int main(int argc, char * argv[]) { srand(time(NULL)); // Let us define a 3 layer perceptron architecture auto input = gaml::mlp::input<X>(INPUT_DIM, fillInput); auto l1 = gaml::mlp::layer(input, HIDDEN_LAYER_SIZE, gaml::mlp::mlp_sigmoid(), gaml::mlp::mlp_dsigmoid()); auto l2 = gaml::mlp::layer(l1, HIDDEN_LAYER_SIZE, gaml::mlp::mlp_sigmoid(), gaml::mlp::mlp_dsigmoid()); auto output = gaml::mlp::layer(l2, OUTPUT_DIM, gaml::mlp::mlp_identity(), gaml::mlp::mlp_didentity()); auto mlp = gaml::mlp::perceptron(output, output_of); // Create a training base // Let us try to fit a noisy sinc function Basis basis; basis.resize(NB_SAMPLES); for(auto& d: basis) { d.first = {{ -10.0 + 20.0 * gaml::random::uniform(0.0, 1.0) }} ; d.second = noisy_oracle(d.first); } // Set up the parameters for learning the MLP with a gradient descent gaml::mlp::learner::gradient::parameter gradient_params; gradient_params.alpha = 1e-2; gradient_params.dalpha = 1e-3; gradient_params.verbose = true; // The stopping criteria gradient_params.max_iter = 10000; gradient_params.min_dparams = 1e-7; // Create the learner auto learning_algorithm = gaml::mlp::learner::gradient::algorithm(mlp, gradient_params, gaml::mlp::loss::Quadratic(), fillOutput); // Call the learner on the basis and get the learned predictor auto predictor = learning_algorithm(basis.begin(), basis.end(), input_of_data, output_of_data); // Print out the structure of the perceptron we learned std::cout << predictor << std::endl; // Dump the results std::ofstream outfile("example-005-samples.data"); for(auto& b: basis) outfile << b.first[0] << " " << b.second[0] << " " << std::endl; outfile.close(); outfile.open("example-005-regression.data"); X x; for(x[0] = -10; x[0] < 10 ; x[0] += 0.1) { auto output = predictor(x); outfile << x[0] << " " << oracle(x)[0] << " " << output[0] << std::endl; } outfile.close(); std::cout << "You can plot the results using gnuplot :" << std::endl; std::cout << "gnuplot " << ML_MLP_SHAREDIR << "/plot-example-005.gplot" << std::endl; std::cout << "This will produce example-005.ps" << std::endl; // Let us compute the empirical risk. auto evaluator = gaml::risk::empirical(gaml::mlp::loss::Quadratic()); double risk = evaluator(predictor, basis.begin(), basis.end(), input_of_data, output_of_data); std::cout << "Empirical risk = " << risk << std::endl; // We will use a 6-fold cross-validation to estimate the real risk. auto kfold_evaluator = gaml::risk::cross_validation(gaml::mlp::loss::Quadratic(), gaml::partition::kfold(6), true); double kfold_risk = kfold_evaluator(learning_algorithm, basis.begin(),basis.end(), input_of_data,output_of_data); std::cout << "Estimation of the real risk (6-fold): " << kfold_risk << std::endl; }
int main(int argc, char * argv[]) { srand(time(NULL)); // Create a training base // Let us try to fit a noisy sinc function Basis basis; basis.resize(NB_SAMPLES); for(auto& d: basis) { d.first = {{ -10.0 + 20.0 * gaml::random::uniform(0.0, 1.0) }} ; d.second = {{ sin(d.first[0])/d.first[0] + gaml::random::uniform(-0.1, 0.1) }}; } // Create the learner MetaLearner learning_algorithm(true); std::cout << "Finding the optimal perceptron for the basis and train it..." << std::endl; // Call the learner on the basis and get the learned predictor auto predictor = learning_algorithm(basis.begin(), basis.end(), input_of_data, output_of_data); std::cout << "done!" << std::endl; // Print ou the structure of the perceptron std::cout << predictor << std::endl; // Dump the results std::ofstream outfile("example-003.data"); for(auto& b: basis) { auto output = predictor(b.first); outfile << b.first[0] << " " << b.second[0] << " " << output[0] << " " << std::endl; } outfile.close(); std::cout << "You can plot the results using gnuplot :" << std::endl; std::cout << "gnuplot " << ML_MLP_SHAREDIR << "/plot-example-003.gplot" << std::endl; // Let us compute the empirical risk. auto evaluator = gaml::risk::empirical(gaml::mlp::loss::Quadratic()); double risk = evaluator(predictor, basis.begin(), basis.end(), input_of_data, output_of_data); std::cout << "Empirical risk = " << risk << std::endl; // We will use a 6-fold cross-validation to estimate the real risk. auto kfold_evaluator = gaml::risk::cross_validation(gaml::mlp::loss::Quadratic(), gaml::partition::kfold(6), true); learning_algorithm.verbosity = false; double kfold_risk = kfold_evaluator(learning_algorithm, basis.begin(),basis.end(), input_of_data,output_of_data); std::cout << "Estimation of the real risk (6-fold): " << kfold_risk << std::endl; return 0; }