copy(srnamc_1.srnamt, "ZPBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBCON */

	s_copy(srnamc_1.srnamt, "ZPBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	d__1 = -anrm;
	zpbcon_("U", &c__1, &c__0, a, &c__1, &d__1, &rcond, w, r__, &info);
	chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZPBEQU */

	s_copy(srnamc_1.srnamt, "ZPBEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRPO */

} /* zerrpo_ */
Пример #6
0
/* Subroutine */ int zpotrf_(char *uplo, integer *n, doublecomplex *a, 
	integer *lda, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZPOTRF computes the Cholesky factorization of a complex Hermitian   
    positive definite matrix A.   

    The factorization has the form   
       A = U**H * U,  if UPLO = 'U', or   
       A = L  * L**H,  if UPLO = 'L',   
    where U is an upper triangular matrix and L is lower triangular.   

    This is the block version of the algorithm, calling Level 3 BLAS.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) COMPLEX*16 array, dimension (LDA,N)   
            On entry, the Hermitian matrix A.  If UPLO = 'U', the leading 
  
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower 
  
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   

            On exit, if INFO = 0, the factor U or L from the Cholesky   
            factorization A = U**H*U or A = L*L**H.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, the leading minor of order i is not   
                  positive definite, and the factorization could not be   
                  completed.   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static doublecomplex c_b1 = {1.,0.};
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static doublereal c_b14 = -1.;
    static doublereal c_b15 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
    doublecomplex z__1;
    /* Local variables */
    static integer j;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *), zherk_(char *, char *, integer *, 
	    integer *, doublereal *, doublecomplex *, integer *, doublereal *,
	     doublecomplex *, integer *);
    static logical upper;
    extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *);
    static integer jb, nb;
    extern /* Subroutine */ int zpotf2_(char *, integer *, doublecomplex *, 
	    integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);




#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPOTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment. */

    nb = ilaenv_(&c__1, "ZPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, 6L, 1L);
    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code. */

	zpotf2_(uplo, n, &A(1,1), lda, info);
    } else {

/*        Use blocked code. */

	if (upper) {

/*           Compute the Cholesky factorization A = U'*U. */

	    i__1 = *n;
	    i__2 = nb;
	    for (j = 1; nb < 0 ? j >= *n : j <= *n; j += nb) {

/*              Update and factorize the current diagonal bloc
k and test   
                for non-positive-definiteness.   

   Computing MIN */
		i__3 = nb, i__4 = *n - j + 1;
		jb = min(i__3,i__4);
		i__3 = j - 1;
		zherk_("Upper", "Conjugate transpose", &jb, &i__3, &c_b14, &A(1,j), lda, &c_b15, &A(j,j), lda);
		zpotf2_("Upper", &jb, &A(j,j), lda, info);
		if (*info != 0) {
		    goto L30;
		}
		if (j + jb <= *n) {

/*                 Compute the current block row. */

		    i__3 = *n - j - jb + 1;
		    i__4 = j - 1;
		    z__1.r = -1., z__1.i = 0.;
		    zgemm_("Conjugate transpose", "No transpose", &jb, &i__3, 
			    &i__4, &z__1, &A(1,j), lda, &A(1,j+jb), lda, &c_b1, &A(j,j+jb), lda);
		    i__3 = *n - j - jb + 1;
		    ztrsm_("Left", "Upper", "Conjugate transpose", "Non-unit",
			     &jb, &i__3, &c_b1, &A(j,j), lda, &A(j,j+jb), lda);
		}
/* L10: */
	    }

	} else {

/*           Compute the Cholesky factorization A = L*L'. */

	    i__2 = *n;
	    i__1 = nb;
	    for (j = 1; nb < 0 ? j >= *n : j <= *n; j += nb) {

/*              Update and factorize the current diagonal bloc
k and test   
                for non-positive-definiteness.   

   Computing MIN */
		i__3 = nb, i__4 = *n - j + 1;
		jb = min(i__3,i__4);
		i__3 = j - 1;
		zherk_("Lower", "No transpose", &jb, &i__3, &c_b14, &A(j,1), lda, &c_b15, &A(j,j), lda);
		zpotf2_("Lower", &jb, &A(j,j), lda, info);
		if (*info != 0) {
		    goto L30;
		}
		if (j + jb <= *n) {

/*                 Compute the current block column. */

		    i__3 = *n - j - jb + 1;
		    i__4 = j - 1;
		    z__1.r = -1., z__1.i = 0.;
		    zgemm_("No transpose", "Conjugate transpose", &i__3, &jb, 
			    &i__4, &z__1, &A(j+jb,1), lda, &A(j,1), lda, &c_b1, &A(j+jb,j), lda);
		    i__3 = *n - j - jb + 1;
		    ztrsm_("Right", "Lower", "Conjugate transpose", "Non-unit"
			    , &i__3, &jb, &c_b1, &A(j,j), lda, &A(j+jb,j), lda);
		}
/* L20: */
	    }
	}
    }
    goto L40;

L30:
    *info = *info + j - 1;

L40:
    return 0;

/*     End of ZPOTRF */

} /* zpotrf_ */