Пример #1
0
void MeshBVH::InitSingleMesh(const BaseMesh &M, UINT triangleCountCutoff)
{
	FreeMemory();

    const MeshVertex *vertices = M.Vertices();
    const UINT vertexCount = M.VertexCount();

    const DWORD *indices = M.Indices();
    const UINT triCount = M.FaceCount();

    if(MeshBVHDebugging) Console::WriteLine("Making BVH, triCount=" + String(triCount));

    _triInfo.Allocate(triCount);
    Vector<MeshBVHTriangleInfo*> dataPointers(triCount);
    for(UINT triIndex = 0; triIndex < triCount; triIndex++)
    {
        MeshBVHTriangleInfo &curTriInfo = _triInfo[triIndex];
        dataPointers[triIndex] = &curTriInfo;

        curTriInfo.v[0] = vertices[ indices[ triIndex * 3 + 0 ] ].Pos;
        curTriInfo.v[1] = vertices[ indices[ triIndex * 3 + 1 ] ].Pos;
        curTriInfo.v[2] = vertices[ indices[ triIndex * 3 + 2 ] ].Pos;
    }

    _storage.Allocate(triCount);

    MeshBVHNodeConstructorInfo info;
    info.storage = _storage.CArray();
    info.storageIndex = 0;
    info.triangleCountCutoff = triangleCountCutoff;

    _root = new MeshBVHNode(dataPointers.CArray(), dataPointers.Length(), info, 0);
}
Пример #2
0
void BaseMesh::AppendVertices(const BaseMesh &O)
{
    int vc = VertexCount(), ic = IndexCount();
    MeshVertex *V = Vertices(), *OldV = new MeshVertex[vc];
    DWORD *I = Indices(), *OldI = new DWORD[ic];

    memcpy(OldV, V, vc * sizeof(MeshVertex));
    memcpy(OldI, I, ic * sizeof(DWORD));            //store all the old vertices/indices

    Allocate(vc + O.VertexCount(), ic/3 + O.FaceCount());    //allocate space for the current vertices/indices and o's vertices/indices

    V = Vertices();
    I = Indices();

    memcpy(V, OldV, vc * sizeof(MeshVertex));
    memcpy(I, OldI, ic * sizeof(DWORD));        //copy the old vertices/indices back into the mesh,

    memcpy(&(V[vc]), O.Vertices(), O.VertexCount() * sizeof(MeshVertex));    //copy the new vertices after the current ones,

    UINT oic = O.IndexCount();
    const DWORD *oI = O.Indices();
    for(UINT i = 0; i < oic; i++)
    {
        I[ic+i] = oI[i] + vc;    //copy o's indices as well, except increasing the index by vc (since o's vertices start at vc, not 0)
    }

    delete[] OldV;
    delete[] OldI;
}
Пример #3
0
void BaseMesh::CopyMesh(BaseMesh &Copy) const
{
    Copy._GD = _GD;
    Copy.Allocate(VertexCount(), FaceCount());
    memcpy(Copy.Vertices(), Vertices(), sizeof(MeshVertex) * VertexCount());
    memcpy(Copy.Indices(), Indices(), sizeof(DWORD) * IndexCount());
}
Пример #4
0
void D3D9Mesh::CopyMesh(BaseMesh &Copy) const
{
    Copy.SetGD(GetGD());

    int VC = VertexCount();
    int IC = IndexCount();

    if(VC > 0 && IC > 0)
    {
        if(_Vertices == NULL)
        {
            _Mesh->LockVertexBuffer(0,(void**) &_Vertices);
        }
        if(_Indices == NULL)
        {
            _Mesh->LockIndexBuffer(0,(void**) &_Indices);
        }

        Copy.Allocate(VC, IC / 3);                                //allocate space in Copy
        memcpy(Copy.Vertices(), _Vertices, VC * sizeof(MeshVertex));    //insert our vertices into Copy
        memcpy(Copy.Indices(), _Indices, IC * sizeof(DWORD));            //insert our indices into Copy

        Unlock();
    }
}
Пример #5
0
void ComplexMesh::Dump(BaseMesh &Mesh) const
{
    Mesh.Allocate(_Vertices.Length(),_Triangles.Length());
    for(UINT i=0;i<_Vertices.Length();i++)
    {
        Mesh.Vertices()[i].Pos = _Vertices[i].Pos();
        Mesh.Vertices()[i].TexCoord.x = _Vertices[i].TexCoords().x;
        Mesh.Vertices()[i].TexCoord.y = _Vertices[i].TexCoords().y;
    }
    for(UINT i=0;i<_Triangles.Length();i++)
    {
        Mesh.Indices()[i * 3 + 0] = _Triangles[i].GetVertex(0).Index();
        Mesh.Indices()[i * 3 + 1] = _Triangles[i].GetVertex(1).Index();
        Mesh.Indices()[i * 3 + 2] = _Triangles[i].GetVertex(2).Index();
    }
    Mesh.GenerateNormals();
}
Пример #6
0
void ComplexMesh::Subdivision(BaseMesh &Mesh)
{
    UINT VertexCount = _Vertices.Length();
    UINT EdgeCount = _FullEdges.Length();
    UINT TriangleCount = _Triangles.Length();
    //IntPair P;

    Mesh.Allocate(VertexCount + EdgeCount, TriangleCount * 4);

    MeshVertex *V = Mesh.Vertices();
    DWORD *I = Mesh.Indices();

    Vector<Vec3f> NewVertexPositions(_Vertices.Length());
    for(UINT VertexIndex = 0; VertexIndex < VertexCount; VertexIndex++)
    {
        V[VertexIndex].Pos = _Vertices[VertexIndex].ComputeLoopSubdivisionPos();
    }

    for(UINT EdgeIndex = 0; EdgeIndex < EdgeCount; EdgeIndex++)
    {
        V[VertexCount + EdgeIndex].Pos = _FullEdges[EdgeIndex]->ComputeLoopSubdivisionPos();
    }

    for(UINT i = 0; i < TriangleCount; i++)
    {
        UINT SourceI[6];
        Triangle &CurTriangle = _Triangles[i];

        for(UINT i2 = 0; i2 < 3; i2++)
        {
            SourceI[i2 + 0] = CurTriangle.GetVertex(i2).Index();
            SourceI[i2 + 3] = VertexCount + CurTriangle.GetOtherEdge(_Triangles[i].GetVertex(i2)).Index();
        }

        I[i * 12 + 0] = SourceI[0];
        I[i * 12 + 1] = SourceI[5];
        I[i * 12 + 2] = SourceI[4];

        I[i * 12 + 3] = SourceI[5];
        I[i * 12 + 4] = SourceI[1];
        I[i * 12 + 5] = SourceI[3];

        I[i * 12 + 6] = SourceI[4];
        I[i * 12 + 7] = SourceI[3];
        I[i * 12 + 8] = SourceI[2];

        I[i * 12 + 9] = SourceI[4];
        I[i * 12 + 10] = SourceI[5];
        I[i * 12 + 11] = SourceI[3];
    }
}
Пример #7
0
void RayIntersectorKDTree::Init(const BaseMesh &M)
{
    Console::WriteString("Building RayIntersectorKDTree...");
    FreeMemory();

    _VertexCount = M.VertexCount();
    _TriangleCount = M.FaceCount();

    Console::WriteString(String(_TriangleCount) + String(" base triangles, "));
    

    _Vertices = new Vec3f[_VertexCount];
    _Indices = new UINT[_TriangleCount * 3];
    
    const MeshVertex *MeshVertices = M.Vertices();
    const DWORD *MeshIndices = M.Indices();
    
    for(UINT VertexIndex = 0; VertexIndex < _VertexCount; VertexIndex++)
    {
        _Vertices[VertexIndex] = MeshVertices[VertexIndex].Pos;
    }

    for(UINT IndexIndex = 0; IndexIndex < _TriangleCount * 3; IndexIndex++)
    {
        _Indices[IndexIndex] = MeshIndices[IndexIndex];
    }

    Vector<UINT> TriangleIndices(_TriangleCount);
    for(UINT TriangleIndex = 0; TriangleIndex < _TriangleCount; TriangleIndex++)
    {
        TriangleIndices[TriangleIndex] = TriangleIndex;
    }
    
    Vector<UINT> LeafTrianglesVector;
    _Root = new RayIntersectorKDTreeNode(TriangleIndices, *this, 0, LeafTrianglesVector);
    _LeafTriangleCount = LeafTrianglesVector.Length();
    _LeafTriangles = new UINT[_LeafTriangleCount];
    memcpy(_LeafTriangles, LeafTrianglesVector.CArray(), sizeof(UINT) * _LeafTriangleCount);
    Console::WriteLine(String(_LeafTriangleCount) + String(" leaf triangles."));
}
Пример #8
0
void BaseMesh::Split(float (*PositionFunction) (Vec3f &), BaseMesh &M1, BaseMesh &M2)
{
    int i,vc=VertexCount(),ic=IndexCount();
    MeshVertex *V = Vertices();
    DWORD *I = Indices();

    Vector<MeshVertex> NV1,NV2;
    Vector<TriMeshFace> NT1,NT2;

    SplitVMapper *VMap = new SplitVMapper[vc];
    float Value;

    for(i=0;i<vc;i++)
    {
        Value = PositionFunction(V[i].Pos);
        if(Value < 0.0f)
        {
            VMap[i].Side = 0;
            VMap[i].NVMap1 = NV1.Length();
            VMap[i].NVMap2 = -1;
            NV1.PushEnd(V[i]);
        } else {
            VMap[i].Side = 1;
            VMap[i].NVMap1 = -1;
            VMap[i].NVMap2 = NV2.Length();
            NV2.PushEnd(V[i]);
        }
    }

    int TSide[3];
    TriMeshFace Tri;
    int Oddball,State;

    for(i=0;i<ic;i+=3)
    {
        TSide[0] = VMap[I[i]].Side;
        TSide[1] = VMap[I[i+1]].Side;
        TSide[2] = VMap[I[i+2]].Side;

        if(TSide[0] && TSide[1] && TSide[2]) //all O2
        {            
            Tri.I[0] = VMap[I[i]].NVMap2;
            Tri.I[1] = VMap[I[i+1]].NVMap2;
            Tri.I[2] = VMap[I[i+2]].NVMap2;
            NT2.PushEnd(Tri);
        } else if(!(TSide[0] || TSide[1] || TSide[2])) //all O1
        {
            Tri.I[0] = VMap[I[i]].NVMap1;
            Tri.I[1] = VMap[I[i+1]].NVMap1;
            Tri.I[2] = VMap[I[i+2]].NVMap1;
            NT1.PushEnd(Tri);
        } else {
            if(TSide[0] && TSide[1]) {Oddball = 2; State = 1;}
            if(TSide[0] && TSide[2]) {Oddball = 1; State = 1;}
            if(TSide[1] && TSide[2]) {Oddball = 0; State = 1;}
            if(!(TSide[0] || TSide[1])) {Oddball = 2; State = 2;}
            if(!(TSide[0] || TSide[2])) {Oddball = 1; State = 2;}
            if(!(TSide[1] || TSide[2])) {Oddball = 0; State = 2;}

            if(State == 1)    //Add to Obj2
            {
                if(VMap[I[i+Oddball]].NVMap2 == -1)
                {
                    VMap[I[i+Oddball]].NVMap2 = NV2.Length();
                    NV2.PushEnd(V[I[i+Oddball]]);
                }
                Tri.I[0] = VMap[I[i]].NVMap2;
                Tri.I[1] = VMap[I[i+1]].NVMap2;
                Tri.I[2] = VMap[I[i+2]].NVMap2;
                NT2.PushEnd(Tri);
            } else {        //Add to Obj1
                if(VMap[I[i+Oddball]].NVMap1 == -1)
                {
                    VMap[I[i+Oddball]].NVMap1 = NV1.Length();
                    NV1.PushEnd(V[I[i+Oddball]]);
                }
                Tri.I[0] = VMap[I[i]].NVMap1;
                Tri.I[1] = VMap[I[i+1]].NVMap1;
                Tri.I[2] = VMap[I[i+2]].NVMap1;
                NT1.PushEnd(Tri);
            }
        }
    }

    delete[] VMap;

    M1.Allocate(NV1.Length(),NT1.Length());
    M2.Allocate(NV2.Length(),NT2.Length());
    
    memcpy(M1.Vertices(), NV1.CArray(), M1.VertexCount() * sizeof(MeshVertex));
    memcpy(M2.Vertices(), NV2.CArray(), M2.VertexCount() * sizeof(MeshVertex));
    memcpy(M1.Indices(), NT1.CArray(), M1.IndexCount() * sizeof(DWORD));
    memcpy(M2.Indices(), NT2.CArray(), M2.IndexCount() * sizeof(DWORD));
}
Пример #9
0
void BaseMesh::ClosedPlaneSplit(const Plane &P, BaseMesh &M1, BaseMesh &M2)
{
    UINT VC = VertexCount(), IC = IndexCount();
    MeshVertex *V = Vertices();
    DWORD *I = Indices();

    Vector<Vec3f> NewVertices[2];
    Vector<TriMeshFace> NewFaces[2];
    Vector<Vec2f> BoundaryVertices;
    Vector<UINT> BoundaryIndices[2];

    Vec3f OrthogonalBasis1, OrthogonalBasis2;
    Vec3f::CompleteOrthonormalBasis(P.Normal(), OrthogonalBasis1, OrthogonalBasis2);

    PerfectSplitVMapper *VMap = new PerfectSplitVMapper[VC];
    
    for(UINT VertexIndex = 0; VertexIndex < VC; VertexIndex++)
    {
        Vec3f Pos = V[VertexIndex].Pos;
        float Value = Plane::DotCoord(P, Pos);
        if(Value < 0.0f)
        {
            VMap[VertexIndex].Side = 0;
            VMap[VertexIndex].NVMap = NewVertices[0].Length();
            NewVertices[0].PushEnd(Pos);
        }
        else
        {
            VMap[VertexIndex].Side = 1;
            VMap[VertexIndex].NVMap = NewVertices[1].Length();
            NewVertices[1].PushEnd(Pos);
        }
    }

    for(UINT IndexIndex = 0; IndexIndex < IC; IndexIndex += 3)
    {
        int TSide[3];
        TSide[0] = VMap[I[IndexIndex + 0]].Side;
        TSide[1] = VMap[I[IndexIndex + 1]].Side;
        TSide[2] = VMap[I[IndexIndex + 2]].Side;

        DWORD LocalTriangleM1[6], LocalTriangleM2[6];
        LocalTriangleM2[0] = LocalTriangleM1[0] = VMap[I[IndexIndex + 0]].NVMap;
        LocalTriangleM2[1] = LocalTriangleM1[1] = VMap[I[IndexIndex + 1]].NVMap;
        LocalTriangleM2[2] = LocalTriangleM1[2] = VMap[I[IndexIndex + 2]].NVMap;

        UINT TriangleType = TSide[0] * 4 + TSide[1] * 2 + TSide[2] * 1;

        for(UINT EdgeIndex = 0; EdgeIndex < 3; EdgeIndex++)
        {
            if(PerfectEdges[TriangleType][EdgeIndex])
            {
                Vec3f Vtx1 = V[I[IndexIndex + PerfectEdgeList[EdgeIndex][0]]].Pos;
                Vec3f Vtx2 = V[I[IndexIndex + PerfectEdgeList[EdgeIndex][1]]].Pos;
                Vec3f VtxIntersect = P.IntersectLine(Vtx1, Vtx2);
                
                if(!Vec3f::WithinRect(VtxIntersect, Rectangle3f::ConstructFromTwoPoints(Vtx1, Vtx2)))
                {
                    VtxIntersect = (Vtx1 + Vtx2) * 0.5f;
                }
                
                BoundaryVertices.PushEnd(Vec2f(Vec3f::Dot(VtxIntersect, OrthogonalBasis1), Vec3f::Dot(VtxIntersect, OrthogonalBasis2)));

                LocalTriangleM1[3 + EdgeIndex] = NewVertices[0].Length();
                BoundaryIndices[0].PushEnd(NewVertices[0].Length());
                NewVertices[0].PushEnd(VtxIntersect);

                LocalTriangleM2[3 + EdgeIndex] = NewVertices[1].Length();
                BoundaryIndices[1].PushEnd(NewVertices[1].Length());
                NewVertices[1].PushEnd(VtxIntersect);
            }
        }

        for(UINT LocalTriangleIndex = 0; LocalTriangleIndex < 6; LocalTriangleIndex += 3)
        {
            if(M1Indices[TriangleType][LocalTriangleIndex] != -1)
            {
                TriMeshFace Tri;
                Tri.I[0] = LocalTriangleM1[M1Indices[TriangleType][LocalTriangleIndex + 0]];
                Tri.I[1] = LocalTriangleM1[M1Indices[TriangleType][LocalTriangleIndex + 1]];
                Tri.I[2] = LocalTriangleM1[M1Indices[TriangleType][LocalTriangleIndex + 2]];
                NewFaces[0].PushEnd(Tri);
            }
            if(M2Indices[TriangleType][LocalTriangleIndex] != -1)
            {
                TriMeshFace Tri;
                Tri.I[0] = LocalTriangleM2[M2Indices[TriangleType][LocalTriangleIndex + 0]];
                Tri.I[1] = LocalTriangleM2[M2Indices[TriangleType][LocalTriangleIndex + 1]];
                Tri.I[2] = LocalTriangleM2[M2Indices[TriangleType][LocalTriangleIndex + 2]];
                NewFaces[1].PushEnd(Tri);
            }
        }
    }

#ifdef DELAUNAY_TRIANGULATOR
    if(BoundaryVertices.Length() > 0)
    {
        Vector<DWORD> BoundaryTriangulation;
        DelaunayTriangulator::Triangulate(BoundaryVertices, BoundaryTriangulation);
        for(UINT TriangleIndex = 0; TriangleIndex < BoundaryTriangulation.Length() / 3; TriangleIndex++)
        {
            for(UINT MeshIndex = 0; MeshIndex < 2; MeshIndex++)
            {
                TriMeshFace Tri;
                Vec3f V[3];
                for(UINT LocalVertexIndex = 0; LocalVertexIndex < 3; LocalVertexIndex++)
                {
                    Tri.I[LocalVertexIndex] = BoundaryIndices[MeshIndex][UINT(BoundaryTriangulation[TriangleIndex * 3 + LocalVertexIndex])];
                    V[LocalVertexIndex] = NewVertices[MeshIndex][UINT(Tri.I[LocalVertexIndex])];
                }
                //Utility::Swap(Tri.I[0], Tri.I[1]);
                //if(Math::TriangleArea(V[0], V[1], V[2]) > 1e-5f)
                {
                    NewFaces[MeshIndex].PushEnd(Tri);
                }
            }
        }
    }
#endif

    delete[] VMap;

    M1.SetGD(GetGD());
    M2.SetGD(GetGD());
    M1.Allocate(NewVertices[0].Length(), NewFaces[0].Length());
    M2.Allocate(NewVertices[1].Length(), NewFaces[1].Length());
    
    for(UINT VertexIndex = 0; VertexIndex < NewVertices[0].Length(); VertexIndex++)
    {
        M1.Vertices()[VertexIndex].Pos = NewVertices[0][VertexIndex];
    }
    for(UINT VertexIndex = 0; VertexIndex < NewVertices[1].Length(); VertexIndex++)
    {
        M2.Vertices()[VertexIndex].Pos = NewVertices[1][VertexIndex];
    }
    
    if(NewFaces[0].Length() > 0)
    {
        memcpy(M1.Indices(), NewFaces[0].CArray(), M1.IndexCount() * sizeof(DWORD));
    }
    if(NewFaces[1].Length() > 0)
    {
        memcpy(M2.Indices(), NewFaces[1].CArray(), M2.IndexCount() * sizeof(DWORD));
    }
}
Пример #10
0
void ComplexMesh::Load(const BaseMesh &Mesh)
{
    FreeMemory();
    
    _Vertices.Allocate(Mesh.VertexCount());
    _Triangles.Allocate(Mesh.FaceCount());
    _HalfEdges.Allocate(Mesh.FaceCount() * 3);
    _FullEdges.FreeMemory();

    for(UINT i = 0; i < _Vertices.Length(); i++)
    {
        _Vertices[i].Pos() = Mesh.Vertices()[i].Pos;
        _Vertices[i].TexCoords() = Mesh.Vertices()[i].TexCoord;
        _Vertices[i].Boundary() = false;
        _Vertices[i]._Index = i;
    }

    InitHashTable(_Vertices.Length());

    for(UINT TriangleIndex = 0; TriangleIndex < _Triangles.Length(); TriangleIndex++)
    {
        Triangle &CurTriangle = _Triangles[TriangleIndex];
        UINT LocalIndices[3];
        LocalIndices[0] = Mesh.Indices()[TriangleIndex * 3 + 0];
        LocalIndices[1] = Mesh.Indices()[TriangleIndex * 3 + 1];
        LocalIndices[2] = Mesh.Indices()[TriangleIndex * 3 + 2];
        CurTriangle._Index = TriangleIndex;
        for(UINT LocalEdgeIndex = 0; LocalEdgeIndex < 3; LocalEdgeIndex++)
        {
            Vertex *SearchV[2];

            CurTriangle._HalfEdges[LocalEdgeIndex] = &_HalfEdges[TriangleIndex * 3 + LocalEdgeIndex];
            CurTriangle._Vertices[LocalEdgeIndex] = &_Vertices[LocalIndices[LocalEdgeIndex]];
            _HalfEdges[TriangleIndex * 3 + LocalEdgeIndex]._NextEdge = &_HalfEdges[TriangleIndex * 3 + (LocalEdgeIndex + 1) % 3];

            SearchV[0] = &_Vertices[LocalIndices[(LocalEdgeIndex + 1) % 3]];
            SearchV[1] = &_Vertices[LocalIndices[(LocalEdgeIndex + 2) % 3]];
            if(SearchV[0]->Index() > SearchV[1]->Index())
            {
                Utility::Swap(SearchV[0], SearchV[1]);
            }
            FullEdge &Target = FindFullEdge(SearchV);
            if(Target != FullEdge::NotFound)
            {
                PersistentAssert(Target.GetTriangle(1) == Triangle::Boundary, "Duplicate edge; 2-manifold criterion violated.");
                //PersistentAssert(Target.GetTriangle(1) == Triangle::Boundary,
                //                 String("Duplicate edge; 2-manifold criterion violated: ") + String(SearchV[0]->Index()) + String(", ") + String(SearchV[1]->Index()));

                _HalfEdges[TriangleIndex * 3 + LocalEdgeIndex]._AcrossEdge = &Target;
                Target._Triangles[1] = &CurTriangle;
            }
            else
            {
                FullEdge *NewEdge = new FullEdge;
                Assert(NewEdge != NULL, "Out of memory");
                NewEdge->_Index = _FullEdges.Length();
                NewEdge->_Triangles[0] = &CurTriangle;
                NewEdge->_Triangles[1] = &Triangle::Boundary;
                NewEdge->_Vertices[0] = SearchV[0];
                NewEdge->_Vertices[1] = SearchV[1];
                _HalfEdges[TriangleIndex * 3 + LocalEdgeIndex]._AcrossEdge = NewEdge;

                _FullEdges.PushEnd(NewEdge);
                HashEdge(*NewEdge);
            }
        }
    }

    for(UINT TriangleIndex = 0; TriangleIndex < _Triangles.Length(); TriangleIndex++)
    {
        Triangle &CurTriangle = _Triangles[TriangleIndex];
        for(UINT AdjacentTriangleIndex = 0; AdjacentTriangleIndex < 3; AdjacentTriangleIndex++)
        {
            Triangle &AdjTriangle = CurTriangle.GetNeighboringTriangle(AdjacentTriangleIndex);
        }
    }

    ClearHashTable();
    
    for(UINT i = 0; i < _FullEdges.Length(); i++)
    {
        if(_FullEdges[i]->Boundary())
        {
            _FullEdges[i]->GetVertex(0).Boundary() = true;
            _FullEdges[i]->GetVertex(1).Boundary() = true;
            _FullEdges[i]->OrientMatchingBoundary();
        }
    }

    PrepareTopology();

    /*if(!Oriented())
    {
        Orient();
    }
    PersistentAssert(Oriented(), "Mesh not oriented");*/

}