Пример #1
0
int AVLHash :: search(int k)
{
        int pos = hashCode(k);
        AVL *tree = hash_table[pos];

        return tree->search(k);
}
Пример #2
0
/******************************************************************************************
 * Test an AVL
 ******************************************************************************************/
template <typename T> void  testAVL(int n) {
   AVL<T>* avl = new AVL<T>;
   while (avl->size() < n) {
      T e = dice((T)n*3); //[0, 3n)范围内的e
      switch (dice(3)) {
         case 0: { //查找,成功率 <= 33.3%
            printf("Searching for "); print(e); printf(" ...\n");
            BinNodePosi(T) & p = avl->search(e);
            p ?
               printf("Found with"), print(p), printf("\n") :
               printf("Not found\n");
            break;
         }
         case 1: { //删除,成功率 <= 33.3%
            printf("Removing "); print(e); printf(" ...\n");
            avl->remove(e) ? printf("Done\n"), print(avl) : printf("Not exists\n");
            break;
         }
         default: {//插入,成功率 == 100%
            printf("Inserting "); print(e); printf(" ...\n");
            BinNodePosi(T) p = avl->insert(e);
            printf("Done with"), print(p), printf("\n"), print(avl);
            break;
         }
      }
   }
   while (avl->size() > 0) {
      T e = dice((T)n*3); //[0, 3n)范围内的e
      printf("Removing "); print(e); printf(" ...\n");
      avl->remove(e) ? printf("Done\n"), print(avl) : printf("Not exists\n");
   }
   release(avl);
}
int main(){
	FileIO * file = new FileIO("tube.txt");

	vector<Station *> station_list = file->read_file_to_station_list();
	vector<Station *> sorted_list = file->read_file_to_station_list();
	std::sort(sorted_list.begin(), sorted_list.end(), sort_by_name);
//	print_all(sorted_list, station_list);

//	search_by_keyword(sorted_list, station_list);
//	mode_selection(sorted_list, station_list);
	//test section

	node<int> *_node = new node<int>();
//	cout<<sorted_list[0]->get_station_index()<<endl;
	_node->data = sorted_list[0]->get_station_index();
	AVL<int> *tree = new AVL<int>(_node); //new binary_tree<int>(_node);

	for(vector<Station *>::iterator it = sorted_list.begin() + 1;it != sorted_list.end();++it){
		bool b_return = tree->insert((*it)->get_station_index());
//		cout<<(*it)->get_station_index()<<"  "<<b_return<<endl;
	}
	cout<<"done!"<<endl;
//	tree->traverse_inorder(tree->root);
	cout<<"Tree height is "<<tree->tree_height<<endl;
	node<int> *returned_node = tree->search(0);
	cout<<returned_node->data<<" "<<returned_node->height<<endl;
	node<int> *rhs = tree->root;
//	cout<<rhs->data<<" "<<rhs->height<<endl;
	rhs = rhs->rhs;
	node<int> min, max;
//	cout<<"d 1"<<endl;
	tree->find_min_from(rhs, min);
//	cout<<"d 2"<<endl;
	tree->find_max_from((tree->root)->lhs, max);
	cout<<"min in right branch is "<<min.data<<" "<<min.height<<endl;
	cout<<"max in left branch is "<<max.data<<" "<<max.height<<endl;

	cout<<"depth is "<<tree->find_depth(tree->root)<<endl;
	cout<<"left branch depth is "<<tree->find_depth((tree->root)->lhs)<<endl;
	cout<<"right branch depth is "<<tree->find_depth((tree->root)->rhs)<<endl;
	cout<<"balance factor is "<<tree->balance_factor(tree->root)<<endl;
	cout<<"tree is balanced? "<<tree->is_balanced(tree->root)<<endl;

	cout<<"tree root "<<(tree->root)->data<<endl;
//	delete[] tree->root;
	delete tree;
	return 0;
}