int zpotrf_(char *uplo, int *n, doublecomplex *a, int *lda, int *info) { /* System generated locals */ int a_dim1, a_offset, i__1, i__2, i__3, i__4; doublecomplex z__1; /* Local variables */ int j, jb, nb; extern int lsame_(char *, char *); extern int zgemm_(char *, char *, int *, int *, int *, doublecomplex *, doublecomplex *, int *, doublecomplex *, int *, doublecomplex *, doublecomplex *, int *), zherk_(char *, char *, int *, int *, double *, doublecomplex *, int *, double *, doublecomplex *, int *); int upper; extern int ztrsm_(char *, char *, char *, char *, int *, int *, doublecomplex *, doublecomplex *, int *, doublecomplex *, int *), zpotf2_(char *, int *, doublecomplex *, int *, int *), xerbla_(char *, int *); extern int ilaenv_(int *, char *, char *, int *, int *, int *, int *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZPOTRF computes the Cholesky factorization of a complex Hermitian */ /* positive definite matrix A. */ /* The factorization has the form */ /* A = U**H * U, if UPLO = 'U', or */ /* A = L * L**H, if UPLO = 'L', */ /* where U is an upper triangular matrix and L is lower triangular. */ /* This is the block version of the algorithm, calling Level 3 BLAS. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ /* N-by-N upper triangular part of A contains the upper */ /* triangular part of the matrix A, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading N-by-N lower triangular part of A contains the lower */ /* triangular part of the matrix A, and the strictly upper */ /* triangular part of A is not referenced. */ /* On exit, if INFO = 0, the factor U or L from the Cholesky */ /* factorization A = U**H*U or A = L*L**H. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= MAX(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the leading minor of order i is not */ /* positive definite, and the factorization could not be */ /* completed. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < MAX(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("ZPOTRF", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine the block size for this environment. */ nb = ilaenv_(&c__1, "ZPOTRF", uplo, n, &c_n1, &c_n1, &c_n1); if (nb <= 1 || nb >= *n) { /* Use unblocked code. */ zpotf2_(uplo, n, &a[a_offset], lda, info); } else { /* Use blocked code. */ if (upper) { /* Compute the Cholesky factorization A = U'*U. */ i__1 = *n; i__2 = nb; for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { /* Update and factorize the current diagonal block and test */ /* for non-positive-definiteness. */ /* Computing MIN */ i__3 = nb, i__4 = *n - j + 1; jb = MIN(i__3,i__4); i__3 = j - 1; zherk_("Upper", "Conjugate transpose", &jb, &i__3, &c_b14, &a[ j * a_dim1 + 1], lda, &c_b15, &a[j + j * a_dim1], lda); zpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info); if (*info != 0) { goto L30; } if (j + jb <= *n) { /* Compute the current block row. */ i__3 = *n - j - jb + 1; i__4 = j - 1; z__1.r = -1., z__1.i = -0.; zgemm_("Conjugate transpose", "No transpose", &jb, &i__3, &i__4, &z__1, &a[j * a_dim1 + 1], lda, &a[(j + jb) * a_dim1 + 1], lda, &c_b1, &a[j + (j + jb) * a_dim1], lda); i__3 = *n - j - jb + 1; ztrsm_("Left", "Upper", "Conjugate transpose", "Non-unit", &jb, &i__3, &c_b1, &a[j + j * a_dim1], lda, &a[j + (j + jb) * a_dim1], lda); } /* L10: */ } } else { /* Compute the Cholesky factorization A = L*L'. */ i__2 = *n; i__1 = nb; for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { /* Update and factorize the current diagonal block and test */ /* for non-positive-definiteness. */ /* Computing MIN */ i__3 = nb, i__4 = *n - j + 1; jb = MIN(i__3,i__4); i__3 = j - 1; zherk_("Lower", "No transpose", &jb, &i__3, &c_b14, &a[j + a_dim1], lda, &c_b15, &a[j + j * a_dim1], lda); zpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info); if (*info != 0) { goto L30; } if (j + jb <= *n) { /* Compute the current block column. */ i__3 = *n - j - jb + 1; i__4 = j - 1; z__1.r = -1., z__1.i = -0.; zgemm_("No transpose", "Conjugate transpose", &i__3, &jb, &i__4, &z__1, &a[j + jb + a_dim1], lda, &a[j + a_dim1], lda, &c_b1, &a[j + jb + j * a_dim1], lda); i__3 = *n - j - jb + 1; ztrsm_("Right", "Lower", "Conjugate transpose", "Non-unit" , &i__3, &jb, &c_b1, &a[j + j * a_dim1], lda, &a[ j + jb + j * a_dim1], lda); } /* L20: */ } } } goto L40; L30: *info = *info + j - 1; L40: return 0; /* End of ZPOTRF */ } /* zpotrf_ */
/* Subroutine */ int zpbtrf_(char *uplo, integer *n, integer *kd, doublecomplex *ab, integer *ldab, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZPBTRF computes the Cholesky factorization of a complex Hermitian positive definite band matrix A. The factorization has the form A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. Arguments ========= UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. AB (input/output) COMPLEX*16 array, dimension (LDAB,N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, if INFO = 0, the triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H of the band matrix A, in the same storage format as A. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KD+1. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. Further Details =============== The band storage scheme is illustrated by the following example, when N = 6, KD = 2, and UPLO = 'U': On entry: On exit: * * a13 a24 a35 a46 * * u13 u24 u35 u46 * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 Similarly, if UPLO = 'L' the format of A is as follows: On entry: On exit: a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * a31 a42 a53 a64 * * l31 l42 l53 l64 * * Array elements marked * are not used by the routine. Contributed by Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; static integer c_n1 = -1; static doublereal c_b21 = -1.; static doublereal c_b22 = 1.; static integer c__33 = 33; /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublecomplex z__1; /* Local variables */ static doublecomplex work[1056] /* was [33][32] */; static integer i__, j; extern logical lsame_(char *, char *); extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zherk_(char *, char *, integer *, integer *, doublereal *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *); static integer i2, i3; extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), zpbtf2_(char *, integer *, integer *, doublecomplex *, integer *, integer *); static integer ib, nb, ii, jj; extern /* Subroutine */ int zpotf2_(char *, integer *, doublecomplex *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); #define work_subscr(a_1,a_2) (a_2)*33 + a_1 - 34 #define work_ref(a_1,a_2) work[work_subscr(a_1,a_2)] #define ab_subscr(a_1,a_2) (a_2)*ab_dim1 + a_1 #define ab_ref(a_1,a_2) ab[ab_subscr(a_1,a_2)] ab_dim1 = *ldab; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; /* Function Body */ *info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*ldab < *kd + 1) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("ZPBTRF", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine the block size for this environment */ nb = ilaenv_(&c__1, "ZPBTRF", uplo, n, kd, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); /* The block size must not exceed the semi-bandwidth KD, and must not exceed the limit set by the size of the local array WORK. */ nb = min(nb,32); if (nb <= 1 || nb > *kd) { /* Use unblocked code */ zpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info); } else { /* Use blocked code */ if (lsame_(uplo, "U")) { /* Compute the Cholesky factorization of a Hermitian band matrix, given the upper triangle of the matrix in band storage. Zero the upper triangle of the work array. */ i__1 = nb; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = work_subscr(i__, j); work[i__3].r = 0., work[i__3].i = 0.; /* L10: */ } /* L20: */ } /* Process the band matrix one diagonal block at a time. */ i__1 = *n; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; ib = min(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; zpotf2_(uplo, &ib, &ab_ref(*kd + 1, i__), &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. If A11 denotes the diagonal block which has just been factorized, then we need to update the remaining blocks in the diagram: A11 A12 A13 A22 A23 A33 The numbers of rows and columns in the partitioning are IB, I2, I3 respectively. The blocks A12, A22 and A23 are empty if IB = KD. The upper triangle of A13 lies outside the band. Computing MIN */ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1; i2 = min(i__3,i__4); /* Computing MIN */ i__3 = ib, i__4 = *n - i__ - *kd + 1; i3 = min(i__3,i__4); if (i2 > 0) { /* Update A12 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ztrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i2, &c_b1, &ab_ref(*kd + 1, i__), &i__3, &ab_ref(*kd + 1 - ib, i__ + ib), & i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; zherk_("Upper", "Conjugate transpose", &i2, &ib, & c_b21, &ab_ref(*kd + 1 - ib, i__ + ib), &i__3, &c_b22, &ab_ref(*kd + 1, i__ + ib), &i__4); } if (i3 > 0) { /* Copy the lower triangle of A13 into the work array. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = work_subscr(ii, jj); i__6 = ab_subscr(ii - jj + 1, jj + i__ + *kd - 1); work[i__5].r = ab[i__6].r, work[i__5].i = ab[ i__6].i; /* L30: */ } /* L40: */ } /* Update A13 (in the work array). */ i__3 = *ldab - 1; ztrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i3, &c_b1, &ab_ref(*kd + 1, i__), &i__3, work, &c__33); /* Update A23 */ if (i2 > 0) { z__1.r = -1., z__1.i = 0.; i__3 = *ldab - 1; i__4 = *ldab - 1; zgemm_("Conjugate transpose", "No transpose", &i2, &i3, &ib, &z__1, &ab_ref(*kd + 1 - ib, i__ + ib), &i__3, work, &c__33, &c_b1, & ab_ref(ib + 1, i__ + *kd), &i__4); } /* Update A33 */ i__3 = *ldab - 1; zherk_("Upper", "Conjugate transpose", &i3, &ib, & c_b21, work, &c__33, &c_b22, &ab_ref(*kd + 1, i__ + *kd), &i__3); /* Copy the lower triangle of A13 back into place. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = ab_subscr(ii - jj + 1, jj + i__ + *kd - 1); i__6 = work_subscr(ii, jj); ab[i__5].r = work[i__6].r, ab[i__5].i = work[ i__6].i; /* L50: */ } /* L60: */ } } } /* L70: */ } } else { /* Compute the Cholesky factorization of a Hermitian band matrix, given the lower triangle of the matrix in band storage. Zero the lower triangle of the work array. */ i__2 = nb; for (j = 1; j <= i__2; ++j) { i__1 = nb; for (i__ = j + 1; i__ <= i__1; ++i__) { i__3 = work_subscr(i__, j); work[i__3].r = 0., work[i__3].i = 0.; /* L80: */ } /* L90: */ } /* Process the band matrix one diagonal block at a time. */ i__2 = *n; i__1 = nb; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; ib = min(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; zpotf2_(uplo, &ib, &ab_ref(1, i__), &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. If A11 denotes the diagonal block which has just been factorized, then we need to update the remaining blocks in the diagram: A11 A21 A22 A31 A32 A33 The numbers of rows and columns in the partitioning are IB, I2, I3 respectively. The blocks A21, A22 and A32 are empty if IB = KD. The lower triangle of A31 lies outside the band. Computing MIN */ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1; i2 = min(i__3,i__4); /* Computing MIN */ i__3 = ib, i__4 = *n - i__ - *kd + 1; i3 = min(i__3,i__4); if (i2 > 0) { /* Update A21 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ztrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i2, &ib, &c_b1, &ab_ref(1, i__), & i__3, &ab_ref(ib + 1, i__), &i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; zherk_("Lower", "No transpose", &i2, &ib, &c_b21, & ab_ref(ib + 1, i__), &i__3, &c_b22, &ab_ref(1, i__ + ib), &i__4); } if (i3 > 0) { /* Copy the upper triangle of A31 into the work array. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = min(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = work_subscr(ii, jj); i__6 = ab_subscr(*kd + 1 - jj + ii, jj + i__ - 1); work[i__5].r = ab[i__6].r, work[i__5].i = ab[ i__6].i; /* L100: */ } /* L110: */ } /* Update A31 (in the work array). */ i__3 = *ldab - 1; ztrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i3, &ib, &c_b1, &ab_ref(1, i__), & i__3, work, &c__33); /* Update A32 */ if (i2 > 0) { z__1.r = -1., z__1.i = 0.; i__3 = *ldab - 1; i__4 = *ldab - 1; zgemm_("No transpose", "Conjugate transpose", &i3, &i2, &ib, &z__1, work, &c__33, &ab_ref( ib + 1, i__), &i__3, &c_b1, &ab_ref(*kd + 1 - ib, i__ + ib), &i__4); } /* Update A33 */ i__3 = *ldab - 1; zherk_("Lower", "No transpose", &i3, &ib, &c_b21, work, &c__33, &c_b22, &ab_ref(1, i__ + *kd), & i__3); /* Copy the upper triangle of A31 back into place. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = min(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = ab_subscr(*kd + 1 - jj + ii, jj + i__ - 1); i__6 = work_subscr(ii, jj); ab[i__5].r = work[i__6].r, ab[i__5].i = work[ i__6].i; /* L120: */ } /* L130: */ } } } /* L140: */ } } } return 0; L150: return 0; /* End of ZPBTRF */ } /* zpbtrf_ */
/* Subroutine */ int zerrpo_(char *path, integer *nunit) { /* System generated locals */ integer i__1; doublereal d__1, d__2; doublecomplex z__1; /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ doublecomplex a[16] /* was [4][4] */, b[4]; integer i__, j; doublereal r__[4]; doublecomplex w[8], x[4]; char c2[2]; doublereal r1[4], r2[4]; doublecomplex af[16] /* was [4][4] */; integer info; doublereal anrm, rcond; extern /* Subroutine */ int zpbtf2_(char *, integer *, integer *, doublecomplex *, integer *, integer *), zpotf2_(char *, integer *, doublecomplex *, integer *, integer *), alaesm_(char *, logical *, integer *); extern logical lsamen_(integer *, char *, char *); extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical *, logical *), zpbcon_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpbequ_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, integer *), zpbrfs_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpbtrf_(char *, integer *, integer *, doublecomplex *, integer *, integer *), zpocon_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zppcon_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpoequ_(integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, integer *), zpbtrs_( char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zporfs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpotrf_(char *, integer *, doublecomplex *, integer *, integer *), zpotri_(char *, integer *, doublecomplex *, integer *, integer *), zppequ_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublereal *, integer *), zpprfs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpptrf_(char * , integer *, doublecomplex *, integer *), zpptri_(char *, integer *, doublecomplex *, integer *), zpotrs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zpptrs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZERRPO tests the error exits for the COMPLEX*16 routines */ /* for Hermitian positive definite matrices. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2); /* Set the variables to innocuous values. */ for (j = 1; j <= 4; ++j) { for (i__ = 1; i__ <= 4; ++i__) { i__1 = i__ + (j << 2) - 5; d__1 = 1. / (doublereal) (i__ + j); d__2 = -1. / (doublereal) (i__ + j); z__1.r = d__1, z__1.i = d__2; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = i__ + (j << 2) - 5; d__1 = 1. / (doublereal) (i__ + j); d__2 = -1. / (doublereal) (i__ + j); z__1.r = d__1, z__1.i = d__2; af[i__1].r = z__1.r, af[i__1].i = z__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0., b[i__1].i = 0.; r1[j - 1] = 0.; r2[j - 1] = 0.; i__1 = j - 1; w[i__1].r = 0., w[i__1].i = 0.; i__1 = j - 1; x[i__1].r = 0., x[i__1].i = 0.; /* L20: */ } anrm = 1.; infoc_1.ok = TRUE_; /* Test error exits of the routines that use the Cholesky */ /* decomposition of a Hermitian positive definite matrix. */ if (lsamen_(&c__2, c2, "PO")) { /* ZPOTRF */ s_copy(srnamc_1.srnamt, "ZPOTRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpotrf_("/", &c__0, a, &c__1, &info); chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpotrf_("U", &c_n1, a, &c__1, &info); chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpotrf_("U", &c__2, a, &c__1, &info); chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOTF2 */ s_copy(srnamc_1.srnamt, "ZPOTF2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpotf2_("/", &c__0, a, &c__1, &info); chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpotf2_("U", &c_n1, a, &c__1, &info); chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpotf2_("U", &c__2, a, &c__1, &info); chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOTRI */ s_copy(srnamc_1.srnamt, "ZPOTRI", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpotri_("/", &c__0, a, &c__1, &info); chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpotri_("U", &c_n1, a, &c__1, &info); chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpotri_("U", &c__2, a, &c__1, &info); chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOTRS */ s_copy(srnamc_1.srnamt, "ZPOTRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPORFS */ s_copy(srnamc_1.srnamt, "ZPORFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 11; zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOCON */ s_copy(srnamc_1.srnamt, "ZPOCON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; d__1 = -anrm; zpocon_("U", &c__1, a, &c__1, &d__1, &rcond, w, r__, &info) ; chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOEQU */ s_copy(srnamc_1.srnamt, "ZPOEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Test error exits of the routines that use the Cholesky */ /* decomposition of a Hermitian positive definite packed matrix. */ } else if (lsamen_(&c__2, c2, "PP")) { /* ZPPTRF */ s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpptrf_("/", &c__0, a, &info); chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpptrf_("U", &c_n1, a, &info); chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPTRI */ s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpptri_("/", &c__0, a, &info); chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpptri_("U", &c_n1, a, &info); chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPTRS */ s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpptrs_("/", &c__0, &c__0, a, b, &c__1, &info); chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info); chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info); chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zpptrs_("U", &c__2, &c__1, a, b, &c__1, &info); chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPRFS */ s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; zpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPCON */ s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info); chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info); chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; d__1 = -anrm; zppcon_("U", &c__1, a, &d__1, &rcond, w, r__, &info); chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPEQU */ s_copy(srnamc_1.srnamt, "ZPPEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zppequ_("/", &c__0, a, r1, &rcond, &anrm, &info); chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info); chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Test error exits of the routines that use the Cholesky */ /* decomposition of a Hermitian positive definite band matrix. */ } else if (lsamen_(&c__2, c2, "PB")) { /* ZPBTRF */ s_copy(srnamc_1.srnamt, "ZPBTRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbtrf_("/", &c__0, &c__0, a, &c__1, &info); chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbtrf_("U", &c_n1, &c__0, a, &c__1, &info); chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbtrf_("U", &c__1, &c_n1, a, &c__1, &info); chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpbtrf_("U", &c__2, &c__1, a, &c__1, &info); chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBTF2 */ s_copy(srnamc_1.srnamt, "ZPBTF2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbtf2_("/", &c__0, &c__0, a, &c__1, &info); chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbtf2_("U", &c_n1, &c__0, a, &c__1, &info); chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbtf2_("U", &c__1, &c_n1, a, &c__1, &info); chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpbtf2_("U", &c__2, &c__1, a, &c__1, &info); chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBTRS */ s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; zpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBRFS */ s_copy(srnamc_1.srnamt, "ZPBRFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, & c__2, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, & c__2, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, & c__2, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBCON */ s_copy(srnamc_1.srnamt, "ZPBCON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; d__1 = -anrm; zpbcon_("U", &c__1, &c__0, a, &c__1, &d__1, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBEQU */ s_copy(srnamc_1.srnamt, "ZPBEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of ZERRPO */ } /* zerrpo_ */
/* Subroutine */ int zpbtrf_(char *uplo, integer *n, integer *kd, doublecomplex *ab, integer *ldab, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublecomplex z__1; /* Local variables */ integer i__, j, i2, i3, ib, nb, ii, jj; doublecomplex work[1056] /* was [33][32] */; extern logical lsame_(char *, char *); extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zherk_(char *, char *, integer *, integer *, doublereal *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *), ztrsm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), zpbtf2_(char *, integer *, integer *, doublecomplex *, integer *, integer *), zpotf2_(char *, integer *, doublecomplex *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZPBTRF computes the Cholesky factorization of a complex Hermitian */ /* positive definite band matrix A. */ /* The factorization has the form */ /* A = U**H * U, if UPLO = 'U', or */ /* A = L * L**H, if UPLO = 'L', */ /* where U is an upper triangular matrix and L is lower triangular. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* AB (input/output) COMPLEX*16 array, dimension (LDAB,N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* On exit, if INFO = 0, the triangular factor U or L from the */ /* Cholesky factorization A = U**H*U or A = L*L**H of the band */ /* matrix A, in the same storage format as A. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the leading minor of order i is not */ /* positive definite, and the factorization could not be */ /* completed. */ /* Further Details */ /* =============== */ /* The band storage scheme is illustrated by the following example, when */ /* N = 6, KD = 2, and UPLO = 'U': */ /* On entry: On exit: */ /* * * a13 a24 a35 a46 * * u13 u24 u35 u46 */ /* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */ /* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */ /* Similarly, if UPLO = 'L' the format of A is as follows: */ /* On entry: On exit: */ /* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */ /* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */ /* a31 a42 a53 a64 * * l31 l42 l53 l64 * * */ /* Array elements marked * are not used by the routine. */ /* Contributed by */ /* Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; /* Function Body */ *info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*ldab < *kd + 1) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("ZPBTRF", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine the block size for this environment */ nb = ilaenv_(&c__1, "ZPBTRF", uplo, n, kd, &c_n1, &c_n1); /* The block size must not exceed the semi-bandwidth KD, and must not */ /* exceed the limit set by the size of the local array WORK. */ nb = min(nb,32); if (nb <= 1 || nb > *kd) { /* Use unblocked code */ zpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info); } else { /* Use blocked code */ if (lsame_(uplo, "U")) { /* Compute the Cholesky factorization of a Hermitian band */ /* matrix, given the upper triangle of the matrix in band */ /* storage. */ /* Zero the upper triangle of the work array. */ i__1 = nb; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * 33 - 34; work[i__3].r = 0., work[i__3].i = 0.; /* L10: */ } /* L20: */ } /* Process the band matrix one diagonal block at a time. */ i__1 = *n; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; ib = min(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; zpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. */ /* If A11 denotes the diagonal block which has just been */ /* factorized, then we need to update the remaining */ /* blocks in the diagram: */ /* A11 A12 A13 */ /* A22 A23 */ /* A33 */ /* The numbers of rows and columns in the partitioning */ /* are IB, I2, I3 respectively. The blocks A12, A22 and */ /* A23 are empty if IB = KD. The upper triangle of A13 */ /* lies outside the band. */ /* Computing MIN */ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1; i2 = min(i__3,i__4); /* Computing MIN */ i__3 = ib, i__4 = *n - i__ - *kd + 1; i3 = min(i__3,i__4); if (i2 > 0) { /* Update A12 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ztrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i2, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; zherk_("Upper", "Conjugate transpose", &i2, &ib, & c_b21, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, &c_b22, &ab[*kd + 1 + (i__ + ib) * ab_dim1], &i__4); } if (i3 > 0) { /* Copy the lower triangle of A13 into the work array. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = ii + jj * 33 - 34; i__6 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1; work[i__5].r = ab[i__6].r, work[i__5].i = ab[ i__6].i; /* L30: */ } /* L40: */ } /* Update A13 (in the work array). */ i__3 = *ldab - 1; ztrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i3, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, work, &c__33); /* Update A23 */ if (i2 > 0) { z__1.r = -1., z__1.i = -0.; i__3 = *ldab - 1; i__4 = *ldab - 1; zgemm_("Conjugate transpose", "No transpose", &i2, &i3, &ib, &z__1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, work, &c__33, & c_b1, &ab[ib + 1 + (i__ + *kd) * ab_dim1], &i__4); } /* Update A33 */ i__3 = *ldab - 1; zherk_("Upper", "Conjugate transpose", &i3, &ib, & c_b21, work, &c__33, &c_b22, &ab[*kd + 1 + ( i__ + *kd) * ab_dim1], &i__3); /* Copy the lower triangle of A13 back into place. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1; i__6 = ii + jj * 33 - 34; ab[i__5].r = work[i__6].r, ab[i__5].i = work[ i__6].i; /* L50: */ } /* L60: */ } } } /* L70: */ } } else { /* Compute the Cholesky factorization of a Hermitian band */ /* matrix, given the lower triangle of the matrix in band */ /* storage. */ /* Zero the lower triangle of the work array. */ i__2 = nb; for (j = 1; j <= i__2; ++j) { i__1 = nb; for (i__ = j + 1; i__ <= i__1; ++i__) { i__3 = i__ + j * 33 - 34; work[i__3].r = 0., work[i__3].i = 0.; /* L80: */ } /* L90: */ } /* Process the band matrix one diagonal block at a time. */ i__2 = *n; i__1 = nb; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; ib = min(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; zpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. */ /* If A11 denotes the diagonal block which has just been */ /* factorized, then we need to update the remaining */ /* blocks in the diagram: */ /* A11 */ /* A21 A22 */ /* A31 A32 A33 */ /* The numbers of rows and columns in the partitioning */ /* are IB, I2, I3 respectively. The blocks A21, A22 and */ /* A32 are empty if IB = KD. The lower triangle of A31 */ /* lies outside the band. */ /* Computing MIN */ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1; i2 = min(i__3,i__4); /* Computing MIN */ i__3 = ib, i__4 = *n - i__ - *kd + 1; i3 = min(i__3,i__4); if (i2 > 0) { /* Update A21 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ztrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i2, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, &ab[ib + 1 + i__ * ab_dim1], &i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; zherk_("Lower", "No transpose", &i2, &ib, &c_b21, &ab[ ib + 1 + i__ * ab_dim1], &i__3, &c_b22, &ab[( i__ + ib) * ab_dim1 + 1], &i__4); } if (i3 > 0) { /* Copy the upper triangle of A31 into the work array. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = min(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = ii + jj * 33 - 34; i__6 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1; work[i__5].r = ab[i__6].r, work[i__5].i = ab[ i__6].i; /* L100: */ } /* L110: */ } /* Update A31 (in the work array). */ i__3 = *ldab - 1; ztrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i3, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, work, &c__33); /* Update A32 */ if (i2 > 0) { z__1.r = -1., z__1.i = -0.; i__3 = *ldab - 1; i__4 = *ldab - 1; zgemm_("No transpose", "Conjugate transpose", &i3, &i2, &ib, &z__1, work, &c__33, &ab[ib + 1 + i__ * ab_dim1], &i__3, &c_b1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4); } /* Update A33 */ i__3 = *ldab - 1; zherk_("Lower", "No transpose", &i3, &ib, &c_b21, work, &c__33, &c_b22, &ab[(i__ + *kd) * ab_dim1 + 1], &i__3); /* Copy the upper triangle of A31 back into place. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = min(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1; i__6 = ii + jj * 33 - 34; ab[i__5].r = work[i__6].r, ab[i__5].i = work[ i__6].i; /* L120: */ } /* L130: */ } } } /* L140: */ } } } return 0; L150: return 0; /* End of ZPBTRF */ } /* zpbtrf_ */
/* Subroutine */ int zerrpo_(char *path, integer *nunit) { /* System generated locals */ integer i__1; doublereal d__1, d__2; doublecomplex z__1; /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer info; static doublereal anrm; static doublecomplex a[16] /* was [4][4] */, b[4]; static integer i__, j; static doublereal r__[4]; static doublecomplex w[8], x[4]; static doublereal rcond; static char c2[2]; static doublereal r1[4], r2[4]; static doublecomplex af[16] /* was [4][4] */; extern /* Subroutine */ int zpbtf2_(char *, integer *, integer *, doublecomplex *, integer *, integer *), zpotf2_(char *, integer *, doublecomplex *, integer *, integer *), alaesm_(char *, logical *, integer *); extern logical lsamen_(integer *, char *, char *); extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical *, logical *), zpbcon_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpbequ_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, integer *), zpbrfs_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpbtrf_(char *, integer *, integer *, doublecomplex *, integer *, integer *), zpocon_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zppcon_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpoequ_(integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, integer *), zpbtrs_( char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zporfs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpotrf_(char *, integer *, doublecomplex *, integer *, integer *), zpotri_(char *, integer *, doublecomplex *, integer *, integer *), zppequ_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublereal *, integer *), zpprfs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpptrf_(char * , integer *, doublecomplex *, integer *), zpptri_(char *, integer *, doublecomplex *, integer *), zpotrs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zpptrs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; #define a_subscr(a_1,a_2) (a_2)*4 + a_1 - 5 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define af_subscr(a_1,a_2) (a_2)*4 + a_1 - 5 #define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= ZERRPO tests the error exits for the COMPLEX*16 routines for Hermitian positive definite matrices. Arguments ========= PATH (input) CHARACTER*3 The LAPACK path name for the routines to be tested. NUNIT (input) INTEGER The unit number for output. ===================================================================== */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2); /* Set the variables to innocuous values. */ for (j = 1; j <= 4; ++j) { for (i__ = 1; i__ <= 4; ++i__) { i__1 = a_subscr(i__, j); d__1 = 1. / (doublereal) (i__ + j); d__2 = -1. / (doublereal) (i__ + j); z__1.r = d__1, z__1.i = d__2; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = af_subscr(i__, j); d__1 = 1. / (doublereal) (i__ + j); d__2 = -1. / (doublereal) (i__ + j); z__1.r = d__1, z__1.i = d__2; af[i__1].r = z__1.r, af[i__1].i = z__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0., b[i__1].i = 0.; r1[j - 1] = 0.; r2[j - 1] = 0.; i__1 = j - 1; w[i__1].r = 0., w[i__1].i = 0.; i__1 = j - 1; x[i__1].r = 0., x[i__1].i = 0.; /* L20: */ } anrm = 1.; infoc_1.ok = TRUE_; /* Test error exits of the routines that use the Cholesky decomposition of a Hermitian positive definite matrix. */ if (lsamen_(&c__2, c2, "PO")) { /* ZPOTRF */ s_copy(srnamc_1.srnamt, "ZPOTRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpotrf_("/", &c__0, a, &c__1, &info); chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpotrf_("U", &c_n1, a, &c__1, &info); chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpotrf_("U", &c__2, a, &c__1, &info); chkxer_("ZPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOTF2 */ s_copy(srnamc_1.srnamt, "ZPOTF2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpotf2_("/", &c__0, a, &c__1, &info); chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpotf2_("U", &c_n1, a, &c__1, &info); chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpotf2_("U", &c__2, a, &c__1, &info); chkxer_("ZPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOTRI */ s_copy(srnamc_1.srnamt, "ZPOTRI", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpotri_("/", &c__0, a, &c__1, &info); chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpotri_("U", &c_n1, a, &c__1, &info); chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpotri_("U", &c__2, a, &c__1, &info); chkxer_("ZPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOTRS */ s_copy(srnamc_1.srnamt, "ZPOTRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info); chkxer_("ZPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPORFS */ s_copy(srnamc_1.srnamt, "ZPORFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 11; zporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOCON */ s_copy(srnamc_1.srnamt, "ZPOCON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; d__1 = -anrm; zpocon_("U", &c__1, a, &c__1, &d__1, &rcond, w, r__, &info) ; chkxer_("ZPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPOEQU */ s_copy(srnamc_1.srnamt, "ZPOEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Test error exits of the routines that use the Cholesky decomposition of a Hermitian positive definite packed matrix. */ } else if (lsamen_(&c__2, c2, "PP")) { /* ZPPTRF */ s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpptrf_("/", &c__0, a, &info); chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpptrf_("U", &c_n1, a, &info); chkxer_("ZPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPTRI */ s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpptri_("/", &c__0, a, &info); chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpptri_("U", &c_n1, a, &info); chkxer_("ZPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPTRS */ s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpptrs_("/", &c__0, &c__0, a, b, &c__1, &info); chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info); chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info); chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zpptrs_("U", &c__2, &c__1, a, b, &c__1, &info); chkxer_("ZPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPRFS */ s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; zpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPCON */ s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info); chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info); chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; d__1 = -anrm; zppcon_("U", &c__1, a, &d__1, &rcond, w, r__, &info); chkxer_("ZPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPPEQU */ s_copy(srnamc_1.srnamt, "ZPPEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zppequ_("/", &c__0, a, r1, &rcond, &anrm, &info); chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info); chkxer_("ZPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Test error exits of the routines that use the Cholesky decomposition of a Hermitian positive definite band matrix. */ } else if (lsamen_(&c__2, c2, "PB")) { /* ZPBTRF */ s_copy(srnamc_1.srnamt, "ZPBTRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbtrf_("/", &c__0, &c__0, a, &c__1, &info); chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbtrf_("U", &c_n1, &c__0, a, &c__1, &info); chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbtrf_("U", &c__1, &c_n1, a, &c__1, &info); chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpbtrf_("U", &c__2, &c__1, a, &c__1, &info); chkxer_("ZPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBTF2 */ s_copy(srnamc_1.srnamt, "ZPBTF2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbtf2_("/", &c__0, &c__0, a, &c__1, &info); chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbtf2_("U", &c_n1, &c__0, a, &c__1, &info); chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbtf2_("U", &c__1, &c_n1, a, &c__1, &info); chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpbtf2_("U", &c__2, &c__1, a, &c__1, &info); chkxer_("ZPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBTRS */ s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; zpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info); chkxer_("ZPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBRFS */ s_copy(srnamc_1.srnamt, "ZPBRFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, & c__2, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; zpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, & c__2, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, & c__2, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; zpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBCON */ s_copy(srnamc_1.srnamt, "ZPBCON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; d__1 = -anrm; zpbcon_("U", &c__1, &c__0, a, &c__1, &d__1, &rcond, w, r__, &info); chkxer_("ZPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZPBEQU */ s_copy(srnamc_1.srnamt, "ZPBEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("ZPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of ZERRPO */ } /* zerrpo_ */
/* Subroutine */ int zpotrf_(char *uplo, integer *n, doublecomplex *a, integer *lda, integer *info) { /* -- LAPACK routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZPOTRF computes the Cholesky factorization of a complex Hermitian positive definite matrix A. The factorization has the form A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the block version of the algorithm, calling Level 3 BLAS. Arguments ========= UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. ===================================================================== Test the input parameters. Parameter adjustments Function Body */ /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; static integer c_n1 = -1; static doublereal c_b14 = -1.; static doublereal c_b15 = 1.; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; doublecomplex z__1; /* Local variables */ static integer j; extern logical lsame_(char *, char *); extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zherk_(char *, char *, integer *, integer *, doublereal *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *); static logical upper; extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); static integer jb, nb; extern /* Subroutine */ int zpotf2_(char *, integer *, doublecomplex *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("ZPOTRF", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine the block size for this environment. */ nb = ilaenv_(&c__1, "ZPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, 6L, 1L); if (nb <= 1 || nb >= *n) { /* Use unblocked code. */ zpotf2_(uplo, n, &A(1,1), lda, info); } else { /* Use blocked code. */ if (upper) { /* Compute the Cholesky factorization A = U'*U. */ i__1 = *n; i__2 = nb; for (j = 1; nb < 0 ? j >= *n : j <= *n; j += nb) { /* Update and factorize the current diagonal bloc k and test for non-positive-definiteness. Computing MIN */ i__3 = nb, i__4 = *n - j + 1; jb = min(i__3,i__4); i__3 = j - 1; zherk_("Upper", "Conjugate transpose", &jb, &i__3, &c_b14, &A(1,j), lda, &c_b15, &A(j,j), lda); zpotf2_("Upper", &jb, &A(j,j), lda, info); if (*info != 0) { goto L30; } if (j + jb <= *n) { /* Compute the current block row. */ i__3 = *n - j - jb + 1; i__4 = j - 1; z__1.r = -1., z__1.i = 0.; zgemm_("Conjugate transpose", "No transpose", &jb, &i__3, &i__4, &z__1, &A(1,j), lda, &A(1,j+jb), lda, &c_b1, &A(j,j+jb), lda); i__3 = *n - j - jb + 1; ztrsm_("Left", "Upper", "Conjugate transpose", "Non-unit", &jb, &i__3, &c_b1, &A(j,j), lda, &A(j,j+jb), lda); } /* L10: */ } } else { /* Compute the Cholesky factorization A = L*L'. */ i__2 = *n; i__1 = nb; for (j = 1; nb < 0 ? j >= *n : j <= *n; j += nb) { /* Update and factorize the current diagonal bloc k and test for non-positive-definiteness. Computing MIN */ i__3 = nb, i__4 = *n - j + 1; jb = min(i__3,i__4); i__3 = j - 1; zherk_("Lower", "No transpose", &jb, &i__3, &c_b14, &A(j,1), lda, &c_b15, &A(j,j), lda); zpotf2_("Lower", &jb, &A(j,j), lda, info); if (*info != 0) { goto L30; } if (j + jb <= *n) { /* Compute the current block column. */ i__3 = *n - j - jb + 1; i__4 = j - 1; z__1.r = -1., z__1.i = 0.; zgemm_("No transpose", "Conjugate transpose", &i__3, &jb, &i__4, &z__1, &A(j+jb,1), lda, &A(j,1), lda, &c_b1, &A(j+jb,j), lda); i__3 = *n - j - jb + 1; ztrsm_("Right", "Lower", "Conjugate transpose", "Non-unit" , &i__3, &jb, &c_b1, &A(j,j), lda, &A(j+jb,j), lda); } /* L20: */ } } } goto L40; L30: *info = *info + j - 1; L40: return 0; /* End of ZPOTRF */ } /* zpotrf_ */