Пример #1
0
void trymatm()
{
   Tracer et("Twenty second test of Matrix package");
   Tracer::PrintTrace();

   {
      Tracer et1("Stage 1");


      Matrix A(2,3);
      A << 3 << 5 << 2
        << 4 << 1 << 6;

      Matrix B(4,3);
      B <<  7 <<  2 <<  9
        <<  1 <<  3 <<  6
        <<  4 << 10 <<  5
        << 11 <<  8 << 12;

      Matrix C(8, 9);

      C.Row(1) << 21 <<  6 << 27  << 35 << 10 << 45  << 14 <<  4 << 18;
      C.Row(2) <<  3 <<  9 << 18  <<  5 << 15 << 30  <<  2 <<  6 << 12;
      C.Row(3) << 12 << 30 << 15  << 20 << 50 << 25  <<  8 << 20 << 10;
      C.Row(4) << 33 << 24 << 36  << 55 << 40 << 60  << 22 << 16 << 24;

      C.Row(5) << 28 <<  8 << 36  <<  7 <<  2 <<  9  << 42 << 12 << 54;
      C.Row(6) <<  4 << 12 << 24  <<  1 <<  3 <<  6  <<  6 << 18 << 36;
      C.Row(7) << 16 << 40 << 20  <<  4 << 10 <<  5  << 24 << 60 << 30;
      C.Row(8) << 44 << 32 << 48  << 11 <<  8 << 12  << 66 << 48 << 72;

      Matrix AB = KP(A,B) - C; Print(AB);

      IdentityMatrix I1(10); IdentityMatrix I2(15); I2 *= 2;
      DiagonalMatrix D = KP(I1, I2) - IdentityMatrix(150) * 2;
      Print(D);
   }

   {
      Tracer et1("Stage 2");

      UpperTriangularMatrix A(3);
      A << 3 << 8 << 5
             << 7 << 2
                  << 4;
      UpperTriangularMatrix B(4);
      B << 4 << 1 << 7 << 2
             << 3 << 9 << 8
                  << 1 << 5
                       << 6;

      UpperTriangularMatrix C(12);

      C.Row(1) <<12<< 3<<21<< 6 <<32<< 8<<56<<16 <<20<< 5<<35<<10;
      C.Row(2)     << 9<<27<<24 << 0<<24<<72<<64 << 0<<15<<45<<40;
      C.Row(3)         << 3<<15 << 0<< 0<< 8<<40 << 0<< 0<< 5<<25;
      C.Row(4)             <<18 << 0<< 0<< 0<<48 << 0<< 0<< 0<<30;

      C.Row(5)                  <<28<< 7<<49<<14 << 8<< 2<<14<< 4;
      C.Row(6)                      <<21<<63<<56 << 0<< 6<<18<<16;
      C.Row(7)                          << 7<<35 << 0<< 0<< 2<<10;
      C.Row(8)                              <<42 << 0<< 0<< 0<<12;

      C.Row(9)                                   <<16<< 4<<28<< 8;
      C.Row(10)                                      <<12<<36<<32;
      C.Row(11)                                          << 4<<20;
      C.Row(12)                                              <<24;


      UpperTriangularMatrix AB = KP(A,B) - C; Print(AB);

      LowerTriangularMatrix BT = B.t(); Matrix N(12,12);

      N.Row(1) <<12 << 0<< 0<< 0 <<32<< 0<< 0<< 0 <<20<< 0<< 0<< 0;
      N.Row(2) << 3 << 9<< 0<< 0 << 8<<24<< 0<< 0 << 5<<15<< 0<< 0;
      N.Row(3) <<21 <<27<< 3<< 0 <<56<<72<< 8<< 0 <<35<<45<< 5<< 0;
      N.Row(4) << 6 <<24<<15<<18 <<16<<64<<40<<48 <<10<<40<<25<<30;

      N.Row(5) << 0 << 0<< 0<< 0 <<28<< 0<< 0<< 0 << 8<< 0<< 0<< 0;
      N.Row(6) << 0 << 0<< 0<< 0 << 7<<21<< 0<< 0 << 2<< 6<< 0<< 0;
      N.Row(7) << 0 << 0<< 0<< 0 <<49<<63<< 7<< 0 <<14<<18<< 2<< 0;
      N.Row(8) << 0 << 0<< 0<< 0 <<14<<56<<35<<42 << 4<<16<<10<<12;

      N.Row(9) << 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 <<16<< 0<< 0<< 0;
      N.Row(10)<< 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 << 4<<12<< 0<< 0;
      N.Row(11)<< 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 <<28<<36<< 4<< 0;
      N.Row(12)<< 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 << 8<<32<<20<<24;

      Matrix N1 = KP(A, BT); N1 -= N; Print(N1);
      AB << KP(A, BT); AB << (AB - N); Print(AB);
      BT << KP(A, BT); BT << (BT - N); Print(BT);

      LowerTriangularMatrix AT = A.t();
      N1 = KP(AT, B); N1 -= N.t(); Print(N1);
      AB << KP(AT, B); AB << (AB - N.t()); Print(AB);
      BT << KP(AT, B); BT << (BT - N.t()); Print(BT);
   }

   {
      Tracer et1("Stage 3");

      BandMatrix BMA(6,2,3);
      BMA.Row(1) << 5.25 << 4.75 << 2.25 << 1.75;
      BMA.Row(2) << 1.25 << 9.75 << 4.50 << 0.25 << 1.50;
      BMA.Row(3) << 7.75 << 1.50 << 3.00 << 4.25 << 0.50 << 5.50;
      BMA.Row(4) << 2.75 << 9.00 << 8.00 << 3.25 << 3.50;
      BMA.Row(5) << 8.75 << 6.25 << 5.00 << 5.75;
      BMA.Row(6) << 3.75 << 6.75 << 6.00;

      Matrix A = BMA;

      BandMatrix BMB(4,2,1);
      BMB.Row(1) << 4.5 << 9.5;
      BMB.Row(2) << 1.5 << 6.0 << 2.0;
      BMB.Row(3) << 0.5 << 2.5 << 8.5 << 7.5;
      BMB.Row(4) << 3.0 << 4.0 << 6.5;

      SquareMatrix B = BMB;

      BandMatrix BMC = KP(BMA, BMB);
      BandMatrix BMC1 = KP(BMA, B);
      Matrix C2 = KP(A, BMB);
      Matrix C = KP(A, B);

      Matrix M = C - BMC; Print(M);
      M = C - BMC1; Print(M);
      M = C - C2; Print(M);

      RowVector X(4);
      X(1) = BMC.BandWidth().Lower() - 10;
      X(2) = BMC.BandWidth().Upper() - 13;
      X(3) = BMC1.BandWidth().Lower() - 11;
      X(4) = BMC1.BandWidth().Upper() - 15;
      Print(X);

      UpperTriangularMatrix UT;  UT << KP(BMA, BMB);
      UpperTriangularMatrix UT1; UT1 << (C - UT); Print(UT1);
      LowerTriangularMatrix LT;  LT << KP(BMA, BMB);
      LowerTriangularMatrix LT1; LT1 << (C - LT); Print(LT1);
   }

   {
      Tracer et1("Stage 4");

      SymmetricMatrix SM1(4);
      SM1.Row(1) << 2;
      SM1.Row(2) << 4 << 5;
      SM1.Row(3) << 9 << 2 << 1;
      SM1.Row(4) << 3 << 6 << 8 << 2;

      SymmetricMatrix SM2(3);
      SM2.Row(1) <<  3;
      SM2.Row(2) << -7 << -6;
      SM2.Row(3) <<  4 << -2 << -1;

      SymmetricMatrix SM = KP(SM1, SM2);
      Matrix M1 = SM1; Matrix M2 = SM2;
      Matrix M = KP(SM1, SM2); M -= SM; Print(M);
      M = KP(SM1, SM2) - SM; Print(M);
      M = KP(M1, SM2) - SM; Print(M);
      M = KP(SM1, M2) - SM; Print(M);
      M = KP(M1, M2); M -= SM; Print(M);
   }

   {
      Tracer et1("Stage 5");

      Matrix A(2,3);
      A << 3 << 5 << 2
        << 4 << 1 << 6;

      Matrix B(3,4);
      B <<  7 <<  2 <<  9 << 11
        <<  1 <<  3 <<  6 <<  8
        <<  4 << 10 <<  5 << 12;

      RowVector C(2); C << 3 << 7;
      ColumnVector D(4); D << 0 << 5 << 13 << 11;

      Matrix M = KP(C * A, B * D) - KP(C, B) * KP(A, D); Print(M);
   }

   {
      Tracer et1("Stage 6");

      RowVector A(3), B(5), C(15);
      A << 5 << 2 << 4;
      B << 3 << 2 << 0 << 1 << 6;
      C << 15 << 10 << 0 << 5 << 30
        <<  6 <<  4 << 0 << 2 << 12
        << 12 <<  8 << 0 << 4 << 24;
      Matrix N = KP(A, B) - C;    Print(N);
      N = KP(A.t(), B.t()) - C.t();    Print(N);
      N = KP(A.AsDiagonal(), B.AsDiagonal()) - C.AsDiagonal();    Print(N);
   }

   {
      Tracer et1("Stage 7");
      IdentityMatrix I(3);
      ColumnVector CV(4); CV << 4 << 3 << 1 << 7;
      Matrix A = KP(I, CV) + 5;
      Matrix B(3,12);
      B.Row(1) << 9 << 8 << 6 << 12 << 5 << 5 << 5 << 5 << 5 << 5 << 5 << 5;
      B.Row(2) << 5 << 5 << 5 << 5 << 9 << 8 << 6 << 12 << 5 << 5 << 5 << 5;
      B.Row(3) << 5 << 5 << 5 << 5 << 5 << 5 << 5 << 5 << 9 << 8 << 6 << 12;
      B -= A.t(); Print(B);

   }

   {
      Tracer et1("Stage 8");          // SquareMatrix
      Matrix A(2,3), B(3,2);
      A << 2 << 6 << 7
        << 4 << 3 << 9;
      B << 1 << 3
        << 4 << 8
        << 0 << 6;
      SquareMatrix AB = A * B;
      Matrix M = (B.t() * A.t()).t(); M -= AB; Print(M);
      AB = B * A;
      M = (A.t() * B.t()).t(); M -= AB; Print(M);
      AB.ReSize(5,5); AB = 0;
      AB.SubMatrix(1,2,1,3) = A; AB.SubMatrix(4,5,3,5) = A;
      AB.SubMatrix(1,3,4,5) = B; AB.SubMatrix(3,5,1,2) = B;
      SquareMatrix C(5);
      C.Row(1) << 2 << 6 << 7 << 1 << 3;
      C.Row(2) << 4 << 3 << 9 << 4 << 8;
      C.Row(3) << 1 << 3 << 0 << 0 << 6;
      C.Row(4) << 4 << 8 << 2 << 6 << 7;
      C.Row(5) << 0 << 6 << 4 << 3 << 9;
      C -= AB; Print(C);
      AB = A.SymSubMatrix(1,2);
      AB = (AB | AB) & (AB | AB);
      C.ReSize(4);
      C.Row(1) << 2 << 6 << 2 << 6;
      C.Row(2) << 4 << 3 << 4 << 3;
      C.Row(3) << 2 << 6 << 2 << 6;
      C.Row(4) << 4 << 3 << 4 << 3;
      M = AB;
      C -= M; Print(C);
      C << M; C += -M; Print(C);
      
   }


}
Пример #2
0
void trymat8()
{
//   cout << "\nEighth test of Matrix package\n";
   Tracer et("Eighth test of Matrix package");
   Tracer::PrintTrace();

   int i;


   DiagonalMatrix D(6);
   for (i=1;i<=6;i++)  D(i,i)=i*i+i-10;
   DiagonalMatrix D2=D;
   Matrix MD=D;

   DiagonalMatrix D1(6); for (i=1;i<=6;i++) D1(i,i)=-100+i*i*i;
   Matrix MD1=D1;
   Print(Matrix(D*D1-MD*MD1));
   Print(Matrix((-D)*D1+MD*MD1));
   Print(Matrix(D*(-D1)+MD*MD1));
   DiagonalMatrix DX=D;
   {
      Tracer et1("Stage 1");
      DX=(DX+D1)*DX; Print(Matrix(DX-(MD+MD1)*MD));
      DX=D;
      DX=-DX*DX+(DX-(-D1))*((-D1)+DX);
      // Matrix MX = Matrix(MD1);
      // MD1=DX+(MX.t())*(MX.t()); Print(MD1);
      MD1=DX+(Matrix(MD1).t())*(Matrix(MD1).t()); Print(MD1);
      DX=D; DX=DX; DX=D2-DX; Print(DiagonalMatrix(DX));
      DX=D;
   }
   {
      Tracer et1("Stage 2");
      D.Release(2);
      D1=D; D2=D;
      Print(DiagonalMatrix(D1-DX));
      Print(DiagonalMatrix(D2-DX));
      MD1=1.0;
      Print(Matrix(MD1-1.0));
   }
   {
      Tracer et1("Stage 3");
      //GenericMatrix
      LowerTriangularMatrix LT(4);
      LT << 1 << 2 << 3 << 4 << 5 << 6  << 7 << 8 << 9 << 10;
      UpperTriangularMatrix UT = LT.t() * 2.0;
      GenericMatrix GM1 = LT;
      LowerTriangularMatrix LT1 = GM1-LT; Print(LT1);
      GenericMatrix GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
      GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
      GM2 = GM1*2; LT1 = GM2; LT1 = LT1-LT*2; Print(LT1);
      GM1.Release();
      GM1=GM1; LT1=GM1-LT; Print(LT1); LT1=GM1-LT; Print(LT1);
      GM1.Release();
      GM1=GM1*4; LT1=GM1-LT*4; Print(LT1);
      LT1=GM1-LT*4; Print(LT1); GM1.CleanUp();
      GM1=LT; GM2=UT; GM1=GM1*GM2; Matrix M=GM1; M=M-LT*UT; Print(M);
      Transposer(LT,GM2); LT1 = LT - GM2.t(); Print(LT1);
      GM1=LT; Transposer(GM1,GM2); LT1 = LT - GM2.t(); Print(LT1);
      GM1 = LT; GM1 = GM1 + GM1; LT1 = LT*2-GM1; Print(LT1);
      DiagonalMatrix D; D << LT; GM1 = D; LT1 = GM1; LT1 -= D; Print(LT1);
      UpperTriangularMatrix UT1 = GM1; UT1 -= D; Print(UT1);
   }
   {
      Tracer et1("Stage 4");
      // Another test of SVD
      Matrix M(12,12); M = 0;
      M(1,1) = M(2,2) = M(4,4) = M(6,6) =
         M(7,7) = M(8,8) = M(10,10) = M(12,12) = -1;
      M(1,6) = M(1,12) = -5.601594;
      M(3,6) = M(3,12) = -0.000165;
      M(7,6) = M(7,12) = -0.008294;
      DiagonalMatrix D;
      SVD(M,D);
      SortDescending(D);
      // answer given by matlab
      DiagonalMatrix DX(12);
      DX(1) = 8.0461;
      DX(2) = DX(3) = DX(4) = DX(5) = DX(6) = DX(7) = 1;
      DX(8) = 0.1243;
      DX(9) = DX(10) = DX(11) = DX(12) = 0;
      D -= DX; Clean(D,0.0001); Print(D);
   }
#ifndef DONT_DO_NRIC
   {
      Tracer et1("Stage 5");
      // test numerical recipes in C interface
      DiagonalMatrix D(10);
      D << 1 << 4 << 6 << 2 << 1 << 6 << 4 << 7 << 3 << 1;
      ColumnVector C(10);
      C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3;
      RowVector R(6);
      R << 2 << 3 << 5 << 7 << 11 << 13;
      nricMatrix M(10, 6);
      DCR( D.nric(), C.nric(), 10, R.nric(), 6, M.nric() );
      M -= D * C * R;  Print(M);

      D.ReSize(5);
      D << 1.25 << 4.75 << 9.5 << 1.25 << 3.75;
      C.ReSize(5);
      C << 1.5 << 7.5 << 4.25 << 0.0 << 7.25;
      R.ReSize(9);
      R << 2.5 << 3.25 << 5.5 << 7 << 11.25 << 13.5 << 0.0 << 1.5 << 3.5;
      Matrix MX = D * C * R;
      M.ReSize(MX);
      DCR( D.nric(), C.nric(), 5, R.nric(), 9, M.nric() );
      M -= MX;  Print(M);
      
      // test swap
      nricMatrix A(3,4); nricMatrix B(4,5);
      A.Row(1) << 2 << 7 << 3 << 6;
      A.Row(2) << 6 << 2 << 5 << 9;
      A.Row(3) << 1 << 0 << 1 << 6;
      B.Row(1) << 2 << 8 << 4 << 5 << 3;
      B.Row(2) << 1 << 7 << 5 << 3 << 9;
      B.Row(3) << 7 << 8 << 2 << 1 << 6;
      B.Row(4) << 5 << 2 << 9 << 0 << 9;
      nricMatrix A1(1,2); nricMatrix B1;
      nricMatrix X(3,5); Matrix X1 = A * B;
      swap(A, A1); swap(B1, B);
      for (int i = 1; i <= 3; ++i) for (int j = 1; j <= 5; ++j)
      {
         X.nric()[i][j] = 0.0;
         for (int k = 1; k <= 4; ++k)
            X.nric()[i][j] += A1.nric()[i][k] * B1.nric()[k][j];
      }
      X1 -= X; Print(X1); 
   }
#endif
   {
      Tracer et1("Stage 6");
      // test dotproduct
      DiagonalMatrix test(5); test = 1;
      ColumnVector C(10);
      C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3;
      RowVector R(10);
      R << 2 << 3 << 5 << 7 << 11 << 13 << -3 << -4 << 2 << 4;
      test(1) = (R * C).AsScalar() - DotProduct(C, R);
      test(2) = C.SumSquare() - DotProduct(C, C);
      test(3) = 6.0 * (C.t() * R.t()).AsScalar() - DotProduct(2.0 * C, 3.0 * R);
      Matrix MC = C.AsMatrix(2,5), MR = R.AsMatrix(5,2);
      test(4) = DotProduct(MC, MR) - (R * C).AsScalar();
      UpperTriangularMatrix UT(5);
      UT << 3 << 5 << 2 << 1 << 7
              << 1 << 1 << 8 << 2
                   << 7 << 0 << 1
                        << 3 << 5
                             << 6;
      LowerTriangularMatrix LT(5);
      LT << 5
         << 2 << 3
         << 1 << 0 << 7
         << 9 << 8 << 1 << 2
         << 0 << 2 << 1 << 9 << 2;
      test(5) = DotProduct(UT, LT) - Sum(SP(UT, LT));
      Print(test);
      // check row-wise load;
      LowerTriangularMatrix LT1(5);
      LT1.Row(1) << 5;
      LT1.Row(2) << 2   << 3;
      LT1.Row(3) << 1   << 0   << 7;
      LT1.Row(4) << 9   << 8   << 1   << 2;
      LT1.Row(5) << 0   << 2   << 1   << 9   << 2;
      Matrix M = LT1 - LT; Print(M);
      // check solution with identity matrix
      IdentityMatrix IM(5); IM *= 2;
      LinearEquationSolver LES1(IM);
      LowerTriangularMatrix LTX = LES1.i() * LT;
      M = LTX * 2 - LT; Print(M);
      DiagonalMatrix D = IM;
      LinearEquationSolver LES2(IM);
      LTX = LES2.i() * LT;
      M = LTX * 2 - LT; Print(M);
      UpperTriangularMatrix UTX = LES1.i() * UT;
      M = UTX * 2 - UT; Print(M);
      UTX = LES2.i() * UT;
      M = UTX * 2 - UT; Print(M);
   }

   {
      Tracer et1("Stage 7");
      // Some more GenericMatrix stuff with *= |= &=
      // but don't any additional checks
      BandMatrix BM1(6,2,3);
      BM1.Row(1) << 3 << 8 << 4 << 1;
      BM1.Row(2) << 5 << 1 << 9 << 7 << 2;
      BM1.Row(3) << 1 << 0 << 6 << 3 << 1 << 3;
      BM1.Row(4)      << 4 << 2 << 5 << 2 << 4;
      BM1.Row(5)           << 3 << 3 << 9 << 1;
      BM1.Row(6)                << 4 << 2 << 9;
      BandMatrix BM2(6,1,1);
      BM2.Row(1) << 2.5 << 7.5;
      BM2.Row(2) << 1.5 << 3.0 << 8.5;
      BM2.Row(3)        << 6.0 << 6.5 << 7.0;
      BM2.Row(4)               << 2.5 << 2.0 << 8.0;
      BM2.Row(5)                      << 0.5 << 4.5 << 3.5;
      BM2.Row(6)                             << 9.5 << 7.5;
      Matrix RM1 = BM1, RM2 = BM2;
      Matrix X;
      GenericMatrix GRM1 = RM1, GBM1 = BM1, GRM2 = RM2, GBM2 = BM2;
      Matrix Z(6,0); Z = 5; Print(Z);
      GRM1 |= Z; GBM1 |= Z; GRM2 &= Z.t(); GBM2 &= Z.t();
      X = GRM1 - BM1; Print(X); X = GBM1 - BM1; Print(X);
      X = GRM2 - BM2; Print(X); X = GBM2 - BM2; Print(X);

      GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2;
      GRM1 *= GRM2; GBM1 *= GBM2;
      X = GRM1 - BM1 * BM2; Print(X);
      X = RM1 * RM2 - GBM1; Print(X);

      GRM1 = RM1; GBM1 = BM1; GRM2 = RM2; GBM2 = BM2;
      GRM1 *= GBM2; GBM1 *= GRM2;          // Bs and Rs swapped on LHS
      X = GRM1 - BM1 * BM2; Print(X);
      X = RM1 * RM2 - GBM1; Print(X);

      X = BM1.t(); BandMatrix BM1X = BM1.t();
      GRM1 = RM1; X -= GRM1.t(); Print(X); X = BM1X - BM1.t(); Print(X);

      // check that linear equation solver works with Identity Matrix
      IdentityMatrix IM(6); IM *= 2;
      GBM1 = BM1; GBM1 *= 4; GRM1 = RM1; GRM1 *= 4;
      DiagonalMatrix D = IM;
      LinearEquationSolver LES1(D);
      BandMatrix BX;
      BX = LES1.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      LinearEquationSolver LES2(IM);
      BX = LES2.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      BX = D.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      BX = IM.i() * GBM1; BX -= BM1 * 2; X = BX; Print(X);
      BX = IM.i(); BX *= GBM1; BX -= BM1 * 2; X = BX; Print(X);

      // try symmetric band matrices
      SymmetricBandMatrix SBM; SBM << SP(BM1, BM1.t());
      SBM << IM.i() * SBM;
      X = 2 * SBM - SP(RM1, RM1.t()); Print(X);

      // Do this again with more general D
      D << 2.5 << 7.5 << 2 << 5 << 4.5 << 7.5;
      BX = D.i() * BM1; X = BX - D.i() * RM1;
      Clean(X,0.00000001); Print(X);
      BX = D.i(); BX *= BM1; X = BX - D.i() * RM1;
      Clean(X,0.00000001); Print(X);
      SBM << SP(BM1, BM1.t());
      BX = D.i() * SBM; X = BX - D.i() * SP(RM1, RM1.t());
      Clean(X,0.00000001); Print(X);

      // test return
      BX = TestReturn(BM1); X = BX - BM1;
      if (BX.BandWidth() != BM1.BandWidth()) X = 5;
      Print(X);
   }

//   cout << "\nEnd of eighth test\n";
}
Пример #3
0
 void UpperBandMatrix<TYPE>::Swap(BandMatrix<TYPE>& gm)
 {
     assert(gm.BandWidth().Lower() == 0);
     BandMatrix<TYPE>::Swap(gm);
 }