BinarySpaceTree<BoundType, StatisticType, MatType, SplitType>::BinarySpaceTree(
    const BinarySpaceTree& other) :
    left(NULL),
    right(NULL),
    parent(other.parent),
    begin(other.begin),
    count(other.count),
    maxLeafSize(other.maxLeafSize),
    bound(other.bound),
    stat(other.stat),
    splitDimension(other.splitDimension),
    parentDistance(other.parentDistance),
    furthestDescendantDistance(other.furthestDescendantDistance),
    dataset(other.dataset)
{
  // Create left and right children (if any).
  if (other.Left())
  {
    left = new BinarySpaceTree(*other.Left());
    left->Parent() = this; // Set parent to this, not other tree.
  }

  if (other.Right())
  {
    right = new BinarySpaceTree(*other.Right());
    right->Parent() = this; // Set parent to this, not other tree.
  }
}
Пример #2
0
BinarySpaceTree<MetricType, StatisticType, MatType, BoundType, SplitType>::
BinarySpaceTree(
    const BinarySpaceTree& other) :
    left(NULL),
    right(NULL),
    parent(other.parent),
    begin(other.begin),
    count(other.count),
    bound(other.bound),
    stat(other.stat),
    parentDistance(other.parentDistance),
    furthestDescendantDistance(other.furthestDescendantDistance),
    // Copy matrix, but only if we are the root.
    dataset((other.parent == NULL) ? new MatType(*other.dataset) : NULL)
{
  // Create left and right children (if any).
  if (other.Left())
  {
    left = new BinarySpaceTree(*other.Left());
    left->Parent() = this; // Set parent to this, not other tree.
  }

  if (other.Right())
  {
    right = new BinarySpaceTree(*other.Right());
    right->Parent() = this; // Set parent to this, not other tree.
  }

  // Propagate matrix, but only if we are the root.
  if (parent == NULL)
  {
    std::queue<BinarySpaceTree*> queue;
    if (left)
      queue.push(left);
    if (right)
      queue.push(right);
    while (!queue.empty())
    {
      BinarySpaceTree* node = queue.front();
      queue.pop();

      node->dataset = dataset;
      if (node->left)
        queue.push(node->left);
      if (node->right)
        queue.push(node->right);
    }
  }
}
Пример #3
0
void BinarySpaceTree<MetricType, StatisticType, MatType, BoundType, SplitType>::
    Serialize(Archive& ar, const unsigned int /* version */)
{
  using data::CreateNVP;

  // If we're loading, and we have children, they need to be deleted.
  if (Archive::is_loading::value)
  {
    if (left)
      delete left;
    if (right)
      delete right;
    if (!parent)
      delete dataset;
  }

  ar & CreateNVP(parent, "parent");
  ar & CreateNVP(begin, "begin");
  ar & CreateNVP(count, "count");
  ar & CreateNVP(bound, "bound");
  ar & CreateNVP(stat, "statistic");
  ar & CreateNVP(parentDistance, "parentDistance");
  ar & CreateNVP(furthestDescendantDistance, "furthestDescendantDistance");
  ar & CreateNVP(dataset, "dataset");

  // Save children last; otherwise boost::serialization gets confused.
  ar & CreateNVP(left, "left");
  ar & CreateNVP(right, "right");

  // Due to quirks of boost::serialization, if a tree is saved as an object and
  // not a pointer, the first level of the tree will be duplicated on load.
  // Therefore, if we are the root of the tree, then we need to make sure our
  // children's parent links are correct, and delete the duplicated node if
  // necessary.
  if (Archive::is_loading::value)
  {
    // Get parents of left and right children, or, NULL, if they don't exist.
    BinarySpaceTree* leftParent = left ? left->Parent() : NULL;
    BinarySpaceTree* rightParent = right ? right->Parent() : NULL;

    // Reassign parent links if necessary.
    if (left && left->Parent() != this)
      left->Parent() = this;
    if (right && right->Parent() != this)
      right->Parent() = this;

    // Do we need to delete the left parent?
    if (leftParent != NULL && leftParent != this)
    {
      // Sever the duplicate parent's children.  Ensure we don't delete the
      // dataset, by faking the duplicated parent's parent (that is, we need to
      // set the parent to something non-NULL; 'this' works).
      leftParent->Parent() = this;
      leftParent->Left() = NULL;
      leftParent->Right() = NULL;
      delete leftParent;
    }

    // Do we need to delete the right parent?
    if (rightParent != NULL && rightParent != this && rightParent != leftParent)
    {
      // Sever the duplicate parent's children, in the same way as above.
      rightParent->Parent() = this;
      rightParent->Left() = NULL;
      rightParent->Right() = NULL;
      delete rightParent;
    }
  }
}
void BinarySpaceTree<BoundType, StatisticType, MatType>::
SingleTreeTraverser<RuleType>::Traverse(
    const size_t queryIndex,
    BinarySpaceTree<BoundType, StatisticType, MatType>& referenceNode)
{
  // If we are a leaf, run the base case as necessary.
  if (referenceNode.IsLeaf())
  {
    for (size_t i = referenceNode.Begin(); i < referenceNode.End(); ++i)
      rule.BaseCase(queryIndex, i);
  }
  else
  {
    // If either score is DBL_MAX, we do not recurse into that node.
    double leftScore = rule.Score(queryIndex, *referenceNode.Left());
    double rightScore = rule.Score(queryIndex, *referenceNode.Right());

    if (leftScore < rightScore)
    {
      // Recurse to the left.
      Traverse(queryIndex, *referenceNode.Left());

      // Is it still valid to recurse to the right?
      rightScore = rule.Rescore(queryIndex, *referenceNode.Right(), rightScore);

      if (rightScore != DBL_MAX)
        Traverse(queryIndex, *referenceNode.Right()); // Recurse to the right.
      else
        ++numPrunes;
    }
    else if (rightScore < leftScore)
    {
      // Recurse to the right.
      Traverse(queryIndex, *referenceNode.Right());

      // Is it still valid to recurse to the left?
      leftScore = rule.Rescore(queryIndex, *referenceNode.Left(), leftScore);

      if (leftScore != DBL_MAX)
        Traverse(queryIndex, *referenceNode.Left()); // Recurse to the left.
      else
        ++numPrunes;
    }
    else // leftScore is equal to rightScore.
    {
      if (leftScore == DBL_MAX)
      {
        numPrunes += 2; // Pruned both left and right.
      }
      else
      {
        // Choose the left first.
        Traverse(queryIndex, *referenceNode.Left());

        // Is it still valid to recurse to the right?
        rightScore = rule.Rescore(queryIndex, *referenceNode.Right(),
            rightScore);

        if (rightScore != DBL_MAX)
          Traverse(queryIndex, *referenceNode.Right());
        else
          ++numPrunes;
      }
    }
  }
}
Пример #5
0
void BinarySpaceTree<MetricType, StatisticType, MatType, BoundType, SplitType>::
DualTreeTraverser<RuleType>::Traverse(
    BinarySpaceTree<MetricType, StatisticType, MatType, BoundType, SplitType>&
        queryNode,
    BinarySpaceTree<MetricType, StatisticType, MatType, BoundType, SplitType>&
        referenceNode)
{
  // Increment the visit counter.
  ++numVisited;

  // Store the current traversal info.
  traversalInfo = rule.TraversalInfo();

  // If both are leaves, we must evaluate the base case.
  if (queryNode.IsLeaf() && referenceNode.IsLeaf())
  {
    // Loop through each of the points in each node.
    const size_t queryEnd = queryNode.Begin() + queryNode.Count();
    const size_t refEnd = referenceNode.Begin() + referenceNode.Count();
    for (size_t query = queryNode.Begin(); query < queryEnd; ++query)
    {
      // See if we need to investigate this point (this function should be
      // implemented for the single-tree recursion too).  Restore the traversal
      // information first.
      rule.TraversalInfo() = traversalInfo;
      const double childScore = rule.Score(query, referenceNode);

      if (childScore == DBL_MAX)
        continue; // We can't improve this particular point.

      for (size_t ref = referenceNode.Begin(); ref < refEnd; ++ref)
        rule.BaseCase(query, ref);

      numBaseCases += referenceNode.Count();
    }
  }
  else if (((!queryNode.IsLeaf()) && referenceNode.IsLeaf()) ||
           (queryNode.NumDescendants() > 3 * referenceNode.NumDescendants() &&
            !queryNode.IsLeaf() && !referenceNode.IsLeaf()))
  {
    // We have to recurse down the query node.  In this case the recursion order
    // does not matter.
    const double leftScore = rule.Score(*queryNode.Left(), referenceNode);
    ++numScores;

    if (leftScore != DBL_MAX)
      Traverse(*queryNode.Left(), referenceNode);
    else
      ++numPrunes;

    // Before recursing, we have to set the traversal information correctly.
    rule.TraversalInfo() = traversalInfo;
    const double rightScore = rule.Score(*queryNode.Right(), referenceNode);
    ++numScores;

    if (rightScore != DBL_MAX)
      Traverse(*queryNode.Right(), referenceNode);
    else
      ++numPrunes;
  }
  else if (queryNode.IsLeaf() && (!referenceNode.IsLeaf()))
  {
    // We have to recurse down the reference node.  In this case the recursion
    // order does matter.  Before recursing, though, we have to set the
    // traversal information correctly.
    double leftScore = rule.Score(queryNode, *referenceNode.Left());
    typename RuleType::TraversalInfoType leftInfo = rule.TraversalInfo();
    rule.TraversalInfo() = traversalInfo;
    double rightScore = rule.Score(queryNode, *referenceNode.Right());
    numScores += 2;

    if (leftScore < rightScore)
    {
      // Recurse to the left.  Restore the left traversal info.  Store the right
      // traversal info.
      traversalInfo = rule.TraversalInfo();
      rule.TraversalInfo() = leftInfo;
      Traverse(queryNode, *referenceNode.Left());

      // Is it still valid to recurse to the right?
      rightScore = rule.Rescore(queryNode, *referenceNode.Right(), rightScore);

      if (rightScore != DBL_MAX)
      {
        // Restore the right traversal info.
        rule.TraversalInfo() = traversalInfo;
        Traverse(queryNode, *referenceNode.Right());
      }
      else
        ++numPrunes;
    }
    else if (rightScore < leftScore)
    {
      // Recurse to the right.
      Traverse(queryNode, *referenceNode.Right());

      // Is it still valid to recurse to the left?
      leftScore = rule.Rescore(queryNode, *referenceNode.Left(), leftScore);

      if (leftScore != DBL_MAX)
      {
        // Restore the left traversal info.
        rule.TraversalInfo() = leftInfo;
        Traverse(queryNode, *referenceNode.Left());
      }
      else
        ++numPrunes;
    }
    else // leftScore is equal to rightScore.
    {
      if (leftScore == DBL_MAX)
      {
        numPrunes += 2;
      }
      else
      {
        // Choose the left first.  Restore the left traversal info.  Store the
        // right traversal info.
        traversalInfo = rule.TraversalInfo();
        rule.TraversalInfo() = leftInfo;
        Traverse(queryNode, *referenceNode.Left());

        rightScore = rule.Rescore(queryNode, *referenceNode.Right(),
            rightScore);

        if (rightScore != DBL_MAX)
        {
          // Restore the right traversal info.
          rule.TraversalInfo() = traversalInfo;
          Traverse(queryNode, *referenceNode.Right());
        }
        else
          ++numPrunes;
      }
    }
  }
  else
  {
    // We have to recurse down both query and reference nodes.  Because the
    // query descent order does not matter, we will go to the left query child
    // first.  Before recursing, we have to set the traversal information
    // correctly.
    double leftScore = rule.Score(*queryNode.Left(), *referenceNode.Left());
    typename RuleType::TraversalInfoType leftInfo = rule.TraversalInfo();
    rule.TraversalInfo() = traversalInfo;
    double rightScore = rule.Score(*queryNode.Left(), *referenceNode.Right());
    typename RuleType::TraversalInfoType rightInfo;
    numScores += 2;

    if (leftScore < rightScore)
    {
      // Recurse to the left.  Restore the left traversal info.  Store the right
      // traversal info.
      rightInfo = rule.TraversalInfo();
      rule.TraversalInfo() = leftInfo;
      Traverse(*queryNode.Left(), *referenceNode.Left());

      // Is it still valid to recurse to the right?
      rightScore = rule.Rescore(*queryNode.Left(), *referenceNode.Right(),
          rightScore);

      if (rightScore != DBL_MAX)
      {
        // Restore the right traversal info.
        rule.TraversalInfo() = rightInfo;
        Traverse(*queryNode.Left(), *referenceNode.Right());
      }
      else
        ++numPrunes;
    }
    else if (rightScore < leftScore)
    {
      // Recurse to the right.
      Traverse(*queryNode.Left(), *referenceNode.Right());

      // Is it still valid to recurse to the left?
      leftScore = rule.Rescore(*queryNode.Left(), *referenceNode.Left(),
          leftScore);

      if (leftScore != DBL_MAX)
      {
        // Restore the left traversal info.
        rule.TraversalInfo() = leftInfo;
        Traverse(*queryNode.Left(), *referenceNode.Left());
      }
      else
        ++numPrunes;
    }
    else
    {
      if (leftScore == DBL_MAX)
      {
        numPrunes += 2;
      }
      else
      {
        // Choose the left first.  Restore the left traversal info and store the
        // right traversal info.
        rightInfo = rule.TraversalInfo();
        rule.TraversalInfo() = leftInfo;
        Traverse(*queryNode.Left(), *referenceNode.Left());

        // Is it still valid to recurse to the right?
        rightScore = rule.Rescore(*queryNode.Left(), *referenceNode.Right(),
            rightScore);

        if (rightScore != DBL_MAX)
        {
          // Restore the right traversal information.
          rule.TraversalInfo() = rightInfo;
          Traverse(*queryNode.Left(), *referenceNode.Right());
        }
        else
          ++numPrunes;
      }
    }

    // Restore the main traversal information.
    rule.TraversalInfo() = traversalInfo;

    // Now recurse down the right query node.
    leftScore = rule.Score(*queryNode.Right(), *referenceNode.Left());
    leftInfo = rule.TraversalInfo();
    rule.TraversalInfo() = traversalInfo;
    rightScore = rule.Score(*queryNode.Right(), *referenceNode.Right());
    numScores += 2;

    if (leftScore < rightScore)
    {
      // Recurse to the left.  Restore the left traversal info.  Store the right
      // traversal info.
      rightInfo = rule.TraversalInfo();
      rule.TraversalInfo() = leftInfo;
      Traverse(*queryNode.Right(), *referenceNode.Left());

      // Is it still valid to recurse to the right?
      rightScore = rule.Rescore(*queryNode.Right(), *referenceNode.Right(),
          rightScore);

      if (rightScore != DBL_MAX)
      {
        // Restore the right traversal info.
        rule.TraversalInfo() = rightInfo;
        Traverse(*queryNode.Right(), *referenceNode.Right());
      }
      else
        ++numPrunes;
    }
    else if (rightScore < leftScore)
    {
      // Recurse to the right.
      Traverse(*queryNode.Right(), *referenceNode.Right());

      // Is it still valid to recurse to the left?
      leftScore = rule.Rescore(*queryNode.Right(), *referenceNode.Left(),
          leftScore);

      if (leftScore != DBL_MAX)
      {
        // Restore the left traversal info.
        rule.TraversalInfo() = leftInfo;
        Traverse(*queryNode.Right(), *referenceNode.Left());
      }
      else
        ++numPrunes;
    }
    else
    {
      if (leftScore == DBL_MAX)
      {
        numPrunes += 2;
      }
      else
      {
        // Choose the left first.  Restore the left traversal info.  Store the
        // right traversal info.
        rightInfo = rule.TraversalInfo();
        rule.TraversalInfo() = leftInfo;
        Traverse(*queryNode.Right(), *referenceNode.Left());

        // Is it still valid to recurse to the right?
        rightScore = rule.Rescore(*queryNode.Right(), *referenceNode.Right(),
            rightScore);

        if (rightScore != DBL_MAX)
        {
          // Restore the right traversal info.
          rule.TraversalInfo() = rightInfo;
          Traverse(*queryNode.Right(), *referenceNode.Right());
        }
        else
          ++numPrunes;
      }
    }
  }
}
void BinarySpaceTree<BoundType, StatisticType, MatType>::
DualTreeTraverser<RuleType>::Traverse(
    BinarySpaceTree<BoundType, StatisticType, MatType>& queryNode,
    BinarySpaceTree<BoundType, StatisticType, MatType>& referenceNode)
{
  // If both are leaves, we must evaluate the base case.
  if (queryNode.IsLeaf() && referenceNode.IsLeaf())
  {
    // Loop through each of the points in each node.
    for (size_t query = queryNode.Begin(); query < queryNode.End(); ++query)
    {
      // See if we need to investigate this point (this function should be
      // implemented for the single-tree recursion too).
      const double score = rule.Score(query, referenceNode);

      if (score == DBL_MAX)
        continue; // We can't improve this particular point.

      for (size_t ref = referenceNode.Begin(); ref < referenceNode.End(); ++ref)
        rule.BaseCase(query, ref);
    }
  }
  else if ((!queryNode.IsLeaf()) && referenceNode.IsLeaf())
  {
    // We have to recurse down the query node.  In this case the recursion order
    // does not matter.
    double leftScore = rule.Score(*queryNode.Left(), referenceNode);

    if (leftScore != DBL_MAX)
      Traverse(*queryNode.Left(), referenceNode);
    else
      ++numPrunes;

    double rightScore = rule.Score(*queryNode.Right(), referenceNode);

    if (rightScore != DBL_MAX)
      Traverse(*queryNode.Right(), referenceNode);
    else
      ++numPrunes;
  }
  else if (queryNode.IsLeaf() && (!referenceNode.IsLeaf()))
  {
    // We have to recurse down the reference node.  In this case the recursion
    // order does matter.
    double leftScore = rule.Score(queryNode, *referenceNode.Left());
    double rightScore = rule.Score(queryNode, *referenceNode.Right());

    if (leftScore < rightScore)
    {
      // Recurse to the left.
      Traverse(queryNode, *referenceNode.Left());

      // Is it still valid to recurse to the right?
      rightScore = rule.Rescore(queryNode, *referenceNode.Right(), rightScore);

      if (rightScore != DBL_MAX)
        Traverse(queryNode, *referenceNode.Right());
      else
        ++numPrunes;
    }
    else if (rightScore < leftScore)
    {
      // Recurse to the right.
      Traverse(queryNode, *referenceNode.Right());

      // Is it still valid to recurse to the left?
      leftScore = rule.Rescore(queryNode, *referenceNode.Left(), leftScore);

      if (leftScore != DBL_MAX)
        Traverse(queryNode, *referenceNode.Left());
      else
        ++numPrunes;
    }
    else // leftScore is equal to rightScore.
    {
      if (leftScore == DBL_MAX)
      {
        numPrunes += 2;
      }
      else
      {
        // Choose the left first.
        Traverse(queryNode, *referenceNode.Left());

        rightScore = rule.Rescore(queryNode, *referenceNode.Right(),
            rightScore);

        if (rightScore != DBL_MAX)
          Traverse(queryNode, *referenceNode.Right());
        else
          ++numPrunes;
      }
    }
  }
  else
  {
    // We have to recurse down both query and reference nodes.  Because the
    // query descent order does not matter, we will go to the left query child
    // first.
    double leftScore = rule.Score(*queryNode.Left(), *referenceNode.Left());
    double rightScore = rule.Score(*queryNode.Left(), *referenceNode.Right());

    if (leftScore < rightScore)
    {
      // Recurse to the left.
      Traverse(*queryNode.Left(), *referenceNode.Left());

      // Is it still valid to recurse to the right?
      rightScore = rule.Rescore(*queryNode.Left(), *referenceNode.Right(),
          rightScore);

      if (rightScore != DBL_MAX)
        Traverse(*queryNode.Left(), *referenceNode.Right());
      else
        ++numPrunes;
    }
    else if (rightScore < leftScore)
    {
      // Recurse to the right.
      Traverse(*queryNode.Left(), *referenceNode.Right());

      // Is it still valid to recurse to the left?
      leftScore = rule.Rescore(*queryNode.Left(), *referenceNode.Left(),
          leftScore);

      if (leftScore != DBL_MAX)
        Traverse(*queryNode.Left(), *referenceNode.Left());
      else
        ++numPrunes;
    }
    else
    {
      if (leftScore == DBL_MAX)
      {
        numPrunes += 2;
      }
      else
      {
        // Choose the left first.
        Traverse(*queryNode.Left(), *referenceNode.Left());

        // Is it still valid to recurse to the right?
        rightScore = rule.Rescore(*queryNode.Left(), *referenceNode.Right(),
            rightScore);

        if (rightScore != DBL_MAX)
          Traverse(*queryNode.Left(), *referenceNode.Right());
        else
          ++numPrunes;
      }
    }

    // Now recurse down the right query node.
    leftScore = rule.Score(*queryNode.Right(), *referenceNode.Left());
    rightScore = rule.Score(*queryNode.Right(), *referenceNode.Right());

    if (leftScore < rightScore)
    {
      // Recurse to the left.
      Traverse(*queryNode.Right(), *referenceNode.Left());

      // Is it still valid to recurse to the right?
      rightScore = rule.Rescore(*queryNode.Right(), *referenceNode.Right(),
          rightScore);

      if (rightScore != DBL_MAX)
        Traverse(*queryNode.Right(), *referenceNode.Right());
      else
        ++numPrunes;
    }
    else if (rightScore < leftScore)
    {
      // Recurse to the right.
      Traverse(*queryNode.Right(), *referenceNode.Right());

      // Is it still valid to recurse to the left?
      leftScore = rule.Rescore(*queryNode.Right(), *referenceNode.Left(),
          leftScore);

      if (leftScore != DBL_MAX)
        Traverse(*queryNode.Right(), *referenceNode.Left());
      else
        ++numPrunes;
    }
    else
    {
      if (leftScore == DBL_MAX)
      {
        numPrunes += 2;
      }
      else
      {
        // Choose the left first.
        Traverse(*queryNode.Right(), *referenceNode.Left());

        // Is it still valid to recurse to the right?
        rightScore = rule.Rescore(*queryNode.Right(), *referenceNode.Right(),
            rightScore);

        if (rightScore != DBL_MAX)
          Traverse(*queryNode.Right(), *referenceNode.Right());
        else
          ++numPrunes;
      }
    }
  }

  // Now update any necessary information after recursion.
  rule.UpdateAfterRecursion(queryNode, referenceNode);
}
void BinarySpaceTree<MetricType, StatisticType, MatType, BoundType, SplitType>::
BreadthFirstDualTreeTraverser<RuleType>::Traverse(
    BinarySpaceTree<MetricType, StatisticType, MatType, BoundType, SplitType>&
        queryNode,
    std::priority_queue<QueueFrameType>& referenceQueue)
{
  // Store queues for the children.  We will recurse into the children once our
  // queue is empty.
  std::priority_queue<QueueFrameType> leftChildQueue;
  std::priority_queue<QueueFrameType> rightChildQueue;

  while (!referenceQueue.empty())
  {
    QueueFrameType currentFrame = referenceQueue.top();
    referenceQueue.pop();

    BinarySpaceTree& queryNode = *currentFrame.queryNode;
    BinarySpaceTree& referenceNode = *currentFrame.referenceNode;
    typename RuleType::TraversalInfoType ti = currentFrame.traversalInfo;
    rule.TraversalInfo() = ti;
    const size_t queryDepth = currentFrame.queryDepth;

    double score = rule.Score(queryNode, referenceNode);
    ++numScores;

    if (score == DBL_MAX)
    {
      ++numPrunes;
      continue;
    }

    // If both are leaves, we must evaluate the base case.
    if (queryNode.IsLeaf() && referenceNode.IsLeaf())
    {
      // Loop through each of the points in each node.
      const size_t queryEnd = queryNode.Begin() + queryNode.Count();
      const size_t refEnd = referenceNode.Begin() + referenceNode.Count();
      for (size_t query = queryNode.Begin(); query < queryEnd; ++query)
      {
        // See if we need to investigate this point (this function should be
        // implemented for the single-tree recursion too).  Restore the
        // traversal information first.
//        const double childScore = rule.Score(query, referenceNode);

//        if (childScore == DBL_MAX)
//          continue; // We can't improve this particular point.

        for (size_t ref = referenceNode.Begin(); ref < refEnd; ++ref)
          rule.BaseCase(query, ref);

        numBaseCases += referenceNode.Count();
      }
    }
    else if ((!queryNode.IsLeaf()) && referenceNode.IsLeaf())
    {
      // We have to recurse down the query node.
      QueueFrameType fl = { queryNode.Left(), &referenceNode, queryDepth + 1,
          score, rule.TraversalInfo() };
      leftChildQueue.push(fl);

      QueueFrameType fr = { queryNode.Right(), &referenceNode, queryDepth + 1,
          score, ti };
      rightChildQueue.push(fr);
    }
    else if (queryNode.IsLeaf() && (!referenceNode.IsLeaf()))
    {
      // We have to recurse down the reference node.  In this case the recursion
      // order does matter.  Before recursing, though, we have to set the
      // traversal information correctly.
      QueueFrameType fl = { &queryNode, referenceNode.Left(), queryDepth,
          score, rule.TraversalInfo() };
      referenceQueue.push(fl);

      QueueFrameType fr = { &queryNode, referenceNode.Right(), queryDepth,
          score, ti };
      referenceQueue.push(fr);
    }
    else
    {
      // We have to recurse down both query and reference nodes.  Because the
      // query descent order does not matter, we will go to the left query child
      // first.  Before recursing, we have to set the traversal information
      // correctly.
      QueueFrameType fll = { queryNode.Left(), referenceNode.Left(),
          queryDepth + 1, score, rule.TraversalInfo() };
      leftChildQueue.push(fll);

      QueueFrameType flr = { queryNode.Left(), referenceNode.Right(),
          queryDepth + 1, score, rule.TraversalInfo() };
      leftChildQueue.push(flr);

      QueueFrameType frl = { queryNode.Right(), referenceNode.Left(),
          queryDepth + 1, score, rule.TraversalInfo() };
      rightChildQueue.push(frl);

      QueueFrameType frr = { queryNode.Right(), referenceNode.Right(),
          queryDepth + 1, score, rule.TraversalInfo() };
      rightChildQueue.push(frr);
    }
  }

  // Now, recurse into the left and right children queues.  The order doesn't
  // matter.
  if (leftChildQueue.size() > 0)
    Traverse(*queryNode.Left(), leftChildQueue);
  if (rightChildQueue.size() > 0)
    Traverse(*queryNode.Right(), rightChildQueue);
}