void TestDelNode() { BayesNet *net = SevenNodesModel(); net->DelNode("node2"); // all continuous nodes are observed net->EditEvidence("node0^0.3"); net->EditEvidence("node1^0.2"); net->EditEvidence("node5^0.9"); net->EditEvidence("node4^True"); net->SetProperty("Inference", "jtree"); TokArr jpd3 = net->GetJPD("node3"); std::cout<< "jpd node3:\t"<<jpd3 << "\n"; TokArr jpd6 = net->GetJPD("node6"); std::cout<< "jpd node6:\t"<<jpd6 << "\n"; delete net; std::cout << "TestDelArc is completed successfully" << std::endl; }
void TestsPnlHigh::TestConditionalGaussianGetJPD() { printf("TestConditionalGaussianGetJPD\n"); BayesNet *net = SimpleCGM1(); net->SetPGaussian("Cont0", "1.5 -0.5", "1.0 0.3 0.3 2.0", TokArr(), TokArr()); net->SetPGaussian("Cont1", "0.0", "2.5", "1.0 3.0", "Tab0^State0"); net->SetPGaussian("Cont1", "-1.5", "0.75", "0.5 2.5", "Tab0^State1"); net->SetProperty("Inference", "naive"); net->EditEvidence("Tab0^State0"); net->GetJPD("Cont0"); net->GetJPD("Cont1"); net->GetJPD("Cont2"); net->ClearEvid(); Tok tok0("Cont0^Dim0^0.0"); Tok tok1("Cont0^Dim1^0.0"); TokIdNode *id0 = tok0.Node(); TokIdNode *id1 = tok1.Node(); bool is_int0 = id0->id[id0->id.size()-1].is_int; bool is_int1 = id1->id[id1->id.size()-1].is_int; int int_id0 = id0->id[id0->id.size()-1].int_id; int int_id1 = id1->id[id1->id.size()-1].int_id; TokIdNode *id = net->Net().Token().Node(Tok("Cont0"))->v_next; TokIdNode *id2 = net->Net().Token().Node(Tok("Cont1"))->v_next; TokIdNode *id3 = net->Net().Token().Node(Tok("Cont2"))->v_next; TokIdNode *id4 = net->Net().Token().Node(Tok("Tab0"))->v_next; //TokIdNode *a1 = id->v_next; //TokIdNode *a2 = a1->h_next; net->EditEvidence("Cont0^Dim0^0.0 Cont0^Dim1^1.0"); net->EditEvidence("Cont1^Dim0^0.0"); net->EditEvidence("Cont2^Dim0^0.0"); net->GetJPD("Tab0"); delete net; };
void CrashTestJtreeInferenceSoftMax() { BayesNet *net = SimpleSoftMaxModel(); net->SetProperty("Inference", "jtree"); TokArr jpd5 = net->GetJPD("node5"); std::cout<< "jpd node5:\t"<<jpd5 << "\n"; delete net; }
void TestJtreeInferenceSoftMax2() { BayesNet *net = SimpleSoftMaxModel(); // all discrete nodes are observed net->EditEvidence("node5^True"); net->EditEvidence("node1^0.2"); net->SetProperty("Inference", "jtree"); TokArr jpd0 = net->GetJPD("node0"); std::cout<< "jpd node0:\t"<<jpd0 << "\n"; TokArr jpd2 = net->GetJPD("node2"); std::cout<< "jpd node2:\t"<<jpd2 << "\n"; delete net; std::cout << "TestJtreeInferenceSoftMax2 is completed successfully" << std::endl; }
void TestGibbsInferenceSoftMax() { BayesNet *net = SimpleSoftMaxModel(); // no observed nodes net->SetProperty("Inference", "gibbs"); TokArr jpd0 = net->GetJPD("node0"); std::cout<< "jpd node0:\t"<<jpd0 << "\n"; TokArr jpd1 = net->GetJPD("node1"); std::cout<< "jpd node1:\t"<<jpd1 << "\n"; TokArr jpd2 = net->GetJPD("node2"); std::cout<< "jpd node2:\t"<<jpd2 << "\n"; TokArr jpd5 = net->GetJPD("node5"); std::cout<< "jpd node5:\t"<<jpd5 << "\n"; delete net; std::cout << "TestGibbsInferenceSoftMax is completed successfully" << std::endl; }
void TestJtreeInference2SevenNodesModel() { BayesNet *net = SevenNodesModel(); // all discrete nodes are observed net->EditEvidence("node2^True"); net->EditEvidence("node3^False"); net->EditEvidence("node4^False"); net->EditEvidence("node6^True"); net->EditEvidence("node1^0.55"); net->SetProperty("Inference", "jtree"); TokArr jpd0 = net->GetJPD("node0"); std::cout<< "jpd node0:\t"<<jpd0 << "\n"; TokArr jpd5 = net->GetJPD("node1"); std::cout<< "jpd node5:\t"<<jpd5 << "\n"; delete net; std::cout << "TestJtreeInference2SevenNodesModel is completed successfully" << std::endl; }
void TestJtreeInferenceCondSoftMax1() { BayesNet *net = SimpleCondSoftMaxModel(); // all continuous nodes are observed net->EditEvidence("node0^0.3"); net->EditEvidence("node1^0.2"); net->EditEvidence("node2^0.9"); net->SetProperty("Inference", "jtree"); TokArr jpd3 = net->GetJPD("node3"); std::cout<< "jpd node3:\t"<<jpd3 << "\n"; TokArr jpd5 = net->GetJPD("node5"); std::cout<< "jpd node5:\t"<<jpd5 << "\n"; TokArr jpd6 = net->GetJPD("node6"); std::cout<< "jpd node6:\t"<<jpd6 << "\n"; delete net; std::cout << "TestJtreeInferenceCondSoftMax1 is completed successfully" << std::endl; }
int main(int arg,char * argv[]) { int a=1,b=2; int c=a+b; cout<<c<<endl; //creating bayes net //BayesNet net; BayesNet net; //adding node net.AddNode("discrete^Cloudy","true false"); net.AddNode(discrete^"Sprinkler Rain WetGrass","true false"); //adding edges net.AddArc("Cloudy","Sprinkler Rain"); net.AddArc("Sprinkler Rain","WetGrass"); //sopecfify the CPD //cloudy net.SetPTabular("Cloudy^true","0.6"); net.SetPTabular("Cloudy^false","0.4"); //spprinkler net.SetPTabular("Sprinkler^true Sprinkler^false","0.1 0.9","Cloudy^true"); net.SetPTabular("Sprinkler^true Sprinkler^false","0.5 0.5","Cloudy^false"); //rain net.SetPTabular("Rain^true Rain^false","0.8 0.2","Cloudy^true"); net.SetPTabular("Rain^true Rain^false","0.2 0.8","Cloudy^false"); //WetGrass net.SetPTabular("WetGrass^true WetGrass^false","0.99 0.01","Sprinkler^true Rain^true"); net.SetPTabular("WetGrass^true WetGrass^false","0.9 0.1","Sprinkler^true Rain^false"); net.SetPTabular("WetGrass^true WetGrass^false","0.9 0.1","Sprinkler^false Rain^true"); net.SetPTabular("WetGrass^true WetGrass^false","0.0 1.0","Sprinkler^false Rain^false"); //get the cpd TokArr PCloudy=net.GetPTabular("Cloudy"); String PCloudyStr=String(PCloudy); float PCloudyTrueF=PCloudy[0].FltValue(); float PCloudyFalseF=PCloudy[1].FltValue(); cout<<endl<<"Cloudy"<<endl; cout<<PCloudyStr<<endl; cout<<PCloudyTrueF<<endl; cout<<PCloudyFalseF<<endl; /* //adding evidence //net.AddEvidToBuf("Rain^true WetGrass^true"); net.EditEvidence("Rain^true WetGrass^true"); net.CurEvidToBuf(); net.LearnParameters(); cout<<endl<<"evidence Rain^true WetGrass^true"<<endl; //get the jpd TokArr WetGrassMarg=net.GetJPD("WetGrass"); String WetGrassMargStr=String(WetGrassMarg); cout<<endl<<"WetGrass JPD"<<endl<<WetGrassMargStr<<endl; TokArr WetGrassAndSprinklerMarg=net.GetJPD("WetGrass Sprinkler Rain"); String WetGrassAndSprinklerMargStr=String(WetGrassAndSprinklerMarg); cout<<endl<<"WetGrass and Sprinkler JPD"<<endl<<WetGrassAndSprinklerMargStr<<endl; TokArr WetGrassMPE=net.GetMPE("WetGrass"); String WetGrassMPEStr=String(WetGrassMPE); cout<<endl<<"WetGrass MPE"<<endl<<WetGrassMPEStr<<endl; TokArr WetGrassAndSprinklerMPE=net.GetMPE("WetGrass Sprinkler Rain"); String WetGrassAndSprinklerMPEStr=String(WetGrassAndSprinklerMPE); cout<<endl<<"WetGrass and Spinkler MPE"<<endl<<WetGrassAndSprinklerMPEStr<<endl; //delete evidence net.ClearEvid(); cout<<"ok"<<endl;*/ //net.AddEvidToBuf("Sprinkler^true WetGrass^true"); net.EditEvidence("Sprinkler^true WetGrass^true"); net.CurEvidToBuf(); net.LearnParameters(); cout<<endl<<"evidence Sprinkler^true WetGrass^true"<<endl; //get jpd TokArr WetGrassMarg=net.GetJPD("WetGrass"); String WetGrassMargStr=String(WetGrassMarg); cout<<endl<<"WetGrass JPD"<<endl<<WetGrassMargStr<<endl; TokArr WetGrassAndSprinklerMarg=net.GetJPD("WetGrass Sprinkler Rain"); String WetGrassAndSprinklerMargStr=String(WetGrassAndSprinklerMarg); cout<<endl<<"WetGrass and Sprinkler JPD"<<endl<<WetGrassAndSprinklerMargStr<<endl; TokArr WetGrassMPE=net.GetMPE("WetGrass"); String WetGrassMPEStr=String(WetGrassMPE); cout<<endl<<"WetGrass MPE"<<endl<<WetGrassMPEStr<<endl; TokArr WetGrassAndSprinklerMPE=net.GetMPE("WetGrass Sprinkler Rain Cloudy"); String WetGrassAndSprinklerMPEStr=String(WetGrassAndSprinklerMPE); cout<<endl<<"WetGrass and Spinkler MPE"<<endl<<WetGrassAndSprinklerMPEStr<<endl; cout<<endl<<"moonsea"<<endl; return 0; }
int main() { BayesNet net; // adding nodes net.AddNode("discrete^Cloudy", "true false"); net.AddNode("discrete^Sprinkler", "true false"); net.AddNode("discrete^Rain", "true false"); net.AddNode("discrete^WetGrass", "true false"); //adding edges net.AddArc("Cloudy", "Sprinkler Rain"); net.AddArc("Sprinkler Rain", "WetGrass"); // specifying the conditional probabilities net.SetPTabular("Cloudy^true Cloudy^false", "0.6 0.4"); net.SetPTabular("Sprinkler^true Sprinkler^false", "0.1 0.9", "Cloudy^true"); net.SetPTabular("Sprinkler^true Sprinkler^false", "0.5 0.5", "Cloudy^false"); net.SetPTabular("Rain^true Rain^false", "0.8 0.2", "Cloudy^true"); net.SetPTabular("Rain^true Rain^false", "0.2 0.8", "Cloudy^false"); // net.SetPTabular("WetGrass^true WetGrass^false", "0.99 0.01", "Rain^true Sprinkler^true "); net.SetPTabular("WetGrass^true WetGrass^false", "0.9 0.1", "Sprinkler^true Rain^false"); net.SetPTabular("WetGrass^true WetGrass^false", "0.9 0.1", "Sprinkler^false Rain^true"); net.SetPTabular("WetGrass^true WetGrass^false", "0.0 1.0", "Sprinkler^false Rain^false"); //To get the probability distribution of the node we must call the GetPTabular method: TokArr PCloudy = net.GetPTabular("Cloudy"); // Now it is possible to represent this distribution as string or as float numbers: String PCloudyStr = String(PCloudy); float PCloudyTrueF = PCloudy[0].FltValue(); float PCloudyFalseF = PCloudy[1].FltValue(); cout << PCloudyStr << std::endl << PCloudyTrueF << "," << PCloudyFalseF << std::endl; TokArr PSprinkler = net.GetPTabular("Sprinkler", "Cloudy^true"); String PSprinklerStr = String(PSprinkler); float PSprinklerTrue = PSprinkler[0].FltValue(); float PSprinklerFalse = PSprinkler[1].FltValue(); cout << PSprinklerStr << std::endl << PSprinklerTrue << "," << PSprinklerFalse << std::endl; // net.EditEvidence("Cloudy^false WetGrass^false"); // if the above line is un commented then after the net line the evidence buffer will have "Sprinkler^true Cloudy^true WetGrass^false" net.EditEvidence("Sprinkler^true Cloudy^true"); TokArr PRain = net.GetJPD("Rain"); // Now it is possible to represent this distribution as string or as float numbers: String PRainStr = String(PRain); float PRainTrueF = PRain[0].FltValue(); float PRainFalseF = PRain[1].FltValue(); cout << PRainStr << std::endl << PRainTrueF << "," << PRainFalseF << std::endl; TokArr PWetGrass = net.GetJPD("WetGrass"); String PWetGrassStr = String(PWetGrass); float PWetGrassTrue = PWetGrass[0].FltValue(); float PWetGrassFalse = PWetGrass[1].FltValue(); cout << PWetGrassStr << std::endl << PWetGrassTrue << "," << PWetGrassFalse << std::endl; return 0; }